
International Journal of Engineering Research and Development

e-ISSN: 2278-067X, p-ISSN: 2278-800X, www.ijerd.com

Volume 10, Issue 4 (April 2014), PP.30-35

30

A study on the OpenGL ES and the OpenSL ES in the Android

NDK paradigm

Sabyasachi Patra
1
, Karishma Velisetty

2
, Prathamesh Patel

3
, Mr. Abhay Kolhe

4

1
Mukesh Patel school of Technology and Management, Computer science Mumbai, India

2
Mukesh Patel school of Technology and Management, Computer science, Mumbai, India

3
 Mukesh Patel school of Technology and Management, Computer science, Mumbai, India

4
 Faculty, Mukesh Patel school of Technology and Management, Computer science, Mumbai, India

Abstract: -When it comes to beautiful visual rendering on the Android handsets that we use today, much of that

credit has to be given to the various graphic libraries which come along with programming paradigms. Just like

anything in programming and technology, there are good and bad ways to implement and get certain things

done both at the front end and the backend. What the Android Native Development Kit (NDK) does is that it

works alongside the Software Development Kit (SDK) and injects the native powers of any C/C++ application

into your Android application which can be packaged as any normal application and run on an emulator/device

of choice. The SDK, the NDK, the ADT and Eclipse are primarily what one requires to directly hit on towards

Android Native Development. The Android NDK basically is a companion toolset for the Android SDK,

designed to augment the SDK to allow developers to implement and embed performance-critical portions of

their applications using „machine code‟ generating programming languages like C, C++, and Assembly. So now

how does one enjoy the seamless graphics and sound in multimedia applications on an Android phone? It is the

Native Graphics/ Sound API‟s which come as a result of relying on performance critical native code which

makes this possible. There are various levels of detail to which this can be carried out. In this paper we delve

into the introductory portions of what the Open Graphics Library and the Open Sound Library for Android

actually are and the important steps which broadly need to be followed, in order to get such applications up and

running. We also talk about the basic Hardware and Software implementations of each of these along with the

Configurations, simplified diagrams as well as the role of sensors.

Keywords: NDK, Companion toolset, Native Programming, Open GL, Open SL, C++ Android, Graphics

I. INTRODUCTION
 Multimedia is defined as a system, which equally encompasses text, images, sound, animation and

video. Multimedia Applications are one of the most popular in the Android market. One of the reasons for this is

the Music. Most mobile phones are sold because of only the sound quality to many music lovers. Also, almost

every complex application in the market requires embedding of sound into it.

 Various sound related - APIs are Media Player, Sound Pool, Audio Track, Jet Player and Open SL for

embedded systems.

 MediaPlayer: It is a high-level API and hence easy to use. It handles music and video. It is the way to go

when simple file playback is sufficient.

 „SoundPool‟ and „AudioTrack‟: These are low – level API‟s and closer to low latency when playing

sound. This API is the most flexible yet complex to use and allows sound buffer modifications on the fly.

 JetPlayer is more dedicated to the playback of MIDI files.

 OpenSL ES basically aims at offering a cross-platform API to manage audio on embedded systems.On

Android, OpenSL ES is in fact implemented on top of the AudioTrack API.

 OpenSL ES was first released on the Android 2.3 Gingerbread OS version. While there is a profusion of

APIsin Java, OpenSL ES is the only one provided on the native side and is exclusivelyavailable on it.

 However, the point to be noted on a broader scale when it comes to OpenSL ES is that it is still

immature, not to say that it is a nemesis of course. The OpenSL specification is still incompletely supported and

several limitations shall be expected of it. In addition, OpenSL specification is implemented in its version 1.0.1

A study on the OpenGL ES and the OpenSL ES in the Android NDK paradigm

31

on Android although version 1.1 is already out. Thus, OpenSL ES implementation is not frozen at the highest

echelons yet and should continue evolving.

 In our research undertaking we identified, reviewed and tested some of the very important steps which

are required for an introductory and in-depth implementation of the OpenSL ES.

These actions in the Android programming domain can be classified as:

 Initialize OpenSL ES on Android

 Play background music

 Play sounds with a sound buffer queue

 Record sounds and play them

II. CREATING OPENSL ES ENGINE AND OUTPUT
The „SoundService‟ class does the following:

 Initializing OpenSL ES by using method start()

 Similarly, By using method stop() ,sound can be stopped.

Pseudo-object structures in OpenSL ES:

 Objects: These are represented by a „SLObjectItf‟. It provides common methods to get allocated

resources and get object interfaces.

 Interfaces: These give access to object features. There can be several interfaces for an object. It depends

on host devices, accordingly interfaces are available.

III. OPEN SL ES CONFIGURATION

#include <android_native_app_glue.h>

#include <SLES/OpenSLES.h>

#include <SLES/OpenSLES_Android.h>

#include <SLES/OpenSLES_AndroidConfiguration.h>

The above headers need to be added in the startof any OpenSL ES Application.

STEPS FOR SETTING UP AN ‘OPENSL ES’ OBJECT:

[1]. Instantiating it through a build method (belonging usually to the OpenGL engine).

[2]. Realizing it to allocate necessary resources.

[3]. Retrieving object interfaces. A basic object only has a very limited set of operations (Realize(),

Resume(), Destroy(), and a few more). Interfaces give access to real object features and describes what

operations can be performed on an object, for example, a Play interface to play or pause a sound. Any

interfaces can be requested but only the one supported by the object is going to be successfully

retrieved.

A study on the OpenGL ES and the OpenSL ES in the Android NDK paradigm

32

IV. HANDLING INPUT DEVICES AND SENSORS
 Android is all about interaction. Admittedly, that means feedback, through graphics, audio, vibrations,

and so on. The success of today's smart-phones takes its root in their multiple and modern input possibilities:

touch screens, keyboard, mouse, GPS, sound recorder, and so on.

Examples of available devices are:

 Keyboard, either physical (with a slide-out keyboard) or virtual (which appears on screen)

 Directional pad (up, down, left, right, and action buttons), often abbreviated D-Pad

 Trackball (optical ones included)

 Touch screen, which has made the success of modern smart-phones

 Mouse or Track Pad (since NDK R5, but available on Honeycomb devices only)

 Hardware sensors:

 Accelerometer

 Gyroscope

 Magnetometer

 Light

 Proximity sensor

Software sensors also have been introduced with the „Gingerbread‟ version release.

Other sensors are:

 Gravity sensor: This helps to measure the gravity direction and magnitude

 Linear acceleration sensor: It helps to measures device "movement" excluding gravity

 Rotation vector: This indicates device orientation in space

Gravity sensor and linear acceleration sensor are derived from the accelerometer. On the other hand, rotation

vector is derived from the magnetometer and the accelerometer. Because these sensors are generally computed

over time, they usually incur a slight delay to get up-to-date values.

Fig 3: Android generic Application structure handling input devices and sensors

dos

Application

Object

Background

packetContext Log

Time Service

Graphic Service

Sound Service

Input Service

GraphicsSprite

GraphicTitleMap

GraphicsTexture

Sound

Location

RapidXML

Resource

Event Loop

Activity Handler

Input Handler

A study on the OpenGL ES and the OpenSL ES in the Android NDK paradigm

33

V. INTERACTING WITH ANDROID
The biggest innovation in technology in mobile/smart phones is electronic visual display also known as touch

screen. It helps the user to interact with device with the help of simple gestures or by touching the screen. It uses

coated gloves to understand the action through electronic visual display.

VI. PROBING DEVICE SENSORS
In anapplication, handling the input devices is very important, but probing sensors is more important

for running smarter applications. The most used sensor in Android especially for games is the accelerometer

which is basically used to measure the linear acceleration applied to a device.

When moving a device up, down, left, or right, the accelerometer gets excited and indicates an acceleration

vector in 3D space. Vector is expressed relative to screen default orientation. The Coordinates system is relative

to device natural orientation:

 X axis points left

 Y points up

 Z points from back to front

Axes become inverted if device is rotated (for example, Y points left if the device is rotated 90 degrees

clockwise).

Accelerometers can also undergo a constant acceleration: gravity, around 9.8m/s2 on the Earth. For example,

when lying flat on a table, acceleration vector indicates -9.8 on the Z-axis. When straight, it indicates the same

value on Y axis. So assuming device position is fixed, device orientation on two axes in space can be deduced

from the gravity acceleration vector. Magnetometer is still required to get full device orientation in

3D space.

VII. OPEN GL ES

 The Android NDK provides OpenGL ES with the versions 1.x and 2.0 graphics API to the native code.

Version 1.0 is supported from Android 1.6 and further versions. Version 1.1 is supported only on devices that

have the corresponding GPU. Version 2.0 is supported on Android 2.0 and further versions. The <uses-feature>

tag is used by the applications in android manifest file to indicate the preferred.

„android.opengl.GLSurfaceView‟ instance is used in Java code to use the OpenGL ES API. Native application

can these functions to render graphics to the GLSurfaceView.

 OpenGL basically is a standard API created by Silicon Graphics and now managed by the Khronos

Group (http://www.khronos.org/). OpenGL ES derivative is available on many platforms such as iOS or

Blackberry OS and is the best hope for writing portable and efficient graphics code. OpenGL can do both 2D

and 3D graphics with programmable shaders (if hardware supports it). There are two main releases of OpenGL

ES currently supported by Android:

- OpenGL ES 1.1: This is the most supported API on Android devices. It offers an old school graphic

API with a fixed pipeline (that is, a fixedset of configurable operations to transform and render

geometry).This is a good choice towrite 2D games or 3D games targeting older devices.

- OpenGL ES 2: This is not supported on old phones (like the antic HTC G1)but more recent ones (at

least not so old like the Nexus One… time goes fast in the mobile world) support it. OpenGL ES 2

replaces the fixed pipeline with a modern programmable pipeline with vertex and pixelshaders. This is

the best choice for advanced 3D games. Note thatOpenGL ES 1.X is frequently emulated by an

OpenGL 2 implementation behind the scene.

The most important point to be noted when developing applications using the NDK and Graphics is that though

you can work with the emulator, but it‟s much better to have an actual device, because emulators do not

accurately reflect real-world performance and results, and it can also be very slow, even on high-end hardware.

STEPS TO USE THE OPENGL ES 2.0 IN NATIVE APPLICATION:

1. Include the OpenGL ES 2.0 header files.

#include <GLES2/gl2.h>

#include <GLES2/gl2ext.h>

2. Update the Android.mk build file to dynamically link with GLESv2 library.

LOCAL_LDLIBS += −lGLESv2

A study on the OpenGL ES and the OpenSL ES in the Android NDK paradigm

34

Open Sound Library (OpenSL): It provides a native sound API that helps to play and record audio. This can be

done without invoking any method at Java layer.

Obtaining a Device Supporting OpenGL ES 2.0.

The GLSurfaceView class makes Android activity life cycle easy to handle.. In Android activity lifecycle we

can create, destroy, pause and resume activities.

Adding OpenGL Activity and initializing:

public class OpenGLActivity extends Activity {

private GLSurfaceView glSurfaceView;

private boolean rendererSet = false;

Checking If the System Supports OpenGL ES 2.0

In the Activity class

activityManager.getDeviceConfigurationInfo();

final boolean supportsEs2 = configurationInfo.reqGlEsVersion >= 0x20000;

Fig 4: Android Open GL ES Class Diagram

Fig 5: Flowchart| checking for compatibility and Configuring OPENGL ES Surface

Gesture Detector shape float buffer

Activity

+onCreate()
+onPause()
+onResume()
+onTouchEvent()
+setContentView()

GLIO

GL Surface View

+onSurfaceChanged()
+Request render()

gl surfaceView Renderer

+onSurfaceCreated()
+onDrawFrane()
+onSurfaceChanged()

handles events

1 stored in 1

1 uses 11 has 1

draws frames

+1

+1

interface for calling down Open GL

+0.X

+1

Calls draw on

render when

something is

wrong

Open GL

ES library
Main class that

handles the

application

Better way to store

data than array

A study on the OpenGL ES and the OpenSL ES in the Android NDK paradigm

35

VIII. CONCLUSION

 Normal Android application development in both the industry as well as for personal purposes is done

on the Android SDK using the various API‟s provided by Google and Android. The NDK is used for special

purposes whenever required, as in for Physics simulations or certain kind of games. There are certain

performance – critical portions where in the role of Native development with languages such as C/C++ comes

into picture. The secret to 3D rendering, games, collisions and other simulations employ these libraries as

enablers. In this paper we have carried out research on primarily the Android Graphics and Sound library and

supported that with critical configurations which would enable strong and simple implementations.

ACKNOWLEDGEMENT

 This research paper is made possible through the help and support of many people both inside and

outside the domain of Engineering and Science.

Especially, please allow me to dedicate my acknowledgment of gratitude towards our college Librarian

Mr. Pradip Das and his team. I would also like to thank Mr. Anand Gawadekar of the NMIMS IEEE Committee

due to which we could get all requested references seamlessly without any trouble and on time.

A sincere thanks to our college and Computer Science department H.O.D. Professor Dhirendra Mishra

for allowing us to enter the invaluable field of research in our so important final year of B.Tech.Our mentor, Mr.

Abhay Kolhe also guided us on a weekly basis at periodic meets with him. Finally, we would like to thank our

parents who always encouraged us to do as much research we could do in our capacity in the final year and

extend an outside support whenever and wherever required.

REFERENES

[1] The Android Google group (http://groups.google.com/group/androiddevelopers)

[2] Android NDK group (http://groups.google.com/group/android-ndk)

[3] The Android Developer BlogSpot (http://android-developers.blogspot.com/)

[4] Google Code (http://code.google.com/hosting/) for lots of NDK exampleapplications.

[5] Stack Overflow (http://stackoverflow.com/)

[6] Sangchul Lee and Jae Wook Jeon “Evaluating Performance of Android Platform Using Native C for

Embedded Systems” Control Automation and Systems (ICCAS), 2010 International Conference pages

1160 - 1163.

[7] Walter Binder, Jarle Hulaas and Philippe Moret “A Quantitative Evaluation of the Contribution of

Native Code to Java Workloads” Workload Characterization, 2006 IEEE International Symposium

pages 201-209. [8]S. Liang. The Java Native Interface: Programmer‟s Guide and Specification.

Addison-Wesley, June 1999.

[8] Sun Microsystems.Integrating native methods into Java programs. http://java.sun.com/docs/books/

tutorialNB/download/tut- native1dot0.zip, May 1998.

[9] Java Native Interface. http://java.sun.com/j2se/1.3/docs/guide/jni/index.html.

[10] D. Bornstein, "Dalvik VM Internals," 2008.

[11] Ed Burnette. Hello, Android: Introducing Google’s Mobile Development Platform, Third Edition. The

Pragmatic Bookshelf, Raleigh, NC and Dallas,TX, 2010.

[12] M. B. Dillecourt, H. Samet and M. Tamminen, “A general approach to connected component labeling

for arbitrary image representations”, Journal of the ACM, vol. 39, no. 2, (1992), pp. 253-280.

http://groups.google.com/group/androiddevelopers
http://stackoverflow.com/

