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Abstract:- In VHDL design possible to perform normal multiplication, addition, subtraction but it is difficult to 

perform floating point multiplication. So in this we implementing a new algorithm for performing the floating 

point multiplication. Floating point number can represent a very large or a very small. It could also represent 

very large negative number and very small negative number as well as zero. Floating point number is typically 

expressed in the scientific notation, with a fraction (F), and exponent (E) of a certain radix(r). Modern 

computers adopt IEEE 754 standard for representing floating point numbers. Floating point number consists of 

two fixed point components, whose range depends exclusively on the number of bits or digits in their 

representation. Whereas components linearly depend on their range, the floating point range linearly depends on 

the significant range and exponentially on the range exponent component, which attaches outstandingly wider 

range to the number. In this paper we perform -32-bit and 64-bit floating-point multiplication. Floating point 

multiplication is important in many commercial applications including financial analysis, banking, tax 

calculation, currency conversion, insurance, and accounting. 
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I. INTRODUCTION 
 IEEE 754 floating point standard is the most common representation today for real numbers on 

computers. The IEEE (Institute Of Electrical And Electronics Engineers) has produced a standard to define 

floating –point representation and arithmetic. Although there are other representation used for floating point 

numbers. The standard brought out by the IEEE come to be known as IEEE 754.It is interesting to note that the 

string of significant digits is technically termed the mantissa of the number, while the scale factor is 

appropriately called the exponent of the number. The general form of the representation is the following (-1)
S
  * 

M* 2
E
 . Where S represents the sign bit, M represents the mantissa and E represents the exponent. When it 

comes to their precision and width in bits, the standard defines two groups: base and extended format. The basic 

format is further divided into Single –Precision format with 32-bits wide, and double-precision format with 64-

bits wide. The three basic components are the sign, exponent, and mantissa. 

IEEE 754 Floating Point Formats: 

IEEE 754 specifies four formats for representing floating-point values: 

1. Single precision (32-bit) 

2. Double precision (64-bit) 

3. Single-extended precision (≥43-bits, not commonly used) 

4. Double-extended precision (≥79-bit, usually implemented with 80 bits) 

A. Single Precision floating point Numbers: 

 The Single-precision number is 32-bit wide. The single-precision number has three main fields that are 

sign, exponent, and mantissa .The 24-bit mantissa can approximately represents a 7-digit decimal number, while 

an 8-bit exponent to an implied base of 2 provides a scale factor with a reasonable range. Thus a total of 32-bit 

is needed for single-precision number representation. To achieve this, a bias equal to 2
n-1

-1 is added to the actual 

exponent in order to obtain the stored exponent. This equals 127 for an eight-bit exponent of the single precision 

format. The addition of bias allows the use of an exponent in the range from -127 to +128, corresponding to a 

range of 0-255 for single precision. The single-precision format offers the range from 2
-1

 
27

 to 2
+127

.  Which 

equivalent to 10
-38 

to 10
+38

.  

 

Sign: 1-bit wide and used to denote t he sign of the number i.e. 0 indicate positive number, 1represent negative 

number. 

Exponent: 8-bit wide and signed exponent in excess -127 representations. 

Mantissa: 28-bit wide and fractional component. 
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Fig1: Single-precision floating point representation 

 

Number Representation using Single Precision Format: 

Let us try and represent the decimal number (-0.03125)10 in IEEE floating-point format. 

STEP1: Convert the number into binary form 

 (0.03125)10 = (0.00001)2 

STEP2: Convert (0.00001)2 into floating point representation. 

0.00001× 2+0
 = 0.00001 

STEP3: Normalized the value 0.00001 

000001×2
-5

 = 1× 2
-5 

STEP4: Biased exponent =127-5 

=122 =1111010 

 
Fig2: example of single precision 

 

B. Double Precision floating point Numbers: 

 The double precision number is 64-bit wide. The double-precision number has three main fields that 

are sign, exponent, and mantissa. The 52-bit mantissa, while an 11-bit exponent to an implied base of 2 provides 

a scale factor with reasonable range. Thus a total of 64 bits is needed for single-precision number representation. 

To achieve this, a bias equal to 2
n-1

-1 is added to the actual exponent in order to obtain the stored exponent. This 

is equal 1023 for an 11-bit exponent of the double-precision format.  The addition of bias allows the use of an 

exponent in the range from -1023 to +1024, corresponding to a range of 0-2047 for double precision. . The 

double-precision format offers the range from 2
-10

 
23 

to 2
+1023

.  Which equivalent to 10
-308 

to 10
+308

. 

Sign: 1-bit wide and used to denote t he sign of the number i.e., 0 indicate positive number, 1 represent negative 

number. 

Exponent: 11-bit wide and signed exponent in excess -1023representations. 

Mantissa: 52-bit wide and fractional component. 

 
Fig3: Double-precision floating point representation 

 

Number Representation using Double Precision Format: 

Let us try and represent the decimal number (-0.03125)10 

STEP1: Convert the number into binary form 

(0.03125)10 = (0.00001)2 

STEP2: Convert (0.00001)2 into floating point representation. 

0.00001× 2+0
 = 0.00001 

STEP3: Normalized the value 0.00001 

000001×2
-5

 = 1× 2
-5

 

STEP4: Biased exponent =1023-5 

=1018  

= 1111111010     

 
Fig4: example of double precision 
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II. DESIGN 
Floating point multiplier block diagram: 

 
Fig5: Floating point multiplier 

 

 The figure5 shows the multiplier structure; Exponents addition, Significand multiplication, and 

Result’s sign calculation are independent and are done in parallel.  

The significand and multiplication is done on two 24 bit numbers and results in a 48 bit product, which we will 

call the intermediate product (IP). The IP is represented as (47 down to 0) and the decimal point is located 

between bits 46 and 45 in the IP.  

 

Floating point multiplication:  

 The simplest floating point operation is multiplication, so we discuss it first. A binary floating point 

number x is represented as a significand and an  exponent. 

                                         X = s * 2
e
 

The formula   

                             (s1 ∗ 2
e1

)  ∙  (s2 ∗ 2
e 2

) = (s1 ∙ s2) ∗ 2
e1+e 2

 

Shows that a floating-point multiply algorithm has several parts. T he first part multiplies the significands using 

ordinary integer multiplication. Because floating point numbers are stored in sign magnitude form , the 

multiplier need only deal with unsigned numbers. The second part rounds the result. If the significands are 

unsigned p-bit number, then the product can have as many as 2p bits and must be rounded to a p-bit number. 

The third part compues the new exponent. Because exponents are stored with bias, this involves subtracting the 

bias from the sum of biased exponent. 

Example:  

Let’s suppose a multiplication of 2 floating-point numbers A and B, where A= −18 ∙0 and B=9∙5 

 Binary representation of the operands: 

A = −10010 ∙ 0 

B = + 1001.1 

 Normalized representation of the operands: 

             A = −1 ∙ 001×2
4
 

             B = +1 ∙ 0011 ×2
3
 

 IEEE representation of operands: 

            A = 1 10000011 00100000000000000000000 

B = 0 10000010  00110000000000000000000  

 Multiplication of the mantissa: 

 We must extract the mantissa, adding an 1 as most significant bit, for  normalization 

              1001000000000000000000000 

              100110000000000000000000 

 The 48-bit result of the multiplication is: 

              0×558000000000 

 Only the most significant bits are useful: after normalization , we get the 23-bit mantissa of the result. 

This normalization can lead to correction of the result’s exponent 

 In our case , we get: 
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Fig6: Normalization 

 Addition of the exponents: 

 Exponent of the result is equal to the sum of the operands exponents. A 1 can be added if needed by the 

normalization of the mantissa multiplication 

 As the exponent fields (Ea and Eb) are biased, the bias must be removed in order to do the addition. And 

then, we must to add aginto the exponent  the bias, to get the value to be entered into the exponent field of the 

result (Er): 

               Er = ( Ea− 127 ) + ( Eb −127 ) + 127  

                     = Ea + Eb – 127 

 In our example, we have: 

                                         Ea  = 10000011 

                                         Eb = 10000010 

                                         −127 

                                          Er 10000110 

What is actually 7, the exponent of the result 

 Calculation of the sign of the result: 

 T sign of the result (Sr) is given by the exclusive-or of the operands signs (Sa and Sb) :   

         Sr = Sa  xor  Sb∙ 
 in our example ,we get 

          Sr =1 xor  0 =1    i.e a negative sign 

 Composite of the result: 

The setting of the 3 intermediate result (sign, mantissa and exponent) gives us the final result of our 

multiplication: 

 
Fig7:Multiplication result 

 

A × B = −18 ∙0×9∙5 = −1 ∙0101011×2
134 -127

 = −10101011∙0 = −171∙010 

Normalization: 

The normalization step requries: 

The detection of the position of the leading 1 uses LOD (Leading-One-Detector) 

A shift performed by the shifter :        

 no shift 

 Right shift of one position , or 

 Left shift of up to m positions 

Rounding:     

 Round to nearest 

 Round toward  zero 

 Round toward plus infinity 

 Round toward minus infinity 

Zero: When one of the operands has value  0 and the other is not ∓ infinity; 

 Zero result set 

Over flow: exponent too large; 

Detected after exponent update; 

Over flow set; result value is ∓ infinity 

Underflow: resulting exponent too small; 

Underflow flag set; exponent set to E=0 

Significand shifted right to represent a denormal 

 

III. IMPLIMENTATION 
Simulation flow in Model sim: 

 Creating the working library: In ModelSim , all the designs are compiled into a library. We start a 

new simulation in ModelSim by creating a working library called work.Work is the library name used 

by the compiler as the default destination for compiled design units. 

 Compile the design: Before the simulate a design , we must first create and compile the source code 

into that library. 
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 Loading the design into simulator:  Load the test_design module into the simulator. Double click 

test_design in the Main window Workspace to load the design. It can also load the design by selecting 

Simulate > Start Simulation in the menu bar. This opens the Start Simulation dialog. 

 Running the simulation:  Go to simulate  > start simulation >  run  > run all. Time taking  for 

simulation is 950ps. 

 Debugging the results: If we don’t get the results we expect, then we can use ModelSim’s robust 

debuggung environment  to track down  the cause of the problem 

 

IV. RESULTS AND ANALYSIS: 
The design has been implemented and simulated by using ModelSim. 

Consider inputs to the floating point multiplier are:  

A = 00111111110000000000000000000000 

B = 11111111100000000000000000000001 

The output of the multiplier should be 

010000000000001011111101100001111111010000000100 

Flag outputs of this multiplier are 

Overflow = 0; underflow = 1; final exponent = 10000001; zero = 0 

 
Fig8: Input and output waveform 

 

V. CONCLUSION 
 The floating point multiplier is design for both 32-bit and 64-bit by varying the input variables.  
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