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Abstract:- Social networks have become a great source of information, for that several applications have been 

proposed to extract information from social networks such as: recommender systems. The speed and scalability 

of such a recommender algorithm is as important as the actual logic behind the algorithm because such 

algorithms generally run over a "huge" graph and implementing these normally would probably take a lot of 

time for recommending items even for just one user. The basic idea of the algorithm is to recommend items to 

users connected via social network. In this paper various categories in which recommender systems are 

classified are discussed. Also various open sources, scalable, distributed and non distributed graph processing 

platforms are also discussed. The concept of recommender system with Giraph which is an open source 

distributed graph processing platform for highly reliable, scalable graph datasets is introduced in this paper. 
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I. INTRODUCTION 

 It is known to everyone that the information available on the web increases rapidly with time. As a 

result human beings are not able to efficiently understand, exploit or even handle such a large amount of 

information. The concept of recommender system is thus introduced to overcome this information overhead, by 

filtering the information, so that users can easily make choices according to their interests.  

 

The aim of Recommender Systems is providing personalized recommendations. They help users by 

suggesting useful items to them, usually dealing with enormous amounts of data. Recommender systems are 

mainly classified into three categories: content-based, collaborative filtering or social and hybrid.  

 

Many recommender systems approaches have been developed in the past decade, but a considerable 

amount of them were constructed and evaluated with small datasets. Furthermore, the volume of web 

information has greatly increased in the last years, and for that, several recommender systems suffer from 

performance and scalability problems when dealing with larger datasets.  

 

Moreover, in recent years, social networks like Facebook, twitter, MySpace are common trends where 

worldwide users are connected together. These social networks are becoming the best source of information 

regarding user’s interest.  

 

Graph is an abstract data structure with numerous applications. Social networks can be effectively 

expressed using graph data structure, in which vertices represent people and edges represent social interactions 

between these people. Social networks are usually a large graphs usually having millions of vertices and billions 

of edges. 

 

Giraph is a new rising large-scale graph processing platform which follows the Google’s Pregel system 

and could be seen as a variant of the Bulk Synchronous Parallel (BSP) Model. Giraph is built as a layer on top 

of Hadoop to leverage its parallelism and cluster management capabilities. Giraph overcomes the inefficiencies 

of MapReduce framework while running an iterative graph algorithm on Hadoop. 

 

This paper focuses on providing the overview about the various recommender techniques developed or 

proposed till now. Various categories in which recommender systems can be classified are discussed with 

examples. Also various open source graph processing platforms are discussed in detail.  

 

The rest paper is organized as follows: Section II briefs about the work done till now related to this 

area. Section III describes the various categories of recommender systems. Section IV describes the graph 

processing platforms. Two parallel processing models mainly used with open source graph processing platforms 

http://pulkitgoyal.in/2012/08/02/writing-scalable-recommender-system-with-hadoop/
http://hadoop.apache.org/
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are discussed and compared in section V. Section VI describes various recommendation algorithms in short. 

Section VII concludes this paper. 

 

II. RELATED WORK 
This section will briefly review the related work on social recommender systems and semantic social 

recommender systems. 

Proposed in 1994 by Grouplens[10], Newsnet is one of the earliest collaborative filtering recommender 

systems. Newsnet is a user-based collaborative filtering, based on the Pearson r correlation coefficient. 

Ringo[11]  is another collaborative filtering recommender system, which uses personalization to recommend 

music and artists. In 1999, IRA [1] (Intelligent Recommendation Algorithm) was proposed as a graph-based 

collaborative filtering recommender system, uses a breadth-first search algorithm to compute the shortest paths 

between graph vertices (users). Moreover, user-item bipartite graph and one-mode projection are used in a 

movie recommender system. In this system a recommendation graph is defined as the sum of the bipartite graph 

and the one-mode projection graph, then a shortest path algorithm is applied on the recommender graph in order 

to compute the recommendation. In trustwalker [1], a random walk algorithm is proposed to recommend items 

in a trust network. In this algorithm items are recommended based on ratings expressed by trusted friends, using 

probabilistic item selection and random walk.Other recommender systems include semantic aspects, in addition 

to collaborative filtering aspects. A recommendation algorithm is also introduced for collaborative URL tagging 

[1]. In this system, user interests are modeled according to their social ties and the vocabularies they use to tag 

URLs. An algorithm is also proposed in which similar tags are grouped in clusters, these tag clusters are used as 

intermediate sets between users and items, in fact the recommendation is based on two closeness values: 

closeness between users and tag clusters, and closeness between item and tag clusters.  

Also an algorithm is proposed to give recommendations in a professional social network. This algorithm aims to 

recommend a group of ranked authors similar to a given criterion, in a social network of connected authors. In 

this system, recommendations are based on the social network analysis and the user profiles, these profiles are 

represented by vectors of keywords. In a semantic social recommender system[1], the authors proposed to 

represent the users by a vector of scores of interests assigned to topics taken from domain taxonomy; this 

taxonomy represents item categories, then a semantic similarity measure (between the users vectors and domain 

taxonomy) is used in a semantic-based (taxonomy) recommender system.  

 

II. RECOMMENDER TECHNIQUES 
Specifically, recommender systems have (i) background data, that the system has before the 

recommendation process begins, (ii) input data, that user must communicate to the system in order to generate a 

recommendation, and (iii) an recommendation algorithm that combines background and input data to arrive at 

its suggestions. Five different recommendation techniques are summarized in Table I. Assume that I is the set of 

items over which recommendations might be made, the set of users whose preferences are known is assumed as 

U, u is the user to whom items will be recommended, and i is some item for which we would like to predict u’s 

preference. Recommender systems can be classified into various categories as follows: 

 

A. Collaborative recommender systems [8] generate new recommendations on the basis of commonalities 

between users and their aggregate ratings or inter-user comparisons. In collaborative system, a typical user 

profile consists of a vector of items and their ratings, continuously incremented as the user interacts with the 

system over time. Some collaborative systems used time-based discounting of ratings to account for drift in user 

interests. In some cases, ratings may be real-valued indicating degree of preference or binary (like/dislike). 

Some of the most important systems using this technique are GroupLens/NetPerceptions, Ringo/Firefly, 

Tapestry and Recommender.  

The greatest strength of collaborative techniques is that they are completely independent of any machine-

readable representation of the objects being recommended, and these systems work well for complex objects 

such as music and movies where variations in taste are responsible for much of the variation in preferences. 

  

B. Demographic recommender systems [9] aim to categorize the user based on personal attributes and 

make recommendations based on demographic classes. Grundy is an early example of this kind of system, that 

recommended books based on personal information gathered through an interaction. The user’s responses were 

matched against a library of manually assembled user stereotypes. Krulwich, is a system, that uses demographic 

groups from marketing research to suggest a range of products and services. To gather the data for user 

categorization a short survey is used. Pazzani’s model uses Winnow to extract features from users’ home pages 

that are predictive of liking certain restaurants. Rich’s system used hand-crafted attributes with numeric 

confidence values. The benefit of a demographic approach is that it may not require a history of user ratings of 

the type needed by collaborative and content-based techniques.   
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C. In a content-based system, [2] the objects of interest are defined by their associated features. Text 

recommendation systems like the newsgroup filtering system NewsWeeder uses the words of their texts as 

features. A content-based recommender system learns a profile of the user’s interests based on the features 

present in objects the user has rated. The type of user profile derived by a content-based recommender depends 

on the learning method employed. Neural nets, decision trees, and vector-based representations have all been 

used. 

  

D. Utility-based recommenders [9] make suggestions based on a computation of the utility of each object 

for the user. The central problem is how to create a utility function for each user. The e-commerce site 

PersonaLogic2 and Tête-à-Tête each have different techniques for arriving at a user-specific utility function and 

applying it to the objects under consideration. The user profile therefore is the utility function that the system 

has derived, and the system employs constraint satisfaction techniques to locate the best match. The advantage 

of utility-based recommendation is that it can factor non-product attributes, such as product availability and 

vendor reliability, into the utility computation, making it possible for example to trade off price against delivery 

schedule for a user who has an immediate need.   

 

E. Knowledge-based recommendation [9] attempts to suggest objects based on inferences about a user’s 

preferences and needs. In some sense, all recommendation techniques could be described as doing some kind of 

inference. Knowledge-based approaches are distinguished in that they have functional knowledge: they have 

knowledge about how an item meets an individual’s need, and can therefore reason about the relationship 

between a need and a possible recommendation. The user profile can be any knowledge structure that supports 

this inference.  

The knowledge used by a knowledge-based recommender can also take many forms. Entree uses 

knowledge of cuisines to infer similarity between restaurants. Google uses information about the links between 

web pages to infer popularity and authoritative value. Utility-based approaches calculate a utility value for 

objects to be recommended, and in principle, such calculations may be based on functional knowledge.  

 

Table I: Recommendation Techniques 

Technique Background Input Process 

Collaborative 

 

Ratings from U of items in I. Ratings from u of items in I. Identify users in U similar to u, 

and extrapolate from their ratings 

of i. 

Content-based Features of items in I u’s ratings of items in I Generate a classifier that fits u’s 

rating behavior and use it on i. 

Demographic 

 

Demographic information 

about U and their ratings of 

items in I. 

Demographic information 

about u. 

Identify users that are 

demographically similar to u, and 

extrapolate from their ratings of i. 

Utility-based 

 

Features of items in I. A utility function over items 

in I that describes u’s 

preferences. 

Apply the function to the items 

and determine i’s rank. 

Knowledge-

based 

 

Features of items in I. Knowledge of how these 

items meet a user’s needs. 

A description of u’s needs or 

interests. Infer a match between i 

and u’s need. 

  

III. GRAPH PROCESSING PLATFORMS 
Hadoop, YARN, Stratosphere, Giraph, GraphLab, and Neo4j are six popular platforms and may be used for 

graph processing. We introduce each platform in the following, in turn.  

 

A. Hadoop [3] is an open-source, generic platform for big data analytics. Hadoop is based on the 

MapReduce programming model. Hadoop has been widely used in many areas and applications, such as log 

analysis, user interests’ prediction, advertisement, search engine optimization, etc. It is becoming the de-facto 

platform for batch data processing. Its programming model may have low performance and high resource 

consumption for iterative graph algorithms, because of the structure of its map-reduce cycle. For example, for 

iterative graph traversal algorithms Hadoop would often need to store and load the entire graph structure during 

each iteration, to transfer data between the map and reduce processes through the disk-intensive HDFS, and to 

run an convergence-checking iteration as an additional job.  
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B. YARN is the next generation of Hadoop. YARN [3] can seamlessly support old MapReduce jobs, but 

was designed to facilitate multiple programming models, rather than just MapReduce programming model. A 

major contribution of YARN is to separate functionally resource management and job management; the latter is 

done in YARN by a per-application manager. The original Apache Hadoop MapReduce framework has been 

modified to run MapReduce jobs as an YARN application manager.  

 

C. Stratosphere is an open-source platform for large-scale data processing. Stratosphere [3] consists of 

two key components: Nephele and PACT. Nephele is the scalable parallel engine for the execution of data 

flows. In Nephele, jobs are represented as directed acyclic graphs (DAG), a job model similar for example to 

that of the generic distributed platform Dryad. For each edge (from task to task) of the DAG, Nephele offers 

three different types of channels for transporting data, through the network, in-memory, and through files. 

PACT is a data- intensive programming model that extends the MapReduce [7] model with three more second-

order functions (Match, Cross, and CogGroup). PACT supports several user code annotations, which can inform 

the PACT compiler of the expected behavior of the second-order functions. By using this information, the 

PACT compiler can produce execution plans that avoid high cost operations such as data sorting and shipping, 

and data spilling to the disk. Compiled PACT programs are converted into Nephele DAGs and executed by the 

Nephele data flow engine. Hadoop Distributed File System (HDFS) is used for Stratosphere as the storage 

engine.  

 

D. Giraph is an open-source, graph-specific distributed platform. Giraph uses the Pregel [5] programming 

model, which is a vertex-centric programming abstraction that adapts the Bulk Synchronous Parallel (BSP) [6] 

model. A BSP computation proceeds in a series of global supersteps. Within each superstep, active vertices 

execute the same user-defined function, and create and deliver inter-vertex messages. Barriers ensure 

synchronization between vertex computations: for the current superstep, all vertices complete their computation 

and all messages are sent before the next superstep starts execution. Giraph utilizes the design of Hadoop, from 

which it leverages only the Map phase except reduce phase. For fault-tolerance, Giraph uses periodic 

checkpoints; to coordinate superstep execution, it uses ZooKeeper. Giraph supports in-memory executions, 

which can speed-up job execution, but, crashes may occur in case of large amounts of messages or big datasets, 

due to lack of memory.  

 

E. GraphLab is an open-source, graph-specific distributed computation platform implemented in C++. 

Besides graph processing, it also supports various machine learning algorithms. GraphLab[3] stores the entire 

graph and all program state in memory. For improved performance,  GraphLab implements several mechanisms 

such as: supporting asynchronous graph computation to alleviate the waiting time for barrier synchronization, 

using prioritized scheduling for quick convergence of iterative algorithms, and efficient graph data structures 

and data placement. We run all our GraphLab experiments in a synchronized mode for matching the execution 

mode of the other platforms. 

 

F. Neo4j is one of the popular open-source graph databases. Neo4j [3] stores data in graphs rather than in 

tables. Every stored graph in Neo4j consists of relationships and vertices annotated with properties. Neo4j can 

execute graph-processing algorithms efficiently on just a single machine, because of its optimization techniques 

that favor response time. Neo4j uses a two-level, main-memory caching mechanism to improve its performance. 

The file buffer caches the storage file data in the same format as it is stored on the durable storage media. The 

object buffer caches vertices and relationships (and their properties) in a format that is optimized for high 

traversal speeds and transactional writes. Table II summarizes the above discussion. 

 

Table II Graph processing platforms 

Platform Version Type Release date 

Hadoop hadoop-0.20.203.0 Generic, Distributed 2011-05 

YARN hadoop-2.0.3-alpha Generic, Distributed 2013-02 

Stratosphere Stratosphere-0.2 Generic, Distributed 2012-08 

Giraph Giraph 0.2 (revision 1336743) Graph, Distributed 2012-05 

GraphLab GraphLab version 2.1.4434 Graph, Distributed 2012-10 

Neo4j Neo4j version 1.5 Graph, Non-distributed 2011-10 
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IV. PARALLEL PROGRAMMING MODELS 
A. MapReduce 

Map Reduce [4] is a distributed programming model derived from functional paradigm. It is dedicated 

for complex and distributed computations. MapReduce divides the processing into two consecutive stages: the 

map and the reduce phase. A data input to first stage is split into chunks. Each chunk is processed by one 

mapper. Mappers can emit < key,value > pairs to the reduce phase. Before the Reduce phase the pairs are sorted 

and collected according to key, therefore each reducer gets <key,list(value) > format of data. Output of reduce 

phase is saved into distributed file system. While processing iterative graph algorithms by means of 

MapReduce, in a single iteration, the graph structure and other static data, must be transferred over the network 

of computational nodes from Mappers to Reducers so that they can serve as an input for the next iteration. This 

causes a great network overhead and seems to be the biggest pitfall of graphs processing in MapReduce. The 

stateless, two-phased computational nature of MapReduce does not allow vertices to reside on the same machine 

throughout the whole computation. After every phase (map/reduce) the entire data must be written to a global 

memory in order to be consumed in the next phase. 

 

Since the distributed file system serves as the global memory in the cloud environment, the whole 

computation is very disk-intensive. Additionally, the map and reduce workers reside on different physical 

machines and for that reason, the data is constantly transferred over the network, which is the scarce resource in 

cloud environment. 

 

B. Bulk Synchronous Parallel 

Having in mind the inefficiency of MapReduce for iterative graph processing, Google has created 

Pregel – a distributed, fault-tolerant system for graph processing, based on Bulk Synchronous Parallel (BSP) 

processing model. Although Pregel is a proprietary system, it has inspired the creation of several open-source 

systems which adopt the BSP [4] model like Apache Hama or Apache Giraph. In BSP, the computation consists 

of a series of supersteps. In every superstep, a user defined function is executed in parallel on every item from 

the dataset acting as an agent. Pregel and Pregel-inspired graph analytics systems are vertex-centric: a single 

agent computation has a graph representation in BSP. It consists of node identifiers, its current value and/or 

state, and a list of nodes outgoing edges. Before the computation, all vertices are partitioned and loaded into 

local memories of machines and remain there throughout the entire computation, so that all processing is carried 

out on the local memory. In every superstep, a vertex receives messages from other vertices and executes a user 

defined function compute(), which performs local processing and sends messages to some or all of its 

neighbours. Once a vertex finishes the local computation, it deactivates itself and waits for all other vertices to 

finish. The barrier of synchronization mechanism allows the next superstep to begin when all vertices complete 

processing in the current superstep. Then only the vertices that have received a message are activated. 

 

A stateful nature of the BSP model facilitates efficient graph computing since graph’s structure does 

not need to be send over the network. Only specific messages necessary for the algorithm execution are 

exchanged. There is no network overhead related to graph structure passing as in the MapReduce model. 

Moreover, storing the whole graph structure in local memory of workers allows in-memory computation. The 

need of disk write-reads as well as objects serialization between iterations is eliminated. However, it is possible 

only if the graph structure fits in memory of all workers. Otherwise, the spilling-to-disk techniques must be 

implemented. Although such techniques are claimed to be implemented in Pregel, to our best knowledge, they 

are not yet supported in its open-source followers. This might be a drawback of choosing BSP model for graph 

processing, as we later present. 

 

V. RECOMMENDATION ALGORITHMS 
Most recommendation algorithms start by finding a set of customers whose purchased and rated items 

overlap the user’s purchased and rated items. The algorithm aggregates items from these similar customers, 

eliminates items the user has already purchased or rated, and recommends the remaining items to the user. Two 

popular versions of these algorithms are collaborative filtering and cluster models. Other algorithms — 

including search-based methods and item-to-item collaborative filtering — focus on finding similar items, not 

similar customers.  The algorithm attempts to find similar items for each of the user’s purchased and rated 

items,.  It then aggregates the similar items and recommends them. 
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VI.  CONCLUSION 
This paper focuses on providing the overview about the various recommendation techniques developed 

or proposed till now. Various categories in which recommendation algorithms can be classified are discussed. 

Also various open source graph processing platforms are discussed in detail.  
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