
International Journal of Engineering Research and Development

e-ISSN: 2278-067X, p-ISSN: 2278-800X, www.ijerd.com

Volume 10, Issue 4 (April 2014), PP.69-73

69

Survey paper on Generalized Inverted Index for Keyword Search

Dhomse Kanchan
1
, Prof. R.L.Paikrao

2

1
M.E. ,Computer, AVCOE, Sangamner

2
H.O.D., Computer Dept., AVCOE, Sangamner

ABSTRACT:- Inverted lists are normally used to index selected documents to acess the documents according

to a set of keywords efficiently. Since inverted lists are normally large in size, many compression techniques

have been proposed to minimize the storage space and disk I/O time.This paper presents we propose improved

technologies for document identifier assignment a more convenience index structure, the Generalized Inverted

Index which merges consecutive IDs in inverted lists into intervals to avoid large storage space. With this index

structure, more efficient algorithms can be devised to implement basic keyword search operations. The

performance of generalized inverted index is also improved by reordering the documents in datasets using two

scalable new algorithms. Experiments on the performance and scalability of generalized inverted index on real

datasets prove that Generalized Inverted Index requires minimum storage space as well as increases the keyword

search performance, as compared to the old inverted indexes.

Keywords:- keyword search; DocID Assignment, index compression; document reordering, Union Algorithm,

Intersection Algorithm.

I. INTRODUCTION
Among the large amount of new information, keyword search is complicated for users to access text

datasets. These datasets include textual documents (web pages), XML documents, and relational tables (which

can also be regarded as sets of documents). Users use keyword search to retrieve documents by simply typing

in keywords as queries. Current keyword search systems normally use an inverted index, a data structure that

maps each word in the dataset to a list of IDs of documents in which the word appears to efficiently retrieve

documents. The inverted index for a document collection consists of a set of so-called inverted lists, known as

posting lists. Each inverted list corresponds to a word, which stores all the IDs of documents where this word

appears in ascending order. In practice, real world datasets are so large that keyword search systems normally

use various compression techniques to reduce the space cost of storing inverted indexes. Compression of

inverted index not only reduces the space cost, but also leads to less disk I/O time during query processing. As a

result,compression techniques have been extensively studied in recent years. Since IDs in inverted lists are

sorted in ascending order,such as Such as Variable-Byte Encoding (VBE)[1] and PForDelta[2], store the

differences between IDs, called d-gaps,and then use various techniques to encode these d-gaps using shorter

binary representations. Although a compressed inverted index is smaller than the original index, the system

needs to decompress encoded lists during query processing, which leads to extra computational costs. To solve

this problem, this paper presents the Generalized Inverted Index which is an extension of the traditional inverted

index (denoted by InvIndex), to support keyword search. Generalized Inverted Index encodes consecutive IDs in

each inverted list of InvIndex into intervals, and adopts efficient algorithms to support keyword search using

these interval lists.

II. BACKGROUND
A. Prior Work on Doc ID Assignment

The compressed size of an inverted list, and thus the entire inverted index, is a function of the d-gaps

being compressed, which itself depends on how we assign docIDs to documents (or columns to documents in

the matrix). usual integer compression algorithm want fewer bits to represent ta smaller integer than a larger

one, but the number of bits required is typically less than linear in the value. This means that if we assign

docIDs to documents such that we get many small d-gaps, and a few larger d-gaps, the resulting inverted list

will be more compressible than another list with the same average valuebut more uniform gaps. This is the

insight that has motivated all the recent work on optimizing docID assignment [3]-[5] .Note that this work is

related in large part to the more general topic of sparse matrix compression [6], with parallel lines of work often

existing between the two fields.

Survey paper on Generalized Inverted Index for Keyword Search

70

III. IMPLEMENTATION
A. Basic Concepts of Generalized Inverted Index

 An inverted list of file is an index data structure storing a mapping from content, such as digits, to its

place in a database file, or in a file or a collection of documents. The main purpose of an inverted index is to

permit fast whole text searches, at a cost of increased processing when a document is added to the original

database. The inverted data may be the database file itself, rather than its index. It is the most popular data

structure used in document storing and accessing the systems,[1] used on a big scale for example in google.

Example:

Id Content

1 Keyword ranking in databases

2 Keyword searching in databases

3 Keyword search in relational databases

4 Required fuzzy type-ahead search

5 Navigation system for any item search

6 Keyword search on relational databases

7 Searching for web databases

Table 1 (a1) Dataset content

(b1) Inverted Index (c1) Generalized Inverted Index

Word IDs Word Intervals

Keyword 1,2,3,6 Keyword [1,3],[6,6]

Databases 1,2,3,6,7 Databases [1,3],[6,7]

Table 1 (b1),(c1). Example of inverted index for keyword search

B. Search Index Algorithms

 Any keyword search method usually helps union and the intersection operations on inverted lists. The

union operation is a basic operation to support OR query in which each and every data file that include at least

one of the query keywords is returned as an output. The intersection operation is used to support AND query

semantics, in which only those data files that include all the query keywords are returned. Usual search

algorithms are all based on Identifier lists. This method introduces extra computational costs for decode, and

Identifier list based search processes can be very costly because ID lists are usually very large in size.

1) Union operation

Figure 1: Union Operation

The Initial Interval
list,

Ri ={R1,R2, ,Rn},

Their equivalent ID lists,

• Si ={S1, S2,, Sn},

The union of Ri is the
equivalent interval list .

So, The Output of the
Euivalent ID list becomes

S={S1 U S2 U… Sn}

Survey paper on Generalized Inverted Index for Keyword Search

71

 As in set theory, the union of a set of ID lists, denoted by S ={S1, S2, …… , Sn}, is another ID list, in

which each ID is contained in at least one ID list in S. Thus the union of a set of interval lists can be defined as

follows in figure 1. For example, consider the following three interval lists: {[2, 7], [11, 13]}, {[5, 7], [12, 14]},

and {[1, 3],[.6, 7],[12, 15]. Their equivalent ID lists are { 3, 4, 5, 6, 7, 11, 12, 13}{5, 6, 7, 12, 13, 14}, and {1, 2,

3, 6, 7, 12, 13, 14, 15}. The union of these three ID lists is{1, 2, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 15}, thus, the

union of the three interval lists is the equivalent interval list of this ID list, i.e.{[1, 7],[11, 15]}.

2) Intersection operation

The intersection operation, calculates the intersection list of a set of ordered lists. As with the

definitions of the union of interval lists, the intersection of interval lists can be defined as follows in the figure

2.Consider the three interval lists that we have used previously: {[2, 7], [11, 13]}, {[5, 7],[12, 14]}, and {[1, 3],

[6, 7], [9, 9], [12, 15]}. Their equivalent ID lists are {2, 3, 4, 5, 6, 7, 11, 12, 13} {5, 12, 13, 14} and, {2, 3, 9, 12,

13, 14, 15}, respectively. The intersection list of these ID lists is{ 12, 13}, thus the intersection of the interval

lists is the equivalent interval list of this ID list, i.e., {[12, 13]}.

Figure 2: Intersection Operation

3) Twin-heap algorithm

The performance of the basic scan-line algorithm can be increased by maintaining an active interval

that shows the interval currently being processed.

Algorithm 1: Twin heap algorithm(R)

--

I/P: R a set of interval lists

O/P: Z The final interval list

1: Let L be a max heap and U be a min heap

2: for all k ∈[1,n] do

3: let rk be the frontier interval of Rk

4: Insert lb(rk)and ub(rk) to L an U Respectively

5: while U ≠ Ф do

6: Let l be the max element in L

7: Let u be the min element in U

8: if l ≤ u then Add [l,u] to Z

9: Let r∈ Rj be the corresponding interval of u

10: Remove lb(r) from L and pop u from U

11: Let r’ be the next interval of r in Rj

Given a set of interval
lists,

Ri ={R1,R2,,Rn},and

Their equivalent ID lists,

Si ={S1, S2, , Sn},

The intersection of R is the
equivalent interval list .
S={S1∩s2……∩Sn}

Survey paper on Generalized Inverted Index for Keyword Search

72

12: Insert lb(r’) and ub(r’) to L and U respectively

13: return Z

However, a single heap is not enough because the lower and upper bounds must be maintained

individually.PROBEISECT will run highly because the inverted lists of query keywords usually have very

unique lengths.

C. Document reordering concept

Document reordering increases the performance of Generalized inverted index for finding the exact

keyword.. This section first explains the necessity of document reordering. Then, since finding the best order of

documents is NP-hard, a sorting-based method and a sorting-TSP hybrid method are used to find near optimal

solutions.

1) PROBEISECT algorithm

The time complexities of the search algorithms depend on the number of intervals in the interval lists

instead of the numbers of IDs .

Algorithm 2: ProbIsect (R)

I/P: R a set of interval lists

O/P: Z The final interval list

1: Sort R in increasing order of list lengths

2: for all r ∈ R1 do

3: R1* ← < r >

4: for all k=2,3,…………,n do R*K ← PROBE(r, RK)

5: sum TWINHEAPISECT ({R1* …….. R*n }) to Z

6: return Z

7: procedure PROBE(r, R)

Input: r An interval.

R An interval list.

Output: R* The list of all the intervals in R

that overlap with r.

8: A1← BINARYSEARCH(r.l, R.S)

9: A2← BINARYSEARCH(r.u, R.S)

10: B1← BINARYSEARCH(r.l, R.U)

11: B2← BINARYSEARCH(r.u, R.L)

12: for A ∈ [p1, p2]• do Add [R.Sp, R.Sp]• to R*

13: for B ∈ [q1, q2]• do Add [R.Lq, R.Uq]• to R*

14: Sort R* in ascending order of lower-bounds

15: return R*

16: end procedure

In Generalized Inverted Index contain fewer intervals, the search algorithms will be faster. On the other

hand, interval lists containing fewer intervals will require less storage space. Therefore, the search speed and the

space cost are both improved by reducing the number of intervals in Generalized Inverted Index.

IV. CONCLUSIONS
 This paper describes a generalized inverted index for keyword search in text databases. Generalized

Inverted Index has an effective index structure and efficient algorithms to support keyword search. Fast scalable

methods enhance the search speed of Generalized Inverted Index by reordering documents in the datasets.

Experiments show that Generalized Inverted Index not only requires smaller storage size than the traditional

inverted index, but also has a higher keyword search speed. Moreover, Generalized Inverted Index is compatible

with existing d gap-based list compression techniques and can improve their performance.

ACKNOWLEDGEMENTS
 My sincere thanks go to Amrutvahini College of Engineering for providing me a strong platform to

develop my skill and capabilities. This is a nice opportunity for me to present & publish on Generalized

Inverted Index for Keyword Search". I am graceful to Prof. Paikrao R.L. for giving me an opportunity to

publish this paper.

Survey paper on Generalized Inverted Index for Keyword Search

73

REFERENCES
[1]. F. Scholer, H. E. Williams, J. Yiannis, and J. Zobel, Compression of inverted indexes for fast query

evaluation, in Proc. of the 25th Annual International ACM SIGIR Conference on Research and

Development in Information Retrieval, Tammpere, Finland, 2002, pp. 222-229.

[2]. M. Zukowski, S. Hman, N. Nes, and P. A. Boncz, Super-scalar RAM-CPU cache compression, in Proc.

of the 22nd International Conference on Data Engineering, Atlanta, Georgia, USA, 2006, pp. 59.

[3]. R. Blanco and A. Barreiro. Characterization of a simple case of the reassignment of document

identifiers as a pattern sequencing problem. In Proc. of the 28th annual int. ACM SIGIR conference on

Research and development in inf. retrieval, 2005.

[4]. R. Blanco and A. Barreiro. Document identifier reassignment through dimensionality reduction. In

Proc. of the 27th European Conf. on Information Retrieval, pages 375–387, 2005.

[5]. R. Blanco and A. Barreiro. Tsp and cluster-based solutions to the reassignment of document identifiers.

Inf. Retr., 9(4):499–517, 2006

[6]. D. Johnson, S. Krishnan, J. Chhugani, S. Kumar, and S. Venkatasubramanian. Compressing large

boolean matrices using reordering techniques. In 30th Int. Conf. on Very Large Data Bases (VLDB

2004), August 2004.

