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I. INTRODUCTION 
For any graph theoretic parameter, the study of determining bounds is the important one. Chartrand et. 

al [4] determined the bounds of the metric dimensions for any connected graphs and determine the metric 

dimension of some well-known families of graphs such as paths and complete graphs. In [10], Khuller et. al 

considered graphs with small metric dimension and showed that a graph has metric dimension 1 if and only if it 

is a path and Chartrand et. al also proved this in [6]. Buczkowski et. al [1] proved the existence of a graph G 

with β(G)=2, for every integer k≥2. In this paper, we present some bounds for metric dimension of a graph G in 

terms of order and some theoretic parameters such as diameter and maximum degree etc., 

 

1.1 Some Bounds For Metric Dimension 

1.2 Some Bounds for  Metric dimension 

In this section, we determine some bounds for metric dimension and characterize the graph with metric 

dimension l and n-1. Also we characterize the Extremal graphs achieving the bounds. 

 

Theorem 1.1.1.  

If G is a graph on n vertices, then 1 ≤ β(G) ≤ n-1. For given integer a and n with 1 ≤ a ≤ n-1, there 

exists a graph G of order n such that β(G)=a. 

Proof: The inequalities are trivial. Now suppose a and n are two integers with 1 ≤ a ≤ n-1. We construct a graph 

G of order n such that β(G)=a as follows. 
 

Case 1. a=1, 2, n-1, n-2 

 For a=1, 2, n-1, n-2, let G be a graph with n-vertices be taken as a path, cycle, complete graph and 

complete bipartite graph respectively. Then clearly β(G)=a. 

Case 2. 3 ≤ a ≤ n-3 and n-a is odd. 
 

 In this case, let G be a graph obtained from the cycle 3 ≤ a ≤ n-3Cn-a+1=(v1, v2, …, vn-a+1, v1) by 

attaching (a-1) pendent edges at any one of the vertices of the cycle say v1 and let x1, x2, …, xa-1 be the pendent 

vertices of G. We now claim that β(G)=a. 

 Let S=(x1, x2, …, xa-2, v2, vn-a+1). It can be easily verified that S is a resolving set of G. So that  

β(G) ≤ aS  . Next we have to show that β(G)≥a. For that, we have to prove the following Claim 1. 

 

Claim 1.  Every resolving set of G contains at least a-2 vertices from the set X={x1, x2, …, xa-1}. 

 Suppose not, then there exists a resolving set of G contains at most a-3 vertices say W1 and so 

1WX  ≥ 2, However if xi, xj Є X-W1, then d(xi, v)=d(xj, v), Ɐ v ЄV(G). Hence no vertex of W1 resolves xi 

and xj, a contradiction. This complete the proof of Claim 1. 

 Use the fact β(Cn)=2 and Claim 1 we have β(G)≥a-2+2 and hence β(G)=a. 
 

Case 3:  3 ≤ a ≤ n-3 and n-a is even. 
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 Here also let G be the graph obtained from the cycle Cn-a+1=( v1, v2, …, vn-a+1, v1) by attaching (a-1) 

pendent edges at any one of the vertices of the cycle say v1 and attach one pendent edge at any other vertices of 

the cycle say v1. Let x1, x2, …, xa-1 be the pendent vertices of G, where xa is incident with the pendent edge 

which is attached to v2. We now claim that β(G)=a. 
 

 Let S=(x1, x2, …, xa-2, xa, vn-a). Then it can be easily verified that S is a resolving set of G and so 

 β(G) ≤ S =a. Next we have to prove that β(G)≥a. For that, first we prove the following Claim 2. 

Claim 2. Every resolving set of G contains at least 2 vertices from the set T=Cn-a {xa}. 

 Assume to the contrary, then there exists a resolving set of G contains at most one vertex from T say 

W2. Note that if vi and vj are two distinct vertices of Cn-a with d(vi, v1)=d(vj, v1) then d(vi, v)=d(vj, v) for all  

v εV(G)-Cn-a {xa}, it follows that W2 must contain exactly one vertex in T. We consider the following four 

cases. 

Case (i). xa ЄW2. 

 Since for any v’ЄV(G)-Cn-a {xa}, d(vn-a, xa)=d(v’, xa) and d(vn-a, u’)=d(v’, u’) for any  

u’ЄV(G)-Cn-a {xa} {v’} it follows that r(vn-a\W2)=r(v’\W2). 

Case (ii). Any one of {v1, v2, …, vn/2-1} belongs to W2. 
 

 Since for any v’ ЄV(G)-Cn-a {xa} {v’}, d(vn-a, vi)=d(v’, vi), 1≤ i ≤n/2-1 and d(vn-a, u’)=d(v’, u’) for 

all u’ЄV(G)-Cn-a {xa} {vi}, we have  r(vn-a\W2)=r(v’\W2). 

Case (iii). Vn/2ЄW2. 

 Note that if v and v’ are two distinct vertices of Cn-a with d(v, v1)=d(v’,v1) then d(v, vn/2) and  

d(v, u)=d(v’, u) for all uЄV(G)-Cn-a{xa} and so r(v2\W2)=r(v’\W2). 

Case (iv). Any one of {vn/2+1, …, vn-a} belongs to W2. 
 

 Since for any v’ ЄV(G)-Cn-a {xa}, d(v2, vi)=d(v’, vi), n/2+1≤ i ≤n-a and d(v2, u’)=d(v’, u’) for all  

u’ЄV(G)-Cn-a {xa} {vi}, we have r(v2\W2)=r(v’\W2). 

 In each case, W2 is not a resolving set of G, a contradiction. Therefore, every resolving set of G 

contains at least two vertices from the set T. From Claim 1. and Claim 2.  β(G)≥a and hence β(G)=a. 

 

Illustration (i).  If n=10 and a=5, then the required graph G is given Figure 1.1.1. This is actually discussed in 

Case 2. One can verify that β(G)=5. 

Illustration (ii). If n=12 and a=4, then the required graph G is given in Figure 1.1.2. This is actually discussed 

in Case 3. One can easily verify that β(G)=4. 
 

 In the Theorems 1.1.2. and 1.1.3., we characterize the Extremal graphs achieving the bounds given in 

Theorem 1.1.1. 

A. Theorem 1.1.2.  A connected graph G of order n has metric dimension 1 if and only if G  Pn . 

Proof:  Let G be a graph with β(G)=1. We have to prove that G is a path. 
 

 Let W={w} be a minimum resolving set for G. For each vertex v Є V(G), r(v/W) = d(v,w) is a non 

negative integer less than n. Since the codes of the vertices of G with respect to W are distinct, there exists a 

vertex u of G such that d(u,w)=n-1. Consequently, the G be a path on n-vertices. By Proposition 1.1.1. β(G)=1. 

B. Theorem 1.1.3.  Let G is a connected graph of order n≥2. Then β(G)=n-1 if and only if  G  Kn . 

Proof: Let G be a graph with β(G)=n-1. We will show that G Kn . Suppose not. Then G contains two vertices 

u and v with d(u, v)=2. Let u, x, v be a path of length 2 in G and let W=V(G)-[x, v}.  

 Since d(u, v)=2 and d(u, x)=1, it follows that r(x\W)=r(v\W) and so W is a resolving set. Which is 

contradiction to the fact that β(G)=n-1. For the converse, assume that G  Kn . By Proposition 1.1.12. β(G)=n-1. 

 In the following theorem we determine some bounds for the metric dimension of a graph in terms of 

maximum degree and diameter. 
 

C. Theorem 1.1.4. Let G be a nontrivial connected graph of order n≥2, diameter d(G), and maximum degree 

 (G). Then [log3 ( (G)+1)] ≤ β(G) ≤n-d(G). 

Proof: First, we establish the upper bound. Let u and v be vertices of G for which d(u ,v)=d(G) and let  

u=v0, v1, v2, …, vd(G)=v be a shortest u-v path. 

 Let W=V(G)-{v1, v2, …, v}. Since uЄW and d(u, vi)=I for 1≤ i ≤d(G), it follows that W is a resolving 

set of cardinality n-d(G) for G. Thus  β(G) ≤n-d(G). 

 Next, we consider the lower bound. Let β(G)=k and let vЄV(G) with deg v= . Moreover, let N(v) be 

the neighbourhood of v and let W={w1, w2, …, wk} be a resolving set of G. Observe that if uЄN(v), then for 
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each 1≤ i ≤k, the distance d(u, wi) is one of the numbers d(v, wi), d(v, wi)+1 or d(v, wi)-1. Moreover, since W is 

a resolving set, r(u\W)=r(v\W) for all uЄN(v). Thus there are three possible number for each of the k 

coordinates of r(u\W). On the other hand, since it cannot occur that d(u, wi)=d(v, wi) for all i (1≤ i ≤k), it follows 

that there at most 3
k
-1 distinct codes of the vertices in N(v) with respect to W. Therefore, |N(v)|= ≤ 3

k 
-1, 

which implies that β(G) = k ≥ log3 ( (G)+1). Since β(G) is an integer, β(G) ≥ log3 ( (G)+1). 

1.3 Graphs with β = n-2 

This section completely characterizes the family of graphs of order n for which the metric dimension n-2. 

D. Theorem 1.2.1. Let G be a connected graph of order n ≥ 4. Then β = n-2 if and only if G = Ks,t (s, t ≥1), 

G =Ks+ tK ,(s ≥1, t ≥2), or G = Ks+ )1,)((  tsKK tl . 

Proof: It can be easily show that   2 nG  for each of the graphs mentioned in the statement of the 

theorem. To see   2 nG , note that if the vertices of a graph are partitioned as pVVV  ...21  

where either iV  is independent and its vertices have identical open neighbourhoods, then the metric dimension 

is at least      1...11 21  pVVV . Since each of the graphs mentioned in the statement of the 

theorem are partition as 21 VV  , then the metric dimension is at least    11 21  VV . Therefore 

  2 nG  and hence   2 nG . 

 

           For the converse, assume that G is a connected graph of order 4n such that   2 nG . By 

Theorem 1.1.4. and, it follows that G has diameter 2. If G is bipartite and since the diameter of G is 2, 

tsKG ,  for some integers 1, ts . Hence, we may assume that G is not bipartite. Therefore, G contains an 

odd cycle. Let rC  be a smallest odd cycle in G. We claim that 3r . Certainly, rC  is an induced cycle of G. 

If G contains an induced & cycle kvvv ,...,, 21  where 5k , then   },2{ 41 vvvGVW j  is a 

resolving set of cardinality 3n , for if we let ji vw   and 52 vw  , then 

       ...,2,2\,...,,1\ 32  WvrsWvr  and    ...,1,\4 tWvr  , where 2, ts . Hence, 

  3 nGp , which is a contradiction. Thus G has no induced cycle of length 5k  and so 3r and G 

contains a triangle. 

           Let Y be the vertex set of a maximum clique of G. Since G contains a triangle, |Y|>3. Let 

  YGVU  . Since G is not complete, |U| > 1. If  |U| > 1, then js KKG  , for some integers s and t. 

Now, s > 1 since G is connected and t > 1 since G is not complete. From these observations, we may assume 

that  |U| > 2. 

          First, we show that t is an independent set of vertices. Suppose, to the contrary, that U is not independent. 

Then U contains two adjacent vertices u and w. Because of the defining property of Y, there exists Yev such 

that  GEtuv and eYv '
 such that  GEgwv '

, where v and 
'v are not necessarily distinct. We consider 

the following two cases. 

 

Case 1. There exists a vertex Yev  such that  GEgwvuv, . 

 

The following two cases are to be discussed. 

 

Subcase 1.1. There exists a vertex  7ex  that is adjacent to exactly one of u and w, say u. 
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Figure 1.2.1. 

 
(a)                                                        (b)     

 

 

            Since |Y| >3, there exists a vertex Yey  that is distinct from v and x. Thus G contains the subgraph 

shown in Figure 1.2.1 (a), where dotted lines indicate that the given edge is not present. 

 

Let   },,{ jywuGVW  . Letting vw 1  and  txw 2  , we have  

 

   ,...,1,2\ Wur  

   ,...,2,2\ Wwr  

   ...,1,1\ Wyr . So W is a resolving set of cardinality 3n , which is a contradiction. 

 

Subcase 1.2. Every vertex of F  is adjacent to either both u and w or to neither u nor w. 

 

If u and w are adjacent to every vertex in }{vY  , then the vertices of    },{}{ wuvF  are pair wise 

adjacent, contradicting the defining property of Y. Thus, there exists a vertex Yev  such that y is distinct from 

v, and y is adjacent to neither u nor w. 

               

              Since the diameter of G is 2, there is a vertex x of G that is adjacent to both u and v. Thus G contains 

the subgraph shown in Figure 3.2.1 (b), where dotted lines indicate that the given edges are not in G. 

 

Let },,{)( wyxGVW  and label vwt   and uw 2 . Then 

   ,...,1,1\ Wxr  

   ,...,2,1\ Wyr  

   ...,1,2\ Wwr . 

 

Thus W is a resolving set of cardinality 3n , producing a contradiction. 

 

Case 2. For each vertex v of Y, v is adjacent to at least one of u and w. 

 Because Y is the vertex set of a maximum clique, there exist vertices v, Yev ' such that 

)(', GEewvuv . Necessarily, )(', GEeuvvw . Since 3Y , there exists a vertex y in Y distinct from v and 

'v . Now, at least one of the edges yu and yw must be present in G, say yu. Thus, G contains the subgraph 

shown in Figure 3.2.2 

  

v 
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(a) Where again dotted edges indicate that the given edge is not in G. 

 

Let },,{)( ywuGVW  and label vw j   and 'vwz  . Then 

   ,...,1,2\ Wur  

   ,...,2,1\ Wwr  

   ...,1,1\ Wyr . 

 

Again, W is a resolving set of cardinality 3n , producing a contradiction. 

 

Thus, as claimed, U is independent. 

 

Figure. 1.2.2. 

(a) 

 

 
(b) 

 

 
 

Next, we claim that    wNuN   for all ., Uewu  Let u and w be two vertices of U. Suppose that 

 GEeuv  for some vertex v of G. Necessarily, Yev . We show that  GEewv . Assume, to the contrary, 

that  GEwv . Since G is connected and U is independent, w is adjacent to some vertex of Y. If w is adjacent 

only to y, then since w and y are not adjacent to u,   3, uwd , which contradicts the fact that the diameter of 

G is 2. Thus there exists a vertex x in 7 distinct from y such that  GEewx . Therefore, G contains the 

subgroup shown in Figure 3.2.2 (b), where again dotted edges are not in G. 

 

Let },,{)( xwuGVW  and label vw j   and ywz  . Then 

   ,...,2,1\ Wur  

   ,...,2\ Wwr  
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   ...,1,1\ Wxr . 

 

Thus, W is a resolving set of cardinality 3n , producing a contradiction. 

 

 
Figure. 1.2.3 

 

Therefore   UYGV  , where Y induces a clique, U is independent, 2,3  UY and    wNuN   

for all ., Uwu   

 

 Next, we claim that for ,Uu  there is at most one vertex of Y not contained in N(u). Suppose, to the 

contrary, that there are two vertices Yyx , not in N(u). Let W be a vertex of U that is distinct from u. 

Therefore,    wNuN  . Since G is connected, there exists 7z such that:    .wNuNz  Thus G 

contains the subgraph shown in Figure 1.2.3., where dotted edges are not edges of G. 

 

Let },,{)( zwyGVW  and label xw j   and uwz  . Then 

   ,...,2,1\ Wyr  

   ,...,2,2\ Wwr  

   ...,1,1\ Wzr . 

 

Hence, W is a resolving set of cardinality 3n , producing a contradiction. 

 

Now,   YuN   For   }{vYuN   for some .7v If   YuN  , then ts KKG  for  

3 Ys and .2 Ut If   }{vYuN  , then  ,1 ts KKKG  where 

  21},{1  YSvKV and .2 UT  

However,  
11 


tsts KKKKK . In either case, G is the join of a complete graph and an empty graph. 

  

II. CONCLUSIONS 
Navigation can be studied in a graph-structured frame work in which the navigating agent (which we 

shall assume to be a point robot) moves from node to node of a “graph space”. The robot can locate itself by the 

presence of distinctively labeled “landmark” nodes in the graph space. For a robot navigating in Euclidean space, 

visual detection of a distinctive landmark provides information about the direction to the landmark, and allows 

the robot to determine its position by triangulation. On a graph, however, there is neither the concept of 

direction nor that of visibility. Instead, we shall assume that a robot navigating on a graph can sense the 

distances to a set of landmarks. Evidently, if the robot knows its distances to a sufficiently large set of 

landmarks, its position on the graph is uniquely determined. This suggests the following problem:“Given a 

graph, what are the fewest number of landmarks needed, and where should they be located, so that the distances 

w u 

 x 

 x 
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to the landmarks uniquely determine the robot’s position on the graph?’This is actually a classical problem 

about metric spaces. A minimum set of landmarks which uniquely determine the robot’s position is called a 

“metric basis”, and the minimum number of landmarks is called the “metric dimension” of the graphThis 

dissertation deals with this notion of metric basis and the corresponding parameter metric dimension. 
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