Evaluation of Radiation – Thermal Resources during A Grapes Growing Period

OLGA SOBOROVA and VITALII LIASHENKO

Department of Agrometeorology, Odessa State Environmental University, Ukraine

Abstract: The radiation-thermal resources indexes that determine the formation of a grapes quality – a sugar content in grapes and a juice titrated acidity are substantiated in the article. A sunshine duration SS, the amount of average twenty-four hours ($\Sigma Tsv > 10^{\circ}C$), average day ($\Sigma Tdn > 10^{\circ}C$) and night ($\Sigma Tn > 10^{\circ}C$) air temperatures, and the difference between the daytime and nighttime temperatures ($\Sigma Tdn - \Sigma Tn$)>10°C as the most appropriate index of the daily temperatures rhythm during a growing season are proposed to use as these indexes. The results of calculating the radiation-thermal resources for the period from 1986 to 2010, according to two agro-meteorological stations ("Odessa" and "Bolgrad"), which may well characterize the central and southern regions of the North-Western Black Sea region with the most advanced viticulture are presented. The analysis of the dynamics of these indexes was carried out and their trends were defined, as well as their statistical characteristics were calculated and the total probabilities or availability of each of the indexes were determined.

Keywords: plant physiology, a daily rhythm, vital processes, grapes, a crop, quality, radiation-thermal resources, indexes, sunshine duration, daytime and nighttime temperatures.

I. INTRODUCTION

Grapes is a warm climate plant, so its commercial cultivation is concentrated mainly in the southern region of Ukraine. Among other fruit crops grapes occupies a special position because of its potential undemanding to soils, its drought resistance, which leads to a possibility of its growing on the little available lands and obtaining high yields, subject to necessary farming practices.

However, it is determined that light and thermal resources are defined as the conditions for grapes growing in general, a crop value formation and a grapes products quality. Therefore the studies dedicated the evaluation of light and thermal resources are notably relevant.

II. LITERATURE REVIEV

Since ancient times, the dependence of a quantity and a quality of viticulture and wine-production from weather-climatic conditions is found out. Since the middle of last century

agrometeorologists have been conducting researches aimed at determining the agro-climatic indexes that adequately reflect the relationship between a light, heat and moisture regime and product quality indexes, especially a sugar content in grapes and a titrated acidity.

Such indexes as a sunshine duration, the amount of active air temperatures for a warm period (with average air temperatures above 10° C), precipitation, Selyaninov hydrothermal coefficient [1] were extracted according to the results of numerous studies. Further, according to the results of more detailed studies during a growing season the given light, thermal and moisture resources indexes were examined in the context of the specific interphase periods, especially during the periods of grapes generative organs formation [2, 3, 4].

More recent researches conducted Z.A.MischenkoH.V.Lyashenko found out that a formation of a grape crop quality is defined in terms of light and thermal resources separately for day and night hours [5, 6]. Therefore, the research that includes a spatial and temporal variability of radiation-thermal resources on the indexes that reflect their daily rhythm is actual.

The calculation of the daily temperatures was made for the maximum temperature and the calculation of the night temperatures - for the lowest [5, 6]

R=0,91 (1)

R=0,93 (2)

where A1, A2, B1 and B2 - parameters of the equation, T_{day} and T_N –average day and night temperatures, Tmax

and Tmin - minimum and maximum daily temperatures

The method of accumulation determined the total sunshine duration, the amount of average daytime and nighttime temperatures, and the difference between the amounts of day and night temperatures during the warm season. [7]

The calculation of the amount of the temperatures for the period is made with the formulas:

$$\Sigma T \partial h \ge 10^{\circ} C = \Sigma \left(T_{\mathcal{A}H} \cdot N_{IV} + T_{\mathcal{A}H} N_{V} + \dots + T_{\mathcal{A}H} \cdot N_{X} \right)_{(3)}$$
$$\Sigma T_{H} \ge 10^{\circ} C = \Sigma \left(T_{H} \cdot N_{IV} + T_{H} N_{V} + \dots + T_{H} \cdot N_{X} \right)_{(4)}$$

where T_{day} and T_N - the average monthly value of day time and night time air-temperatures; N with 1V, V, ... index, X - an umber of days and nights in April, May and October with T_{day} and T_N from 10 °C above.

Themaincharacteristicof the valuesis anaverage (long-term) value, which is calculated by the formula

$$x = \frac{\sum_{i=1}^{n} x_i}{n},$$
 (5)

where x - a memberoftherow (individualvalues), n - anumberofthe membersoftherow (an observationperiod).

A standarddeviationanda coefficientofvariationare determinedbythe formulas

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n}}, \quad (6)$$
$$C_v = \frac{\sigma}{\overline{x}} \quad (7)$$

Itisimportanttoidentifytheerrorofaverage valuesthatdependsonmanyfactors,

primarilyonthevariabilityofthemeteorologicalvalues and the period of averaging. The average square error of the arithmetic value is given by the formula

$$\sigma_{\overline{x}} = \frac{\sigma}{n}.$$
 (8)

With these data we can estimate an accuracy of average values for a given number of years and a standard deviation, and identify a period of observation (years) required to obtain the average values with a corresponding error.

Lateronthetotalprobability or availabilityofeachoftheseparametersis determined by Oleksievgraphic-analytical method [8, 9] and a graph of availability is made.

III. MAIN RESULTS

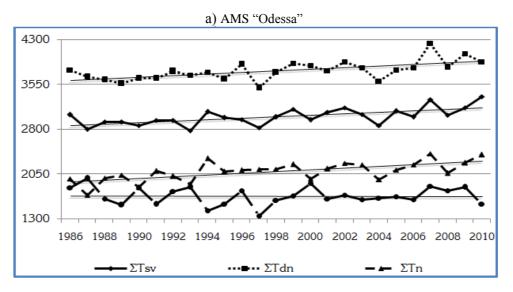
 $\label{eq:constraint} The aim of the presented paper is to evaluate radio-thermal resources during a grapes growing season in the central and southern O dessaregion. \\ A sunshineduration (SS), the amount of average twenty-four hours ($\Sigma Ts> 10 ° C), average daily ($\Sigma T dn> 10 ° C) and average night ($\Sigma Tn> 10 ° C) air-temperatures, and the difference between the day and night temperatures ($\Sigma T dn- $\Sigma Tn> 10 ° C) are the presented of the day and night temperatures ($\Sigma T dn- $\Sigma Tn> 10 ° C) are the presented of the day and night temperatures ($\Sigma T dn- $\Sigma Tn> 10 ° C) are the presented of the day and night temperatures ($\Sigma T dn- $\Sigma Tn> 10 ° C) are the presented of the day and night temperatures ($\Sigma T dn- $\Sigma Tn> 10 ° C) are the presented of the day and night temperatures ($\Sigma T dn- $\Sigma Tn> 10 ° C) are the presented of the day and night temperatures ($\Sigma T dn- $\Sigma Tn> 10 ° C) are the presented of the day and night temperatures ($\Sigma T dn- $\Sigma Tn> 10 ° C) are the day and night temperatures ($\Sigma T dn- $\Sigma Tn> 10 ° C) are the day and night temperatures ($\Sigma T dn- $\Sigma Tn> 10 ° C) are the day and night temperatures ($\Sigma T dn- $\Sigma Tn> 10 ° C) are the day and night temperatures ($\Sigma T dn- $\Sigma Tn> 10 ° C) are the day and night temperatures ($\Sigma T dn- $\Sigma Tn> 10 ° C) are the day and night temperatures ($\Sigma T dn- $\Sigma Tn> 10 ° C) are the day and night temperatures ($\Sigma T dn- $\Sigma Tn> 10 ° C) are the day and night temperatures ($\Sigma T dn- $\Sigma Tn> 10 ° C) are the day and night temperatures ($\Sigma T dn- $\Sigma Tn> 10 ° C) are the day and night temperatures ($\Sigma T dn- $\Sigma Tn> 10 ° C) are the day and night temperatures ($\Sigma T dn- $\Sigma Tn> 10 ° C) are the day and night temperatures ($\Sigma T dn- $\Sigma Tn> 10 ° C) are the day and night temperatures ($\Sigma T dn- $\Sigma Tn> 10 ° C) are the day and night temperatures ($\Sigma T dn- $\Sigma Tn> 10 ° C) are the day and night temperatures ($\Sigma T dn- $\Sigma Tn> 10 ° C) are the day and night temperatures ($\Sigma T dn- $\Sigma Tn> 10 ° C) are the day and night temperatures ($\Sigma T dn- $\Sigma Tn> 10 ° C) are the day and night temperatures ($\Sigma T dn- $\Sigma Tn> 10 ° C) are the$

10 ° C), asthemosteffectiveindexofatemperaturesdailyrhythmduringthegrowingseasonareconsidered as thekeyindicatorsof radiation-thermal resources.

The calculation of the indexes is made on the base of the annual data from the agrometeorological stations ("Odessa" and

"Bolgrad") fortheperiod from 1986 to 2010.

Theanalyseisofthedynamicsof theseindexeswas carried out and their trends and statistical analyse is were identified and the total probability or availability of each of these parameters were determined.


For the average perennial amounts of average twenty-four hours temperature 3014 and 3053 °C for the AMS "Odessa" and "Bolgrad" the amounts of averaged ally and average night temperatures respectively are 3784 and 3896, 2098 and 2083 °C. The difference between the amounts of averaged ally and average night temperatures were 1686 and 1807 °C. Maximum value for Σ Tdn > 10 °C for the AMS "Odessa" and "Bolgrad" was 4238 and 4256 respectively in 2007; and minimum Σ Tn was in 1987 and 2000 and it decreased to 1700 and 1848 °C (Table 1).

Moresignificantinterannual variability of thermal resource indexes, which is estimated on the characteristics of a standard deviation G and a coefficient of variation Cv is at the AMS "Odessa". For example, G of the amounts of average daily and average night temperatures at "Odessa" is 159 and 160°C, and at the AMS "Bolgrad" is - 145°C and 158C if G of the amounts of daily temperatures is 140 and 117°C. A sufficiently high variability is also observed in the difference between the amounts of average daily and average night temperatures - 144 and 124°C. The coefficient of variation for all the amounts of the temperatures does not exceed 10%, while it is more as the AMS "Odessa".

The analysis of the dynamics of all thermal resources indexes was carried out and the intrease in the amounts of average twenty-four hours, averaged ailyand average night and the intermetatures ($\Sigma Tsv > 10 \circ C$, $\Sigma Tn > 10 \circ C$) from 1986 to 2010 is the same for the AMS "Odessa" and "Bolgrad". The trendline has a form of increasing direct lines which are practically parallel. The difference of averaged ailytemperatures and average night temperatures ($\Sigma Tdn - \Sigma Tn > 10^{\circ}C$) tends to decrease.

Table 1 - Statistical characteristic of agroclimatic indexes of thermal resources at the
stations "Odessa" and "Bolgrad"

	X _{av}	X _{max}	X _{min}	σ	Cv, %	
a) Odessa						
Σ Tsv> 10 ° C	3014	3350	2774	140	4,6	
$\Sigma T dn > 10 \circ C$	3784	4238	3490	159	4,2	
ΣTn> 10 ° C	2098	2390	1700	160	7,6	
$\Sigma T dn - \Sigma Tn > 10^{\circ} C$	1686	1978	1355	144	8,6	
b) Bolgrad						
Σ Tsv> 10 ° C	3053	3374	2860	117	3,8	
$\Sigma T dn > 10 \circ C$	3896	4256	3571	145	3,7	
ΣTn> 10 ° C	2089	2345	1848	158	5,9	
$\Sigma T dn - \Sigma Tn > 10^{\circ} C$	1807	2245	1377	124	8,8	

b) AMS "Bolgrad"

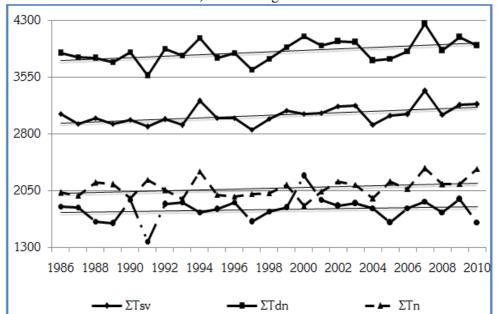
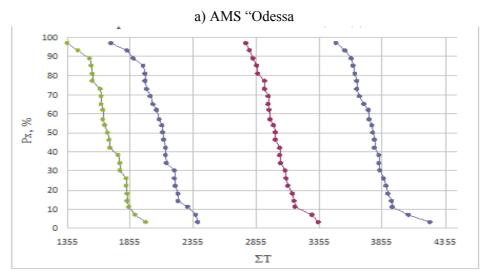



Figure 1 - The dynamics and a trend of thermal resources indexes at the agro-meteorological stations (AMS) "Odessa" (a) and "Bolgrad" (b), 1- the difference of the amounts of averagedailyandaverage nighttemperatures, 2- the amounts of average twenty-four hours temperatures, 4 - the amounts of daily temperatures.

Theanalysisofthedynamicsofallthermal resourcesindexes was carried outandtheirtrend was determined. Itisclearlyseen (Figure 1) that the increase in the amounts of average twenty-four hours, averaged ailyand average night air temperatures ($\Sigma Tsv > 10 \circ C$, $\Sigma Tdn > 10 \circ C$, $\Sigma Tn > 10 \circ C$) from 1986 to 2010 is the same for the AMS "Odessa" and "Bolgrad". The trendline has a form of increasing directlines which are practically parallel. The difference of averaged aily temperatures and average night temperatures ($\Sigma Tdn - \Sigma Tn > 10^{\circ}C$) tends to decrease.

The calculations of a total probability of the amounts of the temperatures that allow to judge about their temporal variability were made (Figure 2). Built graphs of cumulative probability curves indicate practically the same density of the frequency of values distribution for all indexes and are parallel. They are nearly vertical in the limits of 20-80%. An elongation of the curves in the range of 0-20% and 80-100 indicates at a greater variability of the extreme values of the indexes.

The calculations of a sunshine duration for the period of grapes generative organs formation and the ripening period of different kinds of grapes SS 5-9 and SS 7-9) were made. In the studied area these periods last respectively from May and July to September.

A sunshine duration at the agro-meteorological stations "Odessa" and "Bolgrad" for the period of a grapes generative organs formation (SS 5-9) changes from 1225 to 1650 and from 1247 to 1659 hours. The maximum duration was observed at these AMS in 2007. The minimum duration was observed in 1995 at the AMS "Odessa" and in 1990 - at the AMS "Bolgrad". The differences over the studied years are

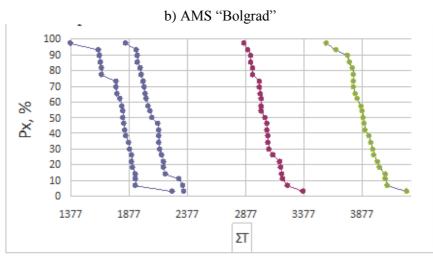


Figure 2 - Cumulative probability curves of the thermal resources at the agro-meteorological stations (AMS) 'Odessa' (a) and "Bolgrad" (b).

1- the difference of the amounts of averagedailyandaverage nighttemperatures, 2- the amounts of average nighttemperatures, 3 - the amounts of average twenty-four hours temperatures, 4 - the amounts of daily temperatures.

Respectively 425 and 412 hours.

The maximum sunshine duration for a grapes ripening period (SS 7-9) at the AMS "Odessa" and "Bolgrad" was 997 and 959 hours and was recorded in 2010 and 2003. The minimum value of this index decreased at the AMS "Odessa" and "Bolgrad" to 688 and 718 hours in 1991. Differences in a sunshine duration from July to September at these stations were 309 and 241 hours respectively.

Analysis of the dynamics and a trend of a sunshine duration according to the data from the AMS "Odessa" and "Bolgrad" shows a tendency of their increase from 1986 to 2010 (Figure 3). Moreover, in contrast to the amounts of the temperatures, a graph of the trend is represented by a curve that is approximated by a polynom of the 3rd and 4th degree. The curves of all the indexes have the same form for different absolute values. These obtained equations describe an interannual variability of the indexes.

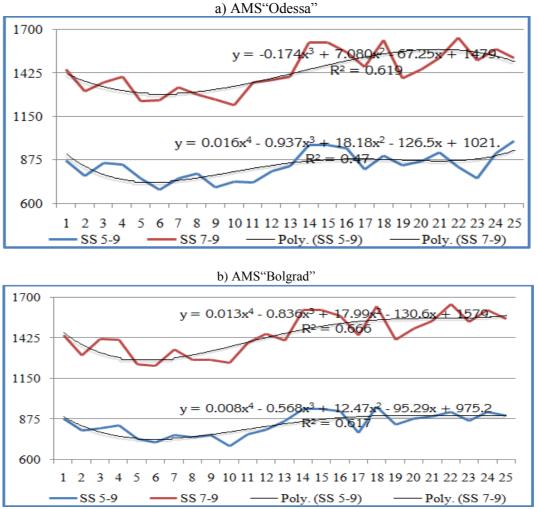


Figure 3- Dynamics and rendsunshineduration for the May-September (SS 7-9) and July-September (SS 5-9) on AMC Odessa and Bolgrad.

IV. CONCLUSIONS

Given studies have shown a significant variability of the light and thermal resource indexes for the period from 1986 to 2010 in the central and southern Odessa region. The limits of the absolute values of the amounts of average twenty-four hours, averagedailyandaverage nightairtemperatures, the differences between the amounts of average daily andaverage nightair temperature as an index of a daily rhythm of the air temperature and a sunshine duration for May-September and July-September, as an index of the thermal resources are determined. The features of the variability were detected and a steady trend of increasing values of the indexes for the given years was found.

REFERENCES

- [1]. Selyanynov G.T.Principlesof agroclimatic zoning of the USSR // Questionsof agroclimaticzoning of the USSR. M.: the USSR MSH, 1958. p. 7-14
- [2]. Davytaya F.F.Studyofgrapes climatesinthe USSR and grounding of their practical application. Moscow– L.: Hydrometeoizdat, 1952. 304 p.
- [3]. Turmanidze T.I.Climateanda grapecrop. L.: Hydrometeoizdat, 1981. 223 p.
- [4]. Fursa D.I.Weather, irrigationand grapes productivity. L .: Hydrometeoizdat, 1986. 200 p.
- [5]. Amyrdzhanov A.G.Sunradiationandgrapes productivity. L.: Hydrometeoizdat, 1980. 208 p.
- [6]. Mishchenko Z.A. Dayandnightbioclimate. L.: Hydrometeoizdat, 1984. 280 p.
- [7]. Lyashenko G.V. Agroclimaticevaluationofcropproductivity. Odessa. 248 p.
- [8]. Myschenko Z,A.Lyashenko A.V.Microclimatemappingof radiation-thermal resourcesbasedonmorphometric //Meteorology,climatologyandhydrology. - Odessa, 1995. - Vol. 30. - p.97-104.
- [9]. LyashenkoG.V.Agroclimatic workshop.A schoolbook. Odessa: TES. 2014 p.24-30.