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Abstract:- Frequency analysis of extreme low mean annual rainfall events is important to water resource 

planners at catchment level because mean annual rainfall is an important parameter in determining mean annual 

runoff. Mean annual runoff is an important input in determining surface water available for water resource 

infrastructure development. In order to carry out frequency analysis of extreme low mean annual rainfall events, 

it is necessary to identify the best fit probability distribution models (PDMs) for the frequency analysis. The 

primary objective of the study was to develop two model identification criteria. The first criterion was 

developed to identify candidate probability distribution models from which the best fit probability distribution 

models were identified. The second criterion was applied to select the best fit probability distribution models 

from the candidate models. The secondary objectives were: to apply the developed criteria to identify the 

candidate and best fit probability distribution models and carry out frequency analysis of extreme low mean 

annual rainfall events in the Sabie river catchment which is one of water deficit catchments in South Africa.  

Although not directly correlated, mean annual rainfall determines mean annual runoff at catchment level. 

Therefore frequency analysis of mean annual rainfall events is important part of estimating mean annual runoff 

events at catchment level. From estimated annual runoff figures water resource available at catchment level can 

be estimated. This makes mean annual rainfall modeling important for water resource planning and management 

at catchment level.  

The two model identification criteria which were developed are: Candidate Model Identification Criterion 

(CMIC) and Least Sum of Statistics Model Identification Criterion (LSSMIC).  

CMIC and LSSMIC were applied to identify candidate models and best fit models for frequency analysis of 

distribution of extreme low mean annual rainfall events of the 8 rainfall zones in the Sabie river catchment. The 

mean annual rainfall data for the period 1920-2004 obtained from the Water Research Commission of South 

Africa was used in this study. Points below threshold method (PBTM) was applied to obtain the samples of 

extreme low mean annual rainfall events from each of the 8 rainfall zones. The long term mean of 85 years of 

each of the 8 rainfall zones was chosen as the threshold.  

The identification of the best-fit models for frequency analysis of extreme low mean annual rainfall events in 

each of the 8 rainfall zones was carried out in 2 stages. Stage 1 was the application of CMIC to identify 

candidate models. Stage 2 was the application of LSSMIC to identify the best fit models from the candidate 

models. The performance of CMIC and LSSMIC was assessed by application of Probability-Probability (P-P) 

plots. 

Although P-P plot results cannot be considered completely conclusive, CMIC and LSSMIC criteria make useful 

tools as model selection method for frequency analysis of extreme mean annual rainfall events. 

The results from the application of CMIC and LSSMIC showed that the best fit models for frequency analysis of  

extreme low mean annual rainfall events in the Sabie river catchment are; Log Pearson 3, Generalised Logistic 

and Extreme Generalised Value. 

 

Keywords:- Best-fit probability distribution function, Candidate probability distribution functions, candidate 

model identification criterion (CMIC) Least sum of statistics model selection criterion (LSSMIC) 

 

I. INTRODUCTION 
A. Water resources situation in South Africa 

 South Africa is made of 19 water management areas (WMA), 11 of these water management areas are 

water deficit catchment where water resource demand is greater than the available water resource. Estimates 

carried out by Department of Water and Forestry indicate that by 2025 two or more additional Water 



Best Fit and Selection of Probability Distribution Models for Frequency Analysis of Extreme Mean Annual… 

35 

Management Areas will experience water deficit situation (IWMI, 1998). Although only 11 out of 19 water 

management areas are in situation of water resource deficit, on average the whole country can be classified as 

water stressed (IWMI, 1998). The annual fresh water availability is estimated to be less than 1700m³ per capita. 

The 1700m³ per capita is taken as the threshold or index for water stress. Prolonged periods of low rainfall 

periods result into low production agricultural products.   

 South Africa depends on surface water resources for most of its domestic, industrial and irrigation 

requirements (NWRS, 2003). There are no big rivers in South Africa, so the surface water resources are mainly 

in form of runoff. The estimated mean annual runoff under natural condition is 49,000 M m³/a and the mean 

annual rainfall is 465 mm (NWRS, 2003). The utilizable groundwater exploitation potential is estimated at 

7500Mm3/a (NWRS, 2003). Although not directly correlated the amount of mean annual runoff depends on the 

amount of mean annual rainfall. Mean annual run off and mean annual rainfall are important variables for water 

resource planning at catchment level. In planning water resource systems at catchment level, it is necessary to 

consider the impacts of extreme scenarios of both mean annual rainfall and mean annual runoff.  

 

B. Modeling the distribution of extreme mean annual rainfall events 

 Modeling of the distribution of extreme mean annual rainfall events is based on the assumption that 

these events are independent and identically distributed random events. This process is called stochastic 

modeling. Stochastic modeling therefore involves developing mathematical models that are applied to 

extrapolate and generate events based on sample data of those specific events. Numerous Stochastic models 

have been developed to extrapolate different aspects of hydro-meteorological events including mean annual run-

off, mean annual rainfall, temperature, stream flow, groundwater, soil moisture and wind. Shamir, et al (2007) 

developed stochastic techniques to generate input data for modeling small to medium catchments. Furrer and 

Katz (2008) studied generation of extreme, stochastic rainfall events. The general practice in stochastic analysis 

of hydro-meteorological events including extreme mean annual rainfall has been to assume a probability 

distribution function that is then applied in the analysis. The focus of this study was to develop model 

identification criteria for selecting the best fit probability distribution functions for frequency analysis of 

extreme annual rainfall events and apply the developed criteria to identify the best fit models. The identified 

best fit models were applied in modeling the distribution of extreme mean annual rainfall events in Sabie river 

catchment which is one of water deficit catchments in South Africa. 

 

C. Methods of identifying best fit probability distribution functions for extreme mean annual rainfall events. 

 In developing magnitude – return period models for frequency analysis of extreme mean annual rainfall 

events like other extreme hydro meteorological events, it is necessary to identify probability distribution 

functions that best fit the extreme event data. The methods for identifying best fit probability distribution 

functions that have been applied include: maximum likelihood method (Merz and Bloschl, 2005, Willems et al., 

2007), L-moments based method (Hosking et al,. 1985, Hosking 1990), Akaike information criteria 

(Akaike,1973) and Bayesian information criteria.(Schwarz,1978). The reliability of identifying the best fit 

models for hydro-meteorological frequency analysis has had some criticisms. Schulze (1989), points out that 

because of general short data, non homogeneity and non stationary of sample data, extrapolation beyond the 

record length of the sample data may give unreliable results.  

 

Boven (2000) has outlined the below listed limitations of applying probability distribution functions in modeling 

extreme of hydro-meteorological events e.g. floods:-  

 The best fit probability distribution function of the parent events is unknown. And different probability 

distribution functions may give acceptable fits to the available data. Yet extrapolation based on these 

probability distribution functions may result in significantly different estimates of the design events. 

 The fitted probability distribution function does not explicitly take into account any changes in the 

runoff generation processes for higher magnitude event 

Apart from the above criticisms a gap still remains in that a specific criteria to identify best-fit PDFs for extreme 

hydro-meteorological events that  is universally accepted in South Africa has not been developed ( Smither and 

Schulze, 2003).  

This gap is addressed in this study by developing two model identification criteria based on data from Sabie 

river catchment. Sabie river catchment is water deficit catchment. 

 

D. Probability Distribution functions for frequency analysis of extreme hydro- meteorological events in South 

Africa. 

            Log-Pearson 3 (LP3) probability distribution function has been recommended for design hydro-

meteorological events mostly flood and drought in South Africa (Alexander, 1990, 2001). Gorgens (2007) used 

both the LP3 and General Extreme Value distribution and found the two models suitable for frequency analysis 
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of extreme hydro meteorological events in South Africa. However, Mkhandi et al. (2000) found that the Pearson 

Type 3 probability distribution function fitted with parameter by method of PWM to be the most appropriate 

distribution to use in 12 of the 15 relatively homogenous regions identified in South Africa (Smithers-J.C, 

2002). Cullis et al, (2007) and Gericke (2010) have specifically recommended for further research in developing 

the methodologies of determining best fit  PDFs for frequency analysis of extreme hydro-meteorological events 

in South Africa (Smithers, J.C, 2002). In this study two model identification criteria were developed to address 

the problem of identifying best fit probability distribution functions for frequency analysis of extreme hydro 

meteorological events specifically extreme mean annual rainfall events in  water deficit catchments in South 

Africa. 

 

E. Uncertainty associated with modeling of extreme mean annual rainfall events.  

            There is inherent uncertainty in modeling extreme mean annual rainfall like other extreme hydro-

meteorological events. Yen et al. (1986) identified 5 classes of uncertainties. The classes are:- 

 Natural uncertainty due to inherent randomness of natural process 

 Model uncertainty due to inability of the identified model to present accurately the system’s true 

physical behavior 

 Parameter uncertainty resulting from inability to quantify accurately the model inputs and parameters 

 Data uncertainty including measurement errors and instrument malfunctioning 

 Operational uncertainty that includes human factors that are not accounted for in modeling or design 

procedure. 

 

Yue-Ping (2010) quotes Van Asselt (2000) to have classified uncertainty based on the modeler’s and decision 

makers’ views. In this case, the two classes are model outcome uncertainty and decision uncertainty. The aim of 

statistical modeling of extreme hydro-meteorological events is to reduce the degree of uncertainty and the risks 

associated to acceptable levels. 

 

F. Limitations inherent in presently applied model selection criteria 

           The common practice in frequency analysis of extreme hydro meteorological events  like extreme mean 

annual rainfall has been that the modeler chooses a model for frequency analysis or chooses a set of models 

from which he identifies the best-fit model to be applied for the frequency analysis (Laio et al., 2009). The 

following limitations have been identified in this approach which include among others the following: 

 Subjectivity: - This limitation arises from the fact that there is no consistent universally accepted 

method of choosing a model to be applied or a set of candidate models from which the best fit can be 

identified for frequency analysis. In other words the choice depends on the experience of the modeler, 

and therefore subjective; 

 Ambiguity: - The limitation arises from the fact that two or more models may pass the goodness-of-fit 

test. Which one to choose for analysis then leads to ambiguity (Burnham and Anderson, 2002); and 

 Parsimony: - The case of parsimony is when the identified model mimics the sample data applied as 

frequency analysis rather than the trend of the variable under consideration. 

 Jiang (2014) has further outlined limitations of presently applied model selection criteria as: 

 Effective sample size: This arises from the fact that the size of the sample n may not be equal to data 

points because of correlation.  

 The dimension of the model: This limitation is due to the fact that the number of parameters can affect 

the model fitting process. 

  The finite-sample performance and effectiveness of the penalty: These limitations are due to the fact 

that the penalty chosen may be subjective: and 

  The criterion of Optimality: This limitation is due to the fact that in the present criteria, practical 

considerations for instance economic or social factors are hardly included.  

 

 The limitation of parameter under and over fitting to models has also been cited in the current model 

selection criteria. An attempt was made to address the above outlined limitations in developing the two model 

selection criteria. 

 

II. METHODS 
 Developing two model identification criteria and applying the developed criteria for frequency analysis 

of extreme low mean annual rainfall events in 8 rainfall zones in Sabie secondary catchment was carried out in 4 

stages 

1. Developing CMIC for identifying candidate model. 
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2. Developing LSSMSC for identifying the best fit models from the candidate models.  

3. Developing frequency analysis models based on the identified best fit models. 

4. Developing QT-T models for each extreme low mean rainfall event sample. 

 

A. Development process of CMIC 

 The development of CMIC was made in two steps. Step 1 was based on classification of PDFs and 

bound characteristics of upper and lower tail events of the distributions of the sample data of the extreme low 

mean annual rainfall. The step 2 was based on set significance levels in hypothesis testing as explained below. 

 

1) Bounds classification and tail events characteristics of PDFs:  The step 1 of development of CMIC criterion 

was based on the classification of continuous probability distribution functions and bound characteristics of 

upper and lower tail events of the distributions of sample data. Continuous probability distribution functions can 

be divided into four classes: Bounded, Unbounded, Non-Negative and Advanced (MathWave, 2011). This 

division is based on their upper and lower tail events characteristics and their functionality. The lower and the 

upper tail events of the samples were applied to develop CMIC because the extreme characteristics of a sample 

are expressed in the spread of tail events. Probability distribution function of events in any sample of any 

variable has two bounds; upper and lower tail events. MathWave  (2011) has proposed three possible 

characteristics of any tail events bound. These are; - unknown, open and closed. These characteristics were 

adopted.  

 The rationale behind the three characteristics can be illustrated as follows: Let sample M of variable X 

be made of events X1, X2………..Xn-1, Xn  arranged in ascending order and the sample size is n. If the sample 

events X1 and Xn  are defined and known, then the sample comes from a parent  population of frequency 

distribution functions with both lower and upper tails bounded and the tails are closed. These distributions are 

called bounded with closed tails (MathWave, 2011). If X1 and Xn events of M are undefined with unknown 

value, then the sample belongs to a parent population of frequency distribution which is unbounded with 

unknown or open tails. If X1 and Xn of the sample are positive, then the sample belongs to a population of 

frequency distribution with end tails which can be non-negative, unknown, open or closed. The sample data that 

does not belong to any of the above groups, belongs to populations with advanced distribution functions 

(MathWave, 2011). Summary of distribution bounds is given in Table I. 

 

Table I: Bound Classifications and Tail Characteristics of Distribution Functions 

           Upper   

Lower 

Unknown Open Closed 

Unknown Bounded  

Unbounded 

 Non-Negative 

advanced 

Unbounded 

Non-Negative 

Advanced 

Bounded 

Advanced 

Open Unbounded 

Advanced 

Unbounded 

Advanced 

Advanced 

Closed Bounded 

Non-Negative 

Advanced 

Non-Negative 

Advanced 

Bounded 

Advanced 

Source: (MathWave, 2011) 

 

The CMIC criterion for identifying sample specific candidate models for frequency analysis was based on Table 

1. The development of CMIC involved the following basics: 

Let the sample M of variable X be made of events: 

                  2.1 

If   events are arranged in ascending order, then  

                          2.2 

and if  is the smallest numerical value event and forms the last event of lower tail of frequency distribution of 

 and   is the largest numerical value event and forms the last event of upper tail of frequency distribution 

of , then in this case, both upper and lower tails of  are bounded, defined and closed, therefore the 

candidate models for frequency analysis of  are bounded and advanced with closed tails. (Table1). There are 

two extreme scenarios in this method. Scenario one arises when numerical values X1 and Xn of a specific sample 

events are unknown and undefined. In this case all available continuous probability distribution functions are 
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candidate models. These models are bounded, unbounded, non- negative and advanced (Table I). The other 

scenario is when the numerical values of X1 and X n are identified and defined numerical values. In this case 

bounded and advanced continuous probability distribution functions are the candidate models. The step 1 

procedure led to identification of the initial candidate models for frequency analysis of low and high extreme 

mean rainfall sample data events. 

 

2) Hypothesis testing and significance levels: This was step 2 of development of CMIC. For initial candidate 

models identified in Step 1 for each sample data, hypothesis testing at significance levels 0.2. 0.1, 0.05, 0.02 and 

0.01was carried out. 

 

 The goodness of fit tests adopted for this study were: Kolomogrov-Smirnov, Anderson-Darling and 

Chi-Square. The reasons for applying the 3 specific goodness of fit tests are outlined in section C. 

The null and the alternative hypothesis for each test were: - 

 HO. The sample data was best described by the specific probability distribution function 

 HA. The sample data was not best described by the specific probability distribution function. 

 

 The hypothesis testing was applied to fence-off the final candidate models from the initial candidate 

models identified by bounds method. Models from initial candidate models that were rejected in hypothesis 

testing at any significance levels of 0.2, 0.1, 0.05, 0.02 and 0.01 by any of the three goodness-of-fit tests were 

dropped from the candidate models. 

 

B. Development of Least Sum of the Statistic Model Identification Criterion (LSSMIC). 

1) Introduction: The Least Sum of the Statistic Model Selection Criterion (LSSMSC) was developed by 

determining the Least Sum of Statistics of goodness of fit of the tests: - Kolmogorov-Smirnov, Anderson-

Darling, and Chi-Square. The mathematical principle of each of the tests on which development of LSSMSC 

was based is briefly discussed below: 

2) Kolmogorov-Smirnov statistic : Kolmogorov-Smirnov statistic is based on uniform law of large 

numbers which is expressed in Glivenko-Cantelli Theorem (Wellener, 1977). 

The theorem can be summarized as: 

                                                                  2.3 

In this case  is the cumulative distribution function,  is the empirical cumulative distribution function 

defined by: 

                                      2.4 

where are i.i.d. with distribution and   

The uniformity of this law for large numbers can be explained as: 

                                                  2.5 

                                                              2.6 

where  is the empirical distribution that assigns  to each . 

The law of large numbers indicates that for all     

According to GLivenko–Cantelli theorem (Wellner 1977), this happens uniformly over . Applications of 

Kolmogorov-Smirnov statistic as an index in determining the best-fit model among the candidate models was 

based on this theorem. The model with the Least Kolmogorov-Smirnov statistic was taken as the best fit model 

for this test since  as in equation 2.6. 

 

3) Anderson-Darling statistic  : Anderson-Darling statistic is an index of goodness-of–fit test. In this 

case the Anderson-Darling goodness-of–fit test is the comparison of empirical distribution function  

assumed to be the parent distribution that is the distribution being fitted to sample data. 

The hypothesis is 

 Ho:                                               2.7 

The hypothesis is rejected if;  is very different from  
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The difference between  and  is defined by:-  

     

                                  2.8  

  where  is a weight function  

For a given variable  and a distribution  to be fitted to samples of events of , the random variable 

 has a binomial distribution with probability . (Anderson,1952). The expected value of  

is  and the variance is  

Since the objective was to identify best fit models for frequency analysis of extreme events, the emphasis was 

put into upper and lower tails of the models in this case  

 ,                                                                                                                 2.9 (a) 

then specifically for extreme mean rainfall events   

       =                                             2.9 (b) 

In equation 2.8 if the mean is 0 and the variance 1, then  and this leads to the Anderson-

Darling statistic:-  

                                          2.10    

Equation 2.10 can be re-arranged and be written as   

                           2.11 

  where  and   

   is the ordered sample  

From equation 2.10 and 2.11, it can be concluded that the model with the least value of  among the candidate 

models is the best fit. 

 

4) Chi-Squared statistic : Applying  as an index in determining the best-fit-model of extreme low 

mean annual rainfall events from candidate models was based on the interpretation of  as described in the 

section that follows. 

The value of  indicates that the discrepancy between the empirical distribution function  and 

the model  being fitted to sample data is in accord with the error of variance. Therefore the best fit 

model among the candidate models is the one with the least discrepancy. Absolute   (abs  was 

adopted in the study 

abs  was defined as:  

                                          2.12(a)  

                                                    2.12(b)  

where number of degrees of freedom given by  

is the expected frequency in the corresponding bin 

  is the observed frequency in each bin,  Number of observations  

 Number of fitted observations ,  Number of candidate models 

 

C. Elements of LSSMSC 

To develop an alternative but simple model selection criterion, advantages of   ,  and were 

intergrated. The intergration of the three goodness of fit tests led to Least Sum of Statistic Model Selection 

Criterion ( LSSMSC). The definition of the developed LSSMSC is:  
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2.13               

 where  Kolomogrov-Smirnov statistic  

  Anderson-Darling statistic 

  Absolute reduced Chi-Square  

   = number of models 

 

D. Application of CMIC and LSSMIC 

 The developed CMIC and LSSMSC criteria were applied in Easy fit v5.5 software to identify candidate 

and best fit models for the frequency analysis of the extreme mean annual events. Mean annual rainfall data for 

the period 1920-2004 for each of the 8 rainfall zones was obtained from Water Research Commission Pretoria. 

Easy fit V5.5 was chosen for this study because of the following features (mathwave,2011): 

1) It supports more than 50 continuous and discrete probability distribution functions. 

2) It has powerful automated fitting model combined with flexible manual fitting capabilities. 

3) It carries out goodness of fit tests 

4) It has capability of generating random numbers 

5) It is easily applied to user interface  

6) There is comprehensive technical assistance from the developers (Mathwave,2011)  

Other scientific features which make Easy Fit V.5.5 include 

o It can be applied to analyze large data sets (up to 250,000 data points) 

o It includes application of advanced distributions to improve the validity of probability distribution 

functions 

o It can be applied to calculate descriptive statistics 

o It organizes data and analyzes results into project files. 

1) Application of points below threshold (PBT) Model: Points below threshold (PBT) model was applied to 

identify extreme low mean annual rainfall events for each of the 8 rainfall zones. For each of the 8 rainfall 

zones, the mean of mean annual rainfall values for the period 1920-2004 was chosen as the threshold for that 

particular rainfall zone. The mean rainfall events less than the threshold formed the extreme low mean annual 

rainfall events. The mean of mean annual rainfall values of each rainfall zone was chosen as the threshold 

because annual rainfall less than the mean leads to agricultural drought. 

E. Development of QT-T models  

 Based on the identified best fit model for frequency analysis extreme low mean annual rainfall events 

for each of the 8 rainfall zones, QT-T models were developed. The developed QT-T models were applied to 

extrapolate and estimate extreme low mean annual rainfall events for return periods of 5, 10, 25, 50, 100 and 

200 years for each of the 8 rainfall zones. The methods of parameter estimations applied were: methods of 

moments, and maximum likelihood.  

 

F. Assessment of performance of CMIC and LSSMIC 

 The performance of CMIC and LSSMIC as candidate and best fit models for frequency analysis of 

extreme mean annual rainfall events was carried out by applying probability-probability (P-P) in EasyFit 5.5 

software. EasyFit 5,5 software displays reference graphic plots. The closeness of the candidate model plot to the 

reference graphic plots was the mode of the assessment applied. This was visual assessment.  

 

III. RESULTS 
A. Descriptive statistics of extreme low mean annual rainfall for 8 rainfall zones. 

 The descriptive statistics of events of the 8 samples of extreme low mean annual rainfall are presented 

in table II. The descriptive statistics were applied in developing QT-T models for frequency analysis of the 

extreme low annual rainfall events in each rainfall zone. The skewness and excess kurtosis of each sample have 

been applied in describing the symmetry and the peakedness of the frequency distributions of these samples. 
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Table II: Descriptive statistics 

Rainfall zones X3a1 X3a2 X3b X3c X3d1 X3d2 X3e X3f 

Statistic Value Value Value Value Value Value Value Value 

Sample Size 50 47 49 51 51 47 52 50 

Range 38.88 41.03 50.2 52.63 59.39 55.28 49.26 50.01 

Mean 85.49 83.36 82.96 82.65 82.89 80.9 80.9 82.06 

Variance 96.92 107.6 126.1 173.3 156.2 149.3 165.5 162.4 

Std. Deviation 9.845 10.37 11.23 13.16 12.5 12.22 12.86 12.74 

Coef. of Variation 0.1152 0.1245 0.1354 0.1593 0.1508 0.151 0.159 0.1553 

Std. Error 1.392 1.513 1.604 1.843 1.75 1.782 1.784 1.802 

Skewness -0.549 -0.460 -0.923 -1.043 -1.14 -0.865 -0.764 -0.694 

Excess Kurtosis -0.454 -0.428 0.569 0.784 1.944 0.738 -0.230 -0.200 
 

  

 

 

 The skewness value of each of the 8 samples of extreme mean annual rainfall is less than zero ie 

negative. This means that the frequency distribution of events in each of these samples is left skewed. Most of 

the events are concentrated on the right of the mean with extreme events to the left. The excess kurtosis value of 

each of the 8 samples is less than 3. This means that the frequency distribution of each sample is platykurtic 

with peak flatter and wider than that of normal distribution.   

 

B. Initial candidate models 

 The results of applying CMIC to each of the 8 data samples of extreme low mean annual rainfall are 

presented in table II. To obtain these results, method described in section B was applied. The results showed that 

all the 8 samples had similar candidate models presented in table II.These candidate models are: Beta, 

Generalised Extreme Value, Generalised Logistic, Generalised Pareto, Johson SB, Kamaraswany, Log-Pearson 

3, Piet, Phased Bi- Webull, Power function, Recipricol, Triangular, Uniform and Wakeby. 

 

C. Final candidate models 

 Step 2 of the CMIC described in section B was applied to sets of the initial identified candidate models 

given in table II. The results are presented in tables 3.3-3.5. The results showed that the final candidate models 

for frequency analysis of extreme low mean annual rainfall events in each of the 8 rainfall zones were: 

Generalised Logistic (GL), Log-Pearson 3 (LP3), and Generalised Extreme Value (GEV). The CDFs and PDFs 

of the identified candidate models are presented in table VII. 

 Generalised Logistic, Log-Pearson 3 and Generalised Extreme Value frequency analysis models were 

identified as the final candidate models because none of these models was  rejected at significance levels; 

0.2,0.1, 0.02 and 0.01 in the three goodness of fit test in any of the 8 samples of extreme low mean rainfall 

events. The results of goodness of fit tests are presented in tables IV-VI  

Table III: The identified initial candidate models 

Distribution  Kolmogorov 

Smirnov  

 

Anderson 

Darling   ( A
2
n) 

Chi-Squared 

) 

Statistic Rank Statistic Rank Statistic Rank 

Beta 
0.0731 3 2.155 7 2.56 5 

Gen. Extreme Value  
0.0795 5 0.2345 3 2.898 7 

Gen. Logistic  
0.102 10 0.5311 5 2.863 6 

Gen. Pareto  
0.0894 7 11.49 12 N/A 

Johnson SB  
0.0704 1 0.168 1 4.18 9 

Kumaraswamy  
0.0718 2 2.153 6 2.56 4 

Log-Pearson 3 
0.0931 8 0.3815 4 1.27 1 

Pert  
0.1366 12 4.782 10 6.4 10 

Phased Bi-Exponential  
0.9992 15 512.6 15 N/A 

Phased Bi-Weibull  
0.4529 14 52.26 14 N/A 

Power Function  
0.0871 6 2.216 8 1.78 2 

Reciprocal  
0.2855 13 9.87 11 16.18 11 

Triangular  
0.1047 11 2.431 9 2.32 3 

Uniform 
0.0954 9 15.01 13 N/A 

Wakeby  
0.0748 4 0.2058 2 3.774 8 
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Tables IV-VI Identified final candidate models 

Table IV:  Generalised Extreme Value distribution 

Gen. Extreme Value  

Kolmogorov-Smirnov  ( ) 

 Sample Size 

Statistic 

P-Value 

Rank 

47 

0.0815 

0.8886 

1 

 0.2 0.1 0.05 0.02 0.01 

Critical Value 0.153 0.1748 0.1942 0.2172 0.233 

Reject? No No No No No 

Anderson-Darling  (A
2

n ) 

Sample Size 

Statistic 

Rank 

47 

0.34 

1 

 0.2 0.1 0.05 0.02 0.01 

Critical Value 1.375 1.929 2.502 3.289 3.907 

Reject? No No No No No 

Chi-Squared  (  ) 

Deg. of freedom 

Statistic 

P-Value 

Rank 

4 

4.17 

0.3836 

2 

 0.2 0.1 0.05 0.02 0.01 

Critical Value 5.989 7.779 9.488 11.67 13.28 

Reject? No No No No No 

 

Table V: Generalised Logistics distribution 

Gen. Logistic  

Kolmogorov-Smirnov  (  

Sample Size 

Statistic 

P-Value 

Rank 

47 

0.1055 

0.6343 

3 

 0.2 0.1 0.05 0.02 0.01 

Critical Value 0.153 0.1748 0.1942 0.2172 0.233 

Reject? No No No No No 

Anderson-Darling  (A
2

n)  

Sample Size 

Statistic 

Rank 

47 

0.5878 

3 

 0.2 0.1 0.05 0.02 0.01 

Critical Value 1.375 1.929 2.502 3.289 3.907 

Reject? No No No No No 

Chi-Squared  (   

Deg. of freedom 

Statistic 

P-Value 

Rank 

4 

3.292 

0.5102 

1 

 0.2 0.1 0.05 0.02 0.01 

Critical Value 5.989 7.779 9.488 11.67 13.28 

Reject? No No No No No 
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Table VI: Log-Pearson distribution 

Log-Pearson 3  

Kolmogorov-Smirnov (  )  

Sample Size 

Statistic 

P-Value 

Rank 

47 

0.0899 

0.8093 

2 

 0.2 0.1 0.05 0.02 0.01 

Critical Value 0.153 0.1748 0.1942 0.2172 0.233 

Reject? No No No No No 

Anderson-Darling (  A
2
n) 

Sample Size 

Statistic 

Rank 

47 

0.3954 

2 

 0.2 0.1 0.05 0.02 0.01 

Critical Value 1.375 1.929 2.502 3.289 3.907 

Reject? No No No No No 

Chi-Squared  (   

Deg. of freedom 

Statistic 

P-Value 

Rank 

5 

4.33 

0.5029 

3 

 0.2 0.1 0.05 0.02 0.01 

Critical Value 7.289 9.236 11.07 13.39 15.09 

Reject? No No No No No 

 

Table VII: Candidate models for modeling the distribution of extreme low mean annual rainfall events in 8 

rainfall zones in Sabie river catchment 

Distribution    CDF or PDF Domain 

Generalized Extreme 

Value 

 
 

Generalized Logistics 

 

 

Log-Pearson 3 

 
 

D. Results of identification of best-fit models for frequency analysis of extreme low mean annual rainfall 

events in Sabie river catchment 

 The best fit models for frequency analysis of extreme low mean annual rainfall events in 8 rainfall 

zones in Sabie river catchment are presented in tables VII-XV. The summary of the results of the best fit model 

identification is presented in table XVI. 

  

Table VIII: Best fit model : Zone X3 a1 

Distribution  Kolmogorov 

Smirnov

   

Anderson 

Darling 

A
2

n  

Chi-Squared  

 

 

Abs(1-   LSSMIC Best fit 

Statistic  Statistic  Statistic     

Gen. Extreme Value  
0.079  0.234  2.898  1.898 2.211  

Gen. Logistic  
0.102  0.531  2.863  1.863 2.496  

Log-Pearson 3 
0.093  0.381  1.270  0.270 0.744 X 
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Table IX: Best fit model : Zone X3a2 

Distribution  Kolmogorov 

Smirnov  

Anderson 

Darling 

A
2
n 

Chi-Squared (   

 

Abs (1-    LSSMIC Best fit 

Statistic  Statistic  Statistic     

Gen. Logistic  
0.105  0.587  3.292  2.292 2.984 x 

Gen. Extreme Value  
0.081  0.340  4.170  3.170 3.591  

Log-Pearson 3 
0.089  0.395  4.330  3.330 3.814  

 

Table X: Best fit model : Zone X3b 

Distribution  Kolmogorov 

Smirnov  

Anderson 

Darling A
2
n  

Chi-Squared (   Abs (1-   LSSMIC Best fit 

Statistic  Statistic  Statistic     

Gen. Logistic  
0.073  0.302  2.653  1.653 2.028 x 

Johnson SB  
0.089  0.241  5.127  4.127 4.457  

Log-Pearson 3 
0.077  0.273  7.055  6.055 6.405  

 

Table XI: Best fit model : Zone X31c 

Distribution  Kolmogorov 

Smirnov   

Anderson 

Darling( 

A
2
n)  

Chi-

Squared 

(   

Abs. (1-  

 

LSSMIC Best 

fit 

Statistic  Statistic  Statistic     

Gen. Extreme Value  
0.042  0.133  0.350  0.649 0.824  

Log-Pearson 3 
0.059  0.248  0.866  0.133 0.440 x 

Gen. Logistic  
0.069  0.286  2.065  1.065 1.420  

 

Table XII: Best fit model : Zone X3d1 

Distribution  Kolmogorov 

Smirnov (  

Anderson 

Darling 

(A
2

n) 

Chi-Squared 

(   

Abs. ( 1-   LSSMIC Best fit 

Statistic  Statistic  Statistic     

Wakeby  
0.088  1.362  3.262  2262 3.712  

Gen. Logistic  
0.106  0.516  3.950  2.950 3.572 x 

Gen. Extreme Value  
0.097  0.446  5.923  4.923 5.466  

 

Table XII: Best fit model : Zone X3d2 

Distribution  Kolmogorov 

Smirnov  

Anderson 

Darling 

(A
2
n) 

Chi-Squared 

(   

Abs. (1-   LSSMIC Best fit 

Statistic  Statistic  Statistic     

Gen. Extreme Value  
0.054  0.118  0.799  0.201 0.373 x 

Gen. Logistic  
0.082  0.191  1.334  0.334 0.607  

Log-Pearson 3 
0.055  0.124  1.553  0.553 0.732  

 

 

Table XIV: Best fit model : Zone X3e 

Distribution  Kolmogorov 

Smirnov   

Anderson 

Darling 

A
2

n 

Chi-Squared 

(   

Abs.(1-   LSSMIC Best fit 

Statistic  Statistic  Statistic     

Gen. Extreme Value  
0.088  0.461  2.029  1.029 1.578 X 

Gen. Logistic  
0.107  0.771  3.415  2.415 3.293  

Log-Pearson 3 
0.125  0.770  3.432  2.432 3.327  
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Table XV: Best fit model : Zone X3f 

Distribution  Kolmogorov 

Smirnov 

 

Anderson 

Darling  ( 

A
2
n) 

 

Chi-

Squared 

(   

Abs. ( 1-  

 

LSSMIC Best 

fit 

Statistic  Statistic  Statistic     

Log-Pearson 3 
0.072  0.401  1.244  0.244 0.717 X 

Gen. Extreme Value  
0.057  0.265  1.843  0.843 1.165  

Gen. Logistic  
0.092  0.560  4.527  3.527 4.179  

 

Table XVI: Summary of best fit model identification results. 

Best fit model 

 

Log-Pearson 3 

 Rainfall zones % 

3 37.5 

Generalized Logistic 3 37.5 

Generalized Extreme Value 2 25 

Totals 8 100 

 

 Log- Pearson 3 and Generalised Logistic models each was the best fit models for frequency analysis of 

extreme low mean annual rainfall events in 3 rainfall zones. Generalised extreme value model was the best fit in 

2 rainfall zones. The results shows that there no single model which is the best fit for frequency analysis of all 

low mean annual rainfall events in Sabie river catchment. 

 

Table XVII: Best fit and QT-T models for frequency analysis of  extreme low mean annual rainfall events 

 

Rainfall 

zone 

 

Best fit 

model 

 

                              

 

QT-T model 

X3a1 LP 3 
 

X3a2 GL 
 

X3b GL 
 

X3c LP 3    

X3d1 GL 
 

X3d2 GEV 

 
X3e GEV 

 
X3f LP 3 

 
 

E. Results of frequency analysis of extreme low mean annual rainfall events in 8 rainfall zones in water 

deficit catchments in South Africa 

 The results of frequency analysis of extreme low mean annual rainfall events in the 8 zones of water 

deficit catchments in South Africa are presented in table XVIII. 
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Table XVIII: Recurrence intervals in years of extreme low mean annual rainfall events 

 

F. How CMIC and LSSMIC address common limitations of model identification criteria 

General Information Criteria (GIC) can be expressed as: 

 

                                                                                                                       3.1 

where is the measure lack of fit by model   

is the dimension of , defined as the number of free parameter under model  

 is the penalty for complexity of the model (Parsimony)     

 may depend on effective sample size  and dimension of (free parameters) 

 Addressing of limitations cited by Jiang (2014) by developing CMIC and LSSMIC was based on Equation 3.1. 

Emanating from this work and based on the results obtained thereof, following can be considered with respect to 

the previous cited limitations with the current model selection criteria: 

 

 Limitation of effective sample size 

In the case where the sample size  is not equal to sample points, this limitation is addressed by identifying 

candidate models and best models based on characteristic of sample probability tail events and hypothesis 

significance levels. Sample distribution tail shape and not size is applied. In so doing, the effect of sample size is 

eliminated. Kolomogrov-Smirnov goodness-of-fit index is a component of LSSMIC. This index is generally not 

influenced by the possible inequality of sample size against the sample points especially in case of correlations.  

 

 Limitation due to dimension of the model (parameters)   

For practical purposes as illustrated in previous sections, the Anderson-Darling goodness-of-fit index has been 

adjusted to address the complexity of the problem (Refer to Equation 2.11). Chi-Squared goodness-of-fit was 

also adjusted to absolute index to address the limitation of dimension of the model (Refer to Equation 2.12(a).). 

Over and under parameter fitting limitation was also addressed in developing of absolute Chi-Squared index 

(Refer to Equation 2.12(b). In this procedure parsimony was also addressed. Both Anderson-Darling and Chi-

Squared indices are elements in LSSMIC. 

 

 Limitation of ambiguity 

Determination of LSSMIC index results into specific numbers which in turn reduces ambiguity. A special case 

is when parameters shape or scale of Wakeby model is equal to zero. In that case Wakeby and Generalized 

Pareto statistics are equal and if are the least, then the two models are taken as the best fit. 

 

 

 

Rainfall 

zone 

Best-

fit 

Mathematical model 

Recurrence interval in years 

5 10 25 50 100 200  

X3a1  LP3 
 

77.06 73.18 69.84 67.76 66.24 64.7 6  

X3a2  GL 
 

99.12 98.55 97.90 97.49 97.08 96.71  

X3b  GL 
 

93.62 90.30 86.91 84.84 83.06 81.52  

X3c  LP3    71.67 68.23 66.78 64.15 62.90 61.54  

X3d1  GL 
 

92.60 88.91 84.59 82.00 79.73 77.72  

X3d2  GEV 

 

87.51 84.17 81.60 80.44 79.68 78.99  

X3e  GEV 

 

86.27 83.17 80.93 79.99 79.40 79.03  

X3f  LP3 
 

71.20 68.01 63.07 60.45 59.12 57.82  
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 Limitation of Criterion of Optimality 

CMIC and LSSMIC have been developed in such a way that other parameters can be included. This approach 

ensures that technical and social parameters or variables can be included when needed. In this particular case 

peaks under threshold models have been included. This could practically be assigned to the demand for water 

resources needed at catchment level. 

 

 Limitation of small sample and extreme events 

This limitation is deemed to be solved by including Anderson-Darling and Kolomogrov-Smirnov in LSSMIC as 

both cater for small sample and extreme events scenarios.  

 

IV. CONCLUSION 
  The main objective of this study was to develop two model identification criteria for frequency 

analysis of extreme low mean rainfall events in water deficit catchments in South Africa. The two model 

selection criteria which were developed are: 

1. Candidate Model Identification Criterion (CM1C) for identifying candidate models.   

2. Least Sum of Statistics Model Identification Criterion ( LSSM1C) for identifying the best fit models for 

frequency analysis of the extreme low mean annual rainfall events from the identified candidate models.  

The two developed criteria were applied to identify candidate models and best fit models for frequency analyses 

of the extreme low mean annual rainfall events in 8 rainfall zones in Sabie river catchment.  Results obtained 

showed that there no single probability distribution function is the best fit for all the 8 rainfall zones (table XVI).  

 Log-Pearson 3 (LP3) probability distribution function has been recommended for design hydro-

meteorological events mostly flood and drought in South Africa (Alexander, 1990, 2001). From the results of 

this study, Log-Pearson 3 may not be the only best fit model for frequency analyses of extreme hydro-

meteorological events in South Africa. It is therefore important to carry out model identification processes to 

identify best fit model for the specific required frequency analysis. 

 Probability-Probability (P-P) plots were applied to evaluate the performance of CMIC and LSSMISC. 

The plots showed that CMIC and LSSMIC performed fairly well. Although the Probability-Probability (P-P) 

plot results cannot be considered completely conclusive, CMIC and LSSMSC criteria make useful tools as 

model selection method for frequency analysis of extreme mean annual rainfall events. 
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Appendix A:  Probability-Probability (P-P) plots for extreme low mean rainfall events for the  

8 rainfall zones 
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Fig. 1:   P-P plot  Zone  x3a1 : Extreme mean annual rainfall events 
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P-P Plot Zone x3a2
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Fig. 2:   P-P plot  Zone  x3a2 : Extreme mean annual rainfall events 
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Fig. 3:  P-P plot  Zone  x3b : Extreme mean annual rainfall events 
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P-P Plot Zone x3c
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Fig.4:  P-P plot Zone x3c : Extreme mean annual rainfall events 
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Fig. 5   P-P plot Zone x3d1: Extreme mean annual rainfall events 
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P-P Plot Zone x3d2
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FIG. 6:  P-P plot  Zone  x3d2 : Extreme mean annual rainfall events 

 

P-P Plot  Zone x3e
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Fig. 7:   P-P plot Zone x3e: Extreme mean annual rainfall events 
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P-P Plot  Zone x3f
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Fig.8:  P-P plot Zone  x3f : Extreme mean annual rainfall events 


