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Abstract: The present paper deals with spectral dynamic analysis of free torsional vibration of doubly 

symmetric thin-walled beams of open section. Spectral frequency equation is derived in this paper for the case 

of rotationally restrained doubly-symmetric thin-walled beam with one end rotationally restrained and 

transversely restrained at the other end. The resulting transcendental frequency equation with appropriate 

boundary conditions is derived and is solved for varying values of warping parameter and the rotational and 

transverse restraint parameter. The influence of rotational restraint parameter, transverse restraint parameter 

and warping parameter on the free torsional vibration frequencies is investigated in detail. A MATLAB 

computer program is developed to solve the spectral frequency equation derived in this paper. Numerical 

results for natural frequencies for various values of rotational and transverse restraint parameters for various 

values of warping parameter are obtained and presented in both tabular as well as graphical form showing the 

influence of these parameters on the first fundamental torsional frequency parameter. 
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I. INTRODUCTION 

It is very well known that in practical situations, the boundary conditions of structural members will be 

quite complex and can be simulated by using translational springs and rotational springs with appropriate 

combinations of the same. There exist a good number of research efforts in this direction and many researchers 

have addressed this problem of vibrations of generally restrained beams with various combinations of boundary 

conditions [1-25]. The combined effect of rotary inertia, shear deformation and root flexibility has been 

investigated experimentally by Beglinger et al. [12]. A considerable amount of theoretical work has been done 

in the field of vibration dealing with the computation of natural frequencies and mode shapes of cantilever 

beams with flexible roots [6, 9, 17, 19, 20, 22]. Kameswara Rao [23] presented a closed form equation for 

computing fundamental frequency of cantilever blade taking into account the resilience of the clamped end. 

Experimental verification of the results for this case was also carried out by Abbas and Irretier [24]. Kameswara 

Rao and Mirza [25] derived the transcendental frequency equation and mode shape expressions for the case of 

generally restrained Euler-Bernoulli beams and presented extensive numerical results for various values of 

linear and rotational restraint parameters. 

While there are a number of publications on flexural vibrations of elastically restrained cantilever 

beams, the literature on torsional vibrations of doubly symmetric thin-walled beams of open section is rather 

rare. Free torsional vibrations and stability of doubly-symmetric long thin-walled beams of open section were 

investigated by Gere [26] and Christiano and Salmela [27]. Numerical values of exact torsional natural 

frequencies of beams with circular cross-section, where nonuniform warping does not arise, were presented by 

Gorman [26] and Belvins [27] for different classical boundary conditions. Torsional vibration frequencies for 

beams of open thin-walled sections, subjected to several combinations of classical boundary conditions, taking 

into account warping effects were first derived by Gere [28]. Including elastic torsional and warping restraints, 

Carr [29] and Christino and Salmela [30] presented numerical results using approximate methods for the 

calculation of natural frequencies. For the case of torsional frequencies of circular shafts and piping with 

elastically restrained edges, Kameswara Rao [31] derived exact frequency equation and presented corresponding 

numerical results for a wide range of non-dimensional parameters.  

 It can be seen from the very recent review presented by Sapountzakis [32] that the problem of free 

torsional vibration analysis of doubly-symmetric thin-walled I-beams or Z-beams subjected to partial warping 
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restraint is not being addressed till now in the available literature. In view of the same, an attempt has been 

made in this paper to present a spectral dynamic analysis of free torsional vibration of doubly-symmetric thin-

walled beams of open section with one end rotationally restrained and the other transversely restrained including 

the effects of warping parameter. Spectral frequency equation is derived for this case and the resulting 

transcendental frequency equation is solved for varying values of warping parameter and the partial restraint 

parameters. The influence of rotational and transverse restraint parameter along with warping parameter on the 

free torsional vibration frequencies is investigated in detail by utilising a Matlab computer program developed 

especially to solve the spectral frequency equation derived in this paper. Numerical results for natural 

frequencies for various values of partial rotational and transverse restraint parameters are obtained and presented 

in both tabular as well as graphical form for use in design, showing their parametric influence clearly. 

 

II. FORMULATION AND ANALYSIS 

Consider a long doubly-symmetric thin-walled beam of open cross section of length L and the beam as 

undergoing free torsional vibrations. The corresponding differential equation of motion can be written as: 

𝑒2𝛽𝑙 [(
𝜕4𝜑

𝜕𝑋4 +  4(𝛽𝑙)
𝜕3𝜑

𝜕𝑋3  + 4(𝛽𝑙)2 𝜕2𝜑

𝜕𝑋2)) +  𝐾2(
𝜕2𝜑

𝜕𝑋2 + 2(𝛽𝑙)
𝜕𝜑

𝜕𝑋
)] +𝜆2𝜑 = 0(1) 

 

        

where, 

E= young’s modulus, 𝐶𝑊=warping constant,𝐺 =shear modulus,𝐶𝑆 = torsion constant, 𝜌 =mass density of the 

material of the beam, 𝐼𝑃 =polar moment of inertia, 𝜑 = angle of twist, z= distance along the length of the beam. 

For free torsional vibrations, the angle of twist 𝜑(𝑧, 𝑡) can be expressed in the form. 

𝜑(𝑧, 𝑡) = 𝑥(𝑧)𝑒𝑖𝜔𝑡              (2a) 

𝑥(𝑧) = C𝑒𝑚𝑧      (2b) 

In which 𝑥(𝑧) is the modal shape function corresponding to each beam torsional natural frequency𝜔. 

The expression for 𝑥(𝑧)which satisfies Eqn. (1) can be written as: 

𝑥(𝑧) =  A𝑒+α𝑧 + B𝑒−α𝑧 + C𝑒+𝑖β𝑧 + D𝑒−𝑖β𝑧     (3) 

in which, 

βL, αL = √∓𝐾2+√𝐾4+4𝜆2

2
       (4) 

where, 

𝐾2 = (
𝐺𝐶𝑆𝐿2

𝐸𝐶𝑊
) ;     Non- dimensional w arping parameter 

𝜆2 = (
𝜌𝐼𝑃𝜔2𝐿4

𝐸𝐶𝑊
);    Non- dimensional frequency parameter 

From Eqn. (4),we have the following relation between αL and βL 

(αL)2 = (βL)2 + 𝐾2        (5) 

Knowingα and β, the frequency parameter λ can be evaluated using the following equation: 

𝜆2 = (αL)(βL)       (6) 

The four arbitrary constants A, B, C and D in Eqn. (3) can be determined from the boundary conditions of the 

beam. For any single-span beam, there will be two boundary conditions at each end and these four conditions 

then determine the corresponding frequency and mode shape expressions. 

 

III. DERIVATION OF SPECTRAL FREQUENCY EQUATION 

Consider a thin-walled doubly symmetric I-beam with one end rotationally restrained and the other end 

transversely restrained as shown in figure 1,undergoing free torsional vibrations. In order to derive the spectral 

frequency equation for this case, let us first introduce the related nomenclature.  

The variation of angle of twist φ with respect to z is denoted byθ(z). The flange bending moment and the total 

twisting moment are given by M(z)and T(z). Considering clockwise rotations and moments to be positive, we 

have 

𝜃(𝑧) =
𝑑𝜑

𝑑𝑍
; ℎ𝑀(𝑧) = −𝐸𝐶𝑊

𝑑2𝜑

𝑑𝑧2        (7) 

𝑇(𝑧) = −𝐸𝐶𝑊
𝑑3𝜑

𝑑𝑧3 + 𝐺𝐶𝑆
𝑑𝜑

𝑑𝑍
         (8) 

where𝐸𝐶𝑊 =
𝐼𝑓ℎ2

2
. 𝐼𝑓 being the flange moment of inertia and h is the distance between the center lines of the 

flanges of a thin-walled I-beam. 
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Fig.1 (a) A Thin-Walled Open Section Beam Rotationally Restrained at One End and Transversely Restrained at 

the Other End 

 
Fig. 1 (b) Cross-section of the beam at x-x 

 

Taking S as the stiffness of the rotational spring and R = (SL/E𝐶𝑊) as the non-dimensional rotational spring 

stiffness parameter and Z=(z/L) as the non-dimensional length of the beam, the boundary conditions can be 

easily identified as follows: 

At Z =0,  𝜑 = 0, 
𝑑2𝜑

𝑑𝑍2 = 𝑅
𝑑𝜑

𝑑𝑍
                                                                                    (9)                                                            

And at Z = L,  
𝑑3𝜑

𝑑𝑧3 − 𝐾2 𝑑𝜑

𝑑𝑍
 = T𝜑,  

𝑑2𝜑

𝑑𝑍2 = 0                                                                        (10)      

The spectral frequency equation obtained is as given below: 

𝑅𝑆1 + 𝐹1𝑆2 + 𝑇𝐹2𝑄1𝑚2 + 𝑅𝑇𝐹3𝑆3 = 0                                                                     (11) 

where 

𝐹1 =
(𝛼2+𝛽2)

(𝛼2𝛽2)
 ; 𝐹2=  

(𝛼4+2𝛼2𝛽2+𝛽4)

(𝛼3𝛽3)
  ; 𝐹3 =

(𝛼2+𝛽2)

(𝛼3𝛽3)
(12) 

𝑄1 =
1+𝑒2𝐿(𝛼+𝑖𝛽)

4𝑒𝐿(𝛼+𝑖𝛽) ; 𝑄2 =
1+𝑒2𝐿(𝛼−𝑖𝛽)

4𝑒𝐿(𝛼−𝑖𝛽) (13) 

𝑄1𝑚2 = (𝑄1 − 𝑄2)(14) 

 S1= (𝐹1𝑄1𝑝2 + 𝐹2𝑄1𝑚2 + 2 ); S2=(𝛼3𝑄3𝑝4 − 𝛽3𝑄3𝑚4); S3=(𝛼𝑄3𝑚4 − 𝛽𝑄3𝑝4)(15) 

Four degenerate cases spectral frequency equations can be easily obtained from Equation (11)     as follows: 

Case (i). For 𝑅 = 0 and 𝑇 = ∞ , we get the case of simply-supported beam for which we obtain  
𝑄1𝑚2 = 0                                    (16)                     

Case (ii). For 𝑅 = ∞ and𝑇 = 0, we get the case of cantilever beam with restrained warping for which we obtain                              

𝑆1 =  0                                                                            (17) 
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Case (iii). For 𝑅 = 0and𝑇 = 0, we get the case of cantilever beam with unrestrained warping for which we 

obtain  

𝑆2 =  0                                                            (18)                                         

Case (iv). For 𝑅 = ∞and𝑇 = ∞, we get the clamped-simply supported beam case for which we obtain 

𝑆3 =  0                        (19) 

 

 

IV. RESULTS AND DISCUSSIONS 

Numerical results for the first three natural torsional frequencies of vibration of thin-walled beams of 

open section are obtained by solving the transcendental spectral frequency Eq. (11) using trial-and-error method. 

The Muller’s iteration technique based on bisection method is coded in Matlab and the same is utilised in 

generating the numerical data and the same is presented in several tables and graphs for use in design. 

It should be mentioned here that even though several studies are made by researchers in the area of 

torsional frequencies of thin-walled beams of open section, numerical values are not made available for use in 

design. As is known, graphical results can help us only in understanding the trend of variation of natural 

frequencies due to the increase in warping parameter 𝐾 and the partial warping restraint parameters 𝑅and𝑇, but 

will not provide the frequencies to the four digit accuracy which we require for using the same for design.  

For the case of cantilever thin-walled beam with partially restrained warping (𝑅), R varying from o to 

10+17 at the left end and with partial linear transverse restraint (T), T varying from 0 to 10+17 at the other, the 

fundamental mode torsional frequencies for a fixed value of warping parameter 𝐾=0.0 are presented in Table 1. 

The fundamental mode torsional frequencies are determined for a wide range of 𝑅 and T but only a few are 

presented in Table.1. Figure 2 represents the variation of frequency parameter with warping parameter (𝐾 =
0 𝑡𝑜 10) for 𝑅 = 0 and𝑅 = 10+17. Whereas, Figure 3 is drawn to clearly show the variation of the fundamental 

first mode frequencies with varying values of 𝐾and𝑅.It is observed that for a given value of𝑅, the frequency 

parameter increases with increase in warping parametervalue𝐾.  
From figures 2 and 3, we can easily see that the increase in warping parameter 𝐾 is to increase the 

fundamental mode torsional frequencies significantly. For values of 𝐾 greater than 10, we can easily notice that 

the frequencies of cantilever with unrestrained as well as completely restrained thin-walled beams almost tend to 

converge to a constant value as 𝐾 approaches higher values such as 80. For a constant value of warping 

parameter𝐾, the increase in values of partial warping parameter 𝑅from 0 to infinity (1018) results in consistent 

increase in the values of fundamental mode frequencies as the cantilever end becomes stiffer and stiffer.  

From the definition of non-dimensional warping parameter 𝐾 (4b), we can understand that the torsional 

frequency increases for increasing values of torsion constant 𝐶𝑆or decreasing values of warping constant𝐶𝑊. 

Effect of 𝐾 also can be seen to be more predominant compared to the effect of partial warping restraint𝐾. This 

can be seen from Figure 3whereas𝐾 is increasing from 0 to 80, the two curves related to cantilever beam fully 

restrained and the one with unrestrained warping are almost converging to the same value and hence we can 

conclude that the boundary condition has insignificant effect on the natural torsional frequencies of thin-walled 

doubly symmetric beams for very high values of warping parameter𝐾. 

Fundamental mode torsional frequencies of thin-walled beams for wide range of values of warping 

parameter 𝐾 from 1 to 80 and the partial warping restraint 𝑅 from 0 to 1018arecalculated. These results are also 

plotted in Figures 4 to 5 showing clearly the variation of fundamental natural torsional frequency with varying 

values of warping parameter 𝐾 and the partial warping restraint𝑅.  

The percentage variation of frequency parameter with increasing values of 𝑅,  as  𝐾 varies from 0 to 80 

is presented in Figure. 6. The percentage variation of frequency parameter changes from 96.29025 to 83.37943 
when the value of 𝐾 varies from 0 to 80. Similarly, the percentage variation of frequency parameter with 𝐾 as  

𝑅 varies from 0.01 to 10+18 is presented in Figure. 7. The percentage variation of frequency parameter changes 

from 77.81 to 0.62 when the value of 𝑅 varies from 0.01 to 10+18. 
The percentage variation of frequency parameter with increasing values of 𝑅,  as  𝐾 varies from 0 to 80 

is presented in Figure. 6. The percentage variation of frequency parameter changes from 96.29025 to 83.37943 
when the value of 𝐾 varies from 0 to 80. Similarly, the percentage variation of frequency parameter with 𝐾 as  

𝑅 varies from 0.01 to 10+18 is presented in Figure. 7. The percentage variation of frequency parameter changes 

from 77.81 to 0.62 when the value of 𝑅 varies from 0.01 to 10+18. 
The values of second and third mode torsional natural frequencies of thin-walled beams of open section 

for various values of warping parameter 𝐾 from 0.01 to 200 and partial warping restraint parameter 𝑅 from 0.01 

to 1000in Tables 2 and 3 respectively. These numerical values are plotted in Figures 8 and 9 for the second 

mode and Figures 10 and 11for the third mode, showing clearly the influence of warping parameter 𝐾 and 

partial warping restraint 𝑅 on the non-dimensional natural frequency parameter λ. 
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The authors sincerely hope that this detailed data presented in this paper will be quite useful in design 

of such systems and also to establish accuracy of frequencies obtained by using latest approximate methods such 

as Generalised Differential Quadrature Method (GDQM), Differential Transform Method (DTM), Adomian 

Decomposition Method (ADM).or any other method such as Finite Element Method.  

Spectral dynamic analysis of free torsional vibration of doubly symmetric thin-walled beams of open 

section is carried out and detailed results of this study are presented in this paper suitable for use in design and 

also for checking approximate solutions obtained for their accuracy. For the case of a cantilever thin-walled 

beam of doubly symmetric open cross-section undergoing free torsional vibrations and subjected to partial 

warping restraint, the spectral frequency equation is derived in this paper. The resulting transcendental 

frequency equation for the case of cantilever boundary conditions is solved for thin-walled beams of open cross 

section for varying values of warping parameter and the partial warping restraint parameter. The influence of 

partial warping restraint parameter𝑅 and the warping parameter 𝐾on the free torsional vibration frequencies is 

investigated in detail and significant amount of numerical frequency data is generated. Using a MATLAB 

computer program developed to solve the spectral frequency equation derived, numerical results for the first 

three modes of torsional natural frequencies for various values of rotational restraint parameter𝑅 and warping 

restraint parameter 𝐾are obtained andare presented in both tabular as well as graphical form showing their 

parametric influence clearly. In comparison with the partial warping restraint parameter𝑅, the warping 

parameter 𝐾 is found to have significant effect on the torsional natural frequencies not only of the fundamental 

mode but also of higher modes. 

 

Table 1.First mode natural frequencies for various values of rotational and translational restraint parameters and 

for warping parameter 𝐾 = 0 
𝑅 𝑇 = 0 𝑇 = 0.01 𝑇 = 0.1 𝑇 = 1 𝑇 = 10 𝑇 = 100 𝑇 = 1000 𝑇 = 1017 

0 0 0.41616 0.73973 1.30981 2.23133 2.98864 3.12608 3.14159 

0.01 0.41595 0.49481 0.75769 1.31339 2.23256 2.99011 3.12766 3.14318 

0.1 0.73578 0.75406 0.87821 1.34368 2.24336 3.00301 3.14155 3.15718 

1 1.24792 1.25200 1.28704 1.53581 2.32647 3.10846 3.25665 3.27329 

10 1.72274 1.72455 1.74058 1.87929 2.53883 3.44122 3.64228 3.66464 

100 1.85679 1.85833 1.87205 1.99395 2.62616 3.61335 3.86146 3.88919 

1000 1.87323 1.87475 1.88824 2.00836 2.63761 3.63772 3.39401 3.92269 

1017 1.87510 1.87662 1.89008 2.01000 2.63893 3.64054 3.89780 3.92660 
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(c)  

Fig. 2 (a),(b) and (c). Variation of frequency parameter with rotational and translational restraints (R&T=0 to 

1017) for a given Warping parameter (K=0). 

 
Table.2 First mode natural frequencies for various values of rotational and translational restraint parameters and 

for warping parameter 𝐾 = 0.01 
𝑅 𝑇 = 0 𝑇 = 0.01 𝑇 = 0.1 𝑇 = 1 𝑇 = 10 𝑇 = 100 𝑇 = 1000 𝑇 = 1017 

0 0.1316 0.4172 0.7399 1.3098 2.2313 2.9886 3.1261 3.1416 

0.01 0.417 0.4954 0.7579 1.3134 2.2326 2.9901 3.1277 3.1432 

0.1 0.736 0.7542 0.8783 1.3437 2.2434 3.003 3.1416 3.1572 

1 1.248 1.252 1.2871 1.5358 2.3265 3.1085 3.2567 3.2733 

10 1.7228 1.7246 1.7406 1.8793 2.5388 3.4412 3.6423 3.6646 

100 1.8568 1.8584 1.8721 1.994 2.6262 3.6134 3.8615 3.8892 

1000 1.8733 1.8748 1.8883 2.0084 2.6376 3.6377 3.894 3.9227 

1017 1.8751 1.8766 1.8901 2.01 2.6389 3.6505 3.8978 3.9266 
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(c) 

Fig. 3(a),(b) and (c). Variation of frequency parameter with rotational and translational restraints (R&T=0 to 

1017) for a given Warping parameter (K=0.01). 

 
Table.3 First mode natural frequencies for various values of rotational and translational restraint parameters and 

for warping parameter 𝐾 = 0.1 
𝑅 𝑇 = 0 𝑇 = 0.01 𝑇 = 0.1 𝑇 = 1 𝑇 = 10 𝑇 = 100 𝑇 = 1000 𝑇 = 1017 

0 0.4162 0.4949 0.7575 1.313 2.2317 2.9893 3.1269 3.1424 

0.01 0.4948 0.5477 0.7743 1.3166 2.2331 2.9907 3.1284 3.144 

0.1 0.7541 0.7711 0.8891 1.3467 2.2439 3.0036 3.1423 3.158 

1 1.252 1.2561 1.2908 1.5379 2.327 3.109 3.2573 3.274 

10 1.7247 1.7265 1.7425 1.8808 2.5393 3.4416 3.6428 3.6652 

100 1.8586 1.8601 1.8738 1.9953 2.6266 3.6136 3.8619 3.8897 

1000 1.875 1.8765 1.8899 2.0097 2.6381 3.638 3.8945 3.9232 

1017 1.8769 1.8784 1.8918 2.0114 2.6394 3.6408 3.8983 3.9271 
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(c) 

Fig. 4(a),(b) and (c). Variation of frequency parameter with rotational and translational restraints (R&T=0 to 

1017) for a given Warping parameter (K=0.1). 

 

Table.4 First mode natural frequencies for various values of rotational and translational restraint parameters and 

for warping parameter 𝐾 = 1 
𝑅 𝑇 = 0 𝑇 = 0.01 𝑇 = 0.1 𝑇 = 1 𝑇 = 10 𝑇 = 100 𝑇 = 1000 𝑇 = 1017 

0 1.3104 1.3136 1.3414 1.5516 2.2852 3.0479 3.2008 3.2183 

0.01 1.3139 1.3171 1.3447 1.5538 2.2863 3.0493 3.2023 3.2198 

0.1 1.344 1.347 1.377 1.5736 2.2964 3.0612 3.2152 3.2328 

1 1.5364 1.5385 1.5572 1.7125 2.3746 3.1591 3.323 3.3416 

10 1.8891 1.8904 1.9022 2.0084 2.5828 3.4746 3.6919 3.7165 

100 2.0102 2.0114 2.0219 2.118 2.6722 3.6413 3.9062 3.9363 

1000 2.0256 2.0268 2.0371 2.1321 2.6841 3.6651 3.9383 3.9694 

1017 2.0274 2.0285 2.0389 2.1337 2.6854 3.6679 3.942 3.9733 
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(c) 

Fig. 5(a),(b) and (c). Variation of frequency parameter with rotational and translational restraints (R&T=0 to 

1017) for a given Warping parameter (K=1). 

 

Table. 5 First mode natural frequencies for various values of rotational and translational restraint parameters 

and for warping parameter 𝐾 = 10 
𝑅 𝑇 = 0 𝑇 = 0.01 𝑇 = 0.1 𝑇 = 1 𝑇 = 10 𝑇 = 100 𝑇 = 1000 𝑇 = 1017 

0 3.9827 3.9828 
3.9836 3.9909 4.0613 

4.5431 5.454 5.7384 

0.01 3.9229 3.983 
3.9837 3.9911 4.0615 

4.5433 5.454 5.7387 

0.1 3.9846 3.9847 
3.9855 3.9928 4.0632 

4.5449 5.4562 5.741 

1 4.0004 4.0005 
4.0013 4.0086 4.0787 

4.5597 5.4751 5.7626 

10 4.0842 4.0843 
4.085 4.0922 4.161 

4.6389 5.5778 5.8806 

100 4.1752 4.1753 
4.176 4.1831 4.2505 

4.7258 5.6934 6.0158 

1000 4.1942 4.1942 
4.1949 4.202 4.2692 

4.7439 5.7178 6.0447 

1017 4.1965 4.1966 
4.1973 4.2043 4.2715 

4.7462 5.7208 6.0483 
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(c) 

Fig. 6(a),(b) and (c). Variation of frequency parameter with rotational and translational restraints (R&T=0 to 

1017) for a given Warping parameter (K=10). 

 

Table. 6 First mode natural frequencies for various values of rotational and translational restraint parameters 

and for warping parameter 𝐾 = 100 
𝑅 𝑇 = 0 𝑇 = 0.01 𝑇 = 0.1 𝑇 = 1 𝑇 = 10 𝑇 = 100 𝑇 = 1000 𝑇 = 1017 

0 12.5339 12.5339 12.5339 12.5342 12.5364 12.5592 12.7758 17.7289 

0.01 12.5339 12.5339 12.5339 12.5342 12.5364 12.5592 12.7758 17.7289 

0.1 12.534 12.534 12.534 12.5342 12.5365 12.5592 12.7758 17.729 

1 12.5345 12.5345 12.5345 12.5348 12.5371 12.5598 12.7764 17.7298 

10 12.5396 12.5396 12.5396 12.5399 12.5421 12.5649 12.7814 17.737 

100 12.5653 12.5654 12.5654 12.5656 12.5679 12.5906 12.8067 17.7734 

1000 12.5913 12.5913 12.5913 12.5915 12.5938 12.6164 12.8332 17.8101 

1017 12.597 12.5976 12.5971 12.5973 12.5996 12.6222 12.8378 17.8182 
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(c) 

Fig. 7(a),(b) and (c). Variation of frequency parameter with rotational and translational restraints (R&T=0 to 

1017) for a given Warping parameter (K=100). 

 
Table.7 First mode natural frequencies for various values of rotational and translational restraint parameters and 

for warping parameter 𝐾 = 500 
𝑅 𝑇 = 0 𝑇 = 0.01 𝑇 = 0.1 𝑇 = 1 𝑇 = 10 𝑇 = 100 𝑇 = 1000 𝑇 = 1017 

0 28.025 28.025 28.025 28.025 28.0253 28.0273 28.0477 39.6337 

0.01 28.025 28.025 28.025 28.025 28.0253 28.0273 28.0477 39.6337 

0.1 28.025 28.025 28.025 28.0251 28.0253 28.0273 28.0477 39.6337 

1 28.0251 28.0251 28.0251 28.0251 28.0253 28.0274 28.0478 39.6337 

10 28.0256 28.0256 28.0256 28.0256 28.0258 28.0278 28.0482 39.6344 

100 28.0297 28.0297 28.0297 28.0287 28.0299 28.032 28.0524 39.6403 

1000 28.0437 28.0437 28.0437 28.0437 28.044 28.046 28.0664 39.6601 

1017 28.0531 28.0531 28.0531 28.0531 28.0533 28.0554 28.0757 39.6734 
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(c) 

Fig. 8(a), (b) and (c). Variation of frequency parameter with rotational and translational restraints (R&T=0 to 

1017) for a given Warping parameter (K=500). 

 

V. CONCLUSIONS 

Spectral dynamic analysis of free torsional vibration of doubly-symmetric thin-walled beams of open 

section is carried out and detailed results of this study are presented in this paper suitable for use in design and 

also for checking approximate solutions obtained for their accuracy. For the case of a cantilever thin-walled 

beam of doubly-symmetric open cross-section undergoing free torsional vibrations and subjected to partial 

warping restraint, the spectral frequency equation is derived in this paper. The resulting transcendental 

frequency equation for the case of rotationally restrained cantilever with transverse restraint on the other end is 

solved for thin-walled beams of open cross section for varying values of warping parameter and the partial 

rotational and transverse restraint parameters. The influence of partial rotational restraint parameter𝑅, transverse 

restraint parameter T and the warping parameter 𝐾on the free torsional vibration frequencies is investigated in 

detail and significant amount of numerical frequency data is generated. Using a MATLAB computer program 

developed to solve the spectral frequency equation derived in this study, numerical results for the first three 

modes of torsional natural frequencies for various values of𝑅, 𝑇 and warping 𝐾are obtained and are presented in 

both tabular as well as graphical form showing their parametric influence clearly. In comparison with the partial 

restraint parameter𝑠𝑅 and T, the warping parameter 𝐾 is found to have significant effect on the torsional natural 

frequencies not only of the fundamental mode but also on higher modes aswell. 
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