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Abstract:- The rising demand for high quality homogenous castings necessitate that vast amount of 

manufacturing knowledge be incorporated in manufacturing systems. Rotary furnace involves several critical 

parameters like excess air, flame temperature, rotational speed of the furnace drum, melting time, preheat air 

temperature, fuel consumption and melting rate of the molten metal which should be controlled throughout the 

melting process. A complex relationship exists between these manufacturing parameters and hence there is a 

need to develop models which can capture this complex interrelationship and enable fast computation. In the 

present work, we propose a generic approach where the applicability and effectiveness of neural network in 

function approximation is used for rapid estimation of melting rate and they are integrated into the framework 

of genetic evolutionary algorithm to form a neuro-genetic optimization technique. A neural network model is 

trained with the experimental results. The results indicate that the heuristic converges to better solutions rapidly 

as it provides the values of various process parameters for optimizing the objective in a single run and thus 

assists for the improvement of quality in development of sound parts. 
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I. INTRODUCTION 
A continuously rotating dome for getting homogeneous castings is the main idea of eco-friendly Rotary 

Furnace. This furnace consists of a cylindrical structure, which rotates continuously about its axis. The furnace 

can be run by a variety of fuels but at present we are considering a light diesel oil (LDO) fired furnace. This 

technique suits the conditions and requirements of the local foundries in terms of the cost of castings produced 

as well as their quality. Moreover, the pollutants emitted by the furnace are well within the range specified by 

the central pollution control board (CPCB) of India. 

The Rotary furnace is the most versatile and economical mode of melting iron in ferrous foundries. But 

it is very strange that a very little information is available in the form of literature on this furnace.  

There are a number of variables controllable to varying degrees which affect the quality and 

composition of the out-coming molten metal. These variables, such as excess air, flame temperature, rotational 

speed of the furnace drum, melting time, preheat air temperature, fuel consumption and melting rate play 

significant role in determining the molten metal‟s properties and should be controlled throughout the melting 

process. However, even an experienced operator may find it difficult to select the optimum input parameters 

which would yield ideal molten metal and often he may choose them by guessing which may not be effective 

and economical  [1]. 

Process parameters are optimized to minimize the production cost in conventional manufacturing. In 

specialized manufacturing applications, such as production of high quality homogeneous castings in rotary 

furnace, achievement of specific goals in terms of improved casting quality and homogeneity may be the 

primary objective. Considering such requirements, it is imperative that the process parameters are chosen 

appropriately so as to ensure high quality castings and minimum possible production cost without violating any 

of the imposed constraints. 

Thus, in order to optimize process parameters, variety of soft computing techniques is used.  Genetic 

algorithm (GA) has been widely used for the selection of the operating conditions in several other applications. 

To simplify modeling, simulated annealing, fuzzy logic, and neural networks (NNs) have been used with the 

GAs. The GA finds the optimal solutions quickly when the analytical or empirical models are not available [2]. 

In this work, an effort is made to develop a neuro-genetic optimization technique, using a NN in 

tandem with genetic evolutionary algorithm (GEA) in determining the optimal process parameters. The 

optimization is performed using the GEA, which requires that, the fitness function, i.e., the value of melting rate 

for a set of process parameters, is easily computable for the method to be computationally tractable. An artificial 

neural network (ANN) model is used to provide the fitness function value in the technique. This technique has 

its own modeling and optimization tool to model the system from experimental data and to obtain the optimal 
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operating conditions. This provides the value of process parameters in the form of result that correlate well with 

the experimental data. In this work operating conditions were selected to maximize the melting rate [3]. 

 

II. THEORETICAL BACKGROUND 
Back propagation (BP) is one of the basic and most frequently used NNs. The user determines the 

number of inputs, outputs, hidden layers, and nodes of the hidden layers. In most applications, each node is 

connected to all the nodes of the next layer. The hidden and output layer nodes multiply the incoming values by 

weights and use a transfer function to determine their output. Sigmoid is the most commonly used transfer 

function. Linear, Gaussian, and various hyperbolic functions have also been used depending on the need. The 

network starts to process the incoming training signals with arbitrary weights. The error is calculated by 

comparing the output of the network with the corresponding values in the training file. All the weights are 

adjusted by back-propagating the errors through the network at each interaction. This process is repeated many 

times until the network‟s output errors are reduced to an acceptable level [4]. 

 

 
Fig.1: NN Architecture 

  

ANNs are currently gaining wide popularity in manufacturing field. ANNs are proposed to represent 

the relationship between the operating conditions and the process-related variables because of their data driven 

approach i.e. they can capture and model extremely complex relationships even without the help of an explicitly 

stated mathematical model. This property of ANNs is extremely useful in situations where it is difficult to 

derive the mathematical model that links the various parameters.  
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The back propagation neural network (BPNN) is a multiple layer network with one input layer, one 

output layer and some hidden layers between input and output layers. Its learning procedure is based on gradient 

search with least sum squared optimality criterion. This algorithm can be expressed succinctly in the form of a 

pseudo-code as given below: 

 

PSEUDO-CODE: 

1. Pick a rate parameter R. 

2. Until performance is satisfactory. 

3. For each sample input, compute the resulting output. 

4. Compute  for nodes in the output layer using: z = Dz – Oz; where D represents the desired output and O 

represents the actual output of the neuron. 

5. Compute  for all other nodes using:  1j j k k k kk
W O O    

6. Compute weight changes for all weights using:  1i j i j j jW rOO O     

7. Add up the weight changes for all sample inputs and change the weights [5]. 

 

The standard BP algorithm suffers from the serious drawbacks of slow convergence and inability to 

avoid local minima. Therefore, BP with Levenberg-Marquardt (LM) approximation is used in this work. LM 

learning rule uses an approximation of the Newton's method to get better performance. This technique is 

relatively faster but requires more memory. The LM update rule is:  
1

T T
W JJ J I e



    ; where J is the 

Jacobean matrix of derivatives of each error to each weight, is a scalar and e is an error vector. If the scalar is 

very large, the above expression approximates the Gradient Descent method and if it is small, the above 

expression becomes the Gauss–Newton method. The Gauss–Newton method is faster and more accurate near 

error minima. Hence, the aim is to shift towards the Gauss–Newton as quickly as possible. The  is decreased 

after each successful step and increased only when the step increases the error [6-8]. 

GA uses the biological evolution principles including natural selection and survival of the fittest. All 

the parameters are represented with chromosomes. The algorithm tries to find the best 0 and 1 combination of 

this string either to minimize or to maximize the objective function [9]. The penalty functions might be used to 

force some of the parameters to stay in the selected range. The user generally selects the population size, the 

number of children for each set of the parents, and the probability of mutation [10]. The chromosomes are 

generated randomly for the first generation. GA has proved to be an effective tool for optimization of machining 

parameters as it converges to optimum solutions rapidly [11]. 

GA uses the biological evolution principles including natural selection, and survival of the fittest. The 

user determines the number of the binary digits to be assigned for each parameter and their boundaries. 

Additional bits can be assigned for switches. All the parameters and the switches are represented with 

chromosome. The algorithm tries to find the best 0 and 1 combination of this string either to minimize or to 

maximize the objective function. The penalty functions might be used to force some of the parameters to stay in 

the selected range. The user generally selects the population size, the number of children for each set of the 

parents, and the probability of mutation. The chromosomes are generated randomly for the first generation. 

Generally, GAs follows a five-step optimization procedure which includes: 

a. Selection of the mating parents  

b. Selection of the hereditary chromosomes from the parents  

c. Gene crossover  

d. Gene mutation, and 

e. Creation of the next generation [12]. 

The general scheme of GA is shown in Fig.2. 
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Fig.2: General scheme of GA. 

 
III. PROPOSED OPTIMIZATION SYSTEM 

The technique in this work used one BPNN and one GA. The NN had one output as melting rate to 

have the best possible accuracy. The inputs of the NN were the flame temperature, preheat air temperature, 

rotational speed of the furnace, excess air percentage, melting time and fuel consumption.  The NN was trained 

to estimate the melting rate by using the experimental results in Appendix. The architecture of the proposed 

optimization system is shown in Fig.3. 

 

 
Fig.3: The Architecture of the proposed optimization system. 

 

The pseudo-code of the proposed algorithm can be expressed concisely as under: 

PSEUDO-CODE: 

1) Initialize: 

a) Randomly select „N‟ parent strings, 

b) Determine number of children to be generated by each parent, 

c) Initialize Pareto-optimal Set (PS). 

2) For each parent „i‟, generate „m (i)‟ children using crossover. 

3) Perform mutation with a probability „pm’. 

4) Find the best child for each parent, based on fitness evaluated with the NN model. 

5) Select the best child as the parent for the next generation. 

6) Repeat step 7 to step 10 for each family. 

7) Count=0. 

8) Repeat step 9 for each child; go to step 10. 
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9) Increase count as per pseudo-code given in the explanation of steps 6-9. 

10) Acceptance number of the family is equal to count (A). 

11) Sum up the acceptance number of all the families (S). 

12) For each family „i‟, calculate the number of children to be generated in the next generation according to 

the following formula: m(i)=(T×A)/S; where T=Total number of children generated by all the 

families. 

13) Update PS. 

14) Repeat step 2 to step 14 until a certain number of iteration has been reached. 

The NN model is used to provide the fitness function value by incorporating in the above mentioned 

algorithm. This approach of using a NN model, in tandem with GEA is quite novel. 

 

IV. EXPERIMENTAL SETUP AND DATA COLLECTION 
The rotary furnace data used to train the ANNs have been extracted from the experiments conducted on 

self-designed and developed furnace (see Fig.4) at Foundry Shop, Faculty of Engineering, DEI, Dayalbagh, 

Agra, India. 

 
Fig.4: Self-designed and developed Rotary furnace at Faculty of Engineering DEI, Agra 

 

In the experimentation, 200 kg of the charge is melted in the rotary furnace. A circular burner is used 

for burning light diesel oil (LDO) as fuel. Due to the heat transfer by conduction, when refractory material 

comes in contact with the molten charge, to have better heat transfer, the maximum time is given to refractory to 

be in contact with the charge. The quantity of fuel consumed is reduced in subsequent heats and normally it is 

found to be almost constant in third heat onwards. 

Numbers of experiments were conducted at different percentage of excess air varying from 10% to 

50% and amount of air preheat from 200°C to 400°C. 

It was observed that it is difficult to achieve the rotation below 0.8 RPM from the fabricated rotary 

furnace so, keeping this in view the experiments were carried out at rotational speed ranged from 0.8 to 2.0 

RPM and the following results were obtained. 

While conducting experiments, it was observed that rate of melting varies with change of rotational 

speed. The charge of 200 kg when melted at 2 RPM takes 45 min, the rate of melting (MR) is given by: 

Quantity of charge in 60 0.2 60
0.266 (Metric Ton) /

Time taken for complete melting 45

MT
MR MT hr

 
    

Under similar conditions, the total time taken for complete melting from third heat onwards was 

reduced to 35 min, when the rotational speed is reduced to 1 RPM. The MR is given by: 

Quantity of charge in 60 0.2 60
0.343 /

Time taken for complete melting 35

MT
MR MT hr

 
    

From above, it can be interpreted that the rate of melting is high at slower rotational speed. During 

experimentation it was observed that the fuel consumption varies with rotational speed percentage of excess air 

and air preheat temperature. Charge of 200 kg, when melted in the furnace at 2 RPM with 20% excess air and 

300°C air preheat, takes 47 min and consumed 85 liters of LDO. 
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 

 

Fuel consumed 85
Rate of fuel consumption 0.425

Quantity of charge 200

liters liters
kgkg

    

Under similar conditions, the fuel consumption for complete melting of charge at the rotational speed 

of 1 RPM with 20% excess air and 300°C air preheat is 81 liters. 

 

 

Fuel consumed 81
Rate of fuel consumption 0.405

Quantity of charge 200

liters liters
kgkg

    

From the above discussion it can be interpreted that the rate of fuel consumption is high at higher 

rotational speed. 

Large numbers of heats were taken from the rotary furnace with the variations of the above mentioned 

parameters and finally a set of 201 heats was obtained from the furnace. This data was used to train the artificial 

NN and to find optimum operating conditions for maximizing melting rate in the proposed technique. Here, a set 

of 50 readings is presented. 

 

V. RESULTS AND DISCUSSIONS 
A two layer feed forward network with six input neurons, twelve neurons in the first hidden layer (S1), 

ten neurons in the second hidden layer (S2), and one output neurons in the output layer was designed and trained 

with NN. The logarithm of sigmoid function is used in the first hidden layer, tangent of sigmoid in the second 

hidden layer and the output layer has pure linear neurons.  

The input parameters were: 

1. Percentage of Excess Air (in %) 

2. Flame Temperature (in °C) 

3. Rotational Speed (in RPM) 

4. Melting Time (in Minutes) 

5. Preheat Air Temperature (in °C) 

6. Fuel Consumed (in Liters) 

Melting Rate is taken as single output parameter.  

The training parameters are as follows: 

Frequency of progress displays (in epochs) = 100 

Maximum number of epochs to train = 10000 

Sum-squared error goal = 10
-10

 

Neurons in layer 1, S1 = 12 

Neurons in layer 2, S2 = 10 

Number of epochs = 1567. 

 

While performing optimization, the technique was asked to maximize the melting rate. The population 

size, child number, cross-probability, mutation-probability and creep-probability were selected as 100, 10, 0.2, 

0.1, and 0.05, respectively, during the optimization process. Optimum values were found in less than 50 

iterations. GA was stopped after 50 iterations were completed. The range of the parameters in the optimization 

study is shown in Table I and the optimization results are presented in Table II. 

The operating conditions were optimized to obtain the best maximized value of melting rate. Flame 

temperature, preheat air temperature, rotational speed of the furnace, excess air percentage, melting time and 

fuel consumption were kept in the desired range and the technique was asked to maximize the melting rate for a 

set of process parameters. A series of alternatives were provided to the user. The results obtained correlated well 

with the experimental data. 

 

VI. CONCLUSION 
The technique was proposed for selection of the optimal operating conditions in rotary furnace 

operations from the experimental data without developing any analytical or empirical models. NNs were trained 

by using a series of experimental results to represent the relationship between the process parameters such as 

flame temperature, preheat air temperature, rotational speed of the furnace, excess air percentage, melting time 

and fuel consumption. The technique determined the optimal process parameters while maximizing the melting 

rate. The tendency of the estimations of the technique agreed with the theoretical expectations. 

The technique has proved to be effective for constrained optimization as it provides the values of 

various process parameters in a single run and so assists in achieving in energy and material saving. 
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Table I: Range of process parameters given to the proposed technique 

Excess 

air (%) 
Flame 

temperature 

(°C) 

Rotational 

speed 

(RPM) 

Melting 

time (Min) 
Preheat air   

temperature 

(°C) 

Fuel 

consumed 

(Liters) 

10–50 1690–2300 0.8–2.0 32–50 200–400 74–88 

 

Table II: Optimization results 

Parameter 

maximization 

Melting 

rate 

(MT./ 

hr.) 

Operating conditions 

Excess 

air (%) 
Flame   

temperature 

(°C) 

Rotational 

speed 

(RPM) 

Melting 

time 

(Min.) 

Preheat air 

temperature 

(°C) 

Fuel 

consumed 

(Liters) 

Melting Rate 0.3751 10 2290 0.8 32 400 74 

 

The results indicate that the proposed heuristic converges to better solutions rapidly thereby assisting in 

the improvement of quality in development of sound parts. This methodology ensures quality, precision, 

economy and flexibility in agile manufacturing.  
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Appendix: Comparison of Melting Rate obtained by Experimentation on Rotary Furnace & by ANN Model 

S. 

No. 

Excess 

air 

(%) 

Flame   

temperature 

(°C) 

Rotational 

speed 

(RPM) 

Melting 

time 

(Min.) 

Preheat Air 

temperature 

(°C) 

Fuel 

consumed 

(Liters) 

Experimental 

values 

of melting rate 

(MT/hr.) 

NN Values 

of melting 

rate 

(MT/hr.) 

1. 10 2190 0.8 35 200 76 0.343 0.343 

2. 10 2185 0.8 35 200 75 0.343 0.342 

3. 10 2190 0.8 35 200 76 0.343 0.343 

4. 10 2195 0.8 36 200 75 0.330 0.329 

5. 10 2200 0.8 34 300 75 0.353 0.353 

6. 10 2215 0.8 34 300 75 0.353 0.352 

7. 10 2215 0.8 35 300 76 0.343 0.342 

8. 10 2220 0.8 34 300 75 0.353 0.353 

9. 10 2280 0.8 32 400 74 0.375 0.375 

10. 10 2290 0.8 32 400 74 0.375 0.375 

11. 10 2300 0.8 32 400 74 0.375 0.374 

12. 10 2290 0.8 32 400 74 0.375 0.375 

13. 10 2180 1.0 37 200 78 0.324 0.324 

14. 10 2175 1.0 37 200 78 0.324 0.323 

15. 10 2175 1.0 38 200 79 0.315 0.315 

16. 10 2195 1.0 35 300 76 0.343 0.343 

17. 10 2200 1.0 35 300 76 0.343 0.342 

18. 10 2215 1.0 36 300 79 0.330 0.330 

19. 10 2265 1.0 34 400 75 0.343 0.342 

20. 10 2270 1.0 34 400 75 0.343 0.343 

21. 10 2270 1.0 34 400 76 0.343 0.343 

22. 10 2160 1.2 38 200 79 0.315 0.314 

23. 10 2165 1.2 38 200 78 0.315 0.315 

24. 10 2160 1.2 37 200 79 0.324 0.323 

25. 10 2180 1.2 37 300 77 0.324 0.324 

26. 10 2185 1.2 37 300 78 0.324 0.324 

27. 10 2190 1.2 37 300 77 0.324 0.323 

28. 10 2250 1.2 36 400 76 0.330 0.330 

29. 10 2245 1.2 36 400 75 0.330 0.329 

30. 10 2245 1.2 36 400 76 0.330 0.329 

31. 10 2150 1.4 38 200 80 0.315 0.315 

32. 10 2155 1.4 38 200 80 0.315 0.314 

33. 10 2160 1.4 37 200 79 0.324 0.324 

34. 10 2175 1.4 36 300 80 0.330 0.330 

35. 10 2180 1.4 36 300 81 0.330 0.330 

36. 10 2170 1.4 36 300 81 0.330 0.329 

37. 10 2230 1.4 34 400 80 0.353 0.353 

38. 10 2240 1.4 34 400 79 0.353 0.352 

39. 10 2240 1.4 34 400 79 0.353 0.352 

40. 10 2145 1.6 38 200 81 0.315 0.315 

41. 10 2150 1.6 38 200 80 0.315 0.315 

42. 10 2150 1.6 37 200 81 0.324 0.323 

43. 10 2170 1.6 36 300 79 0.330 0.330 

44. 10 2178 1.6 36 300 79 0.330 0.329 

45. 10 2170 1.6 36 300 80 0.330 0.330 

46. 10 2220 1.6 35 400 78 0.343 0.343 

47. 10 2215 1.6 35 400 78 0.343 0.342 

48. 10 2210 1.6 35 400 79 0.343 0.343 

49. 10 2100 2.0 39 200 80 0.307 0.307 

50. 10 2110 2.0 38 200 80 0.315 0.315 

 


