
International Journal of Engineering Research and Development

ISSN: 2278-067X, Volume 2, Issue 1 (July 2012), PP. 39-45
www.ijerd.com

39

XML Tree Pattern Matching Algorithms

Lakshmi Tulasi.Ambati
1
, Y.SSR.Murthy

2
, D.N.S.B.Kavitha

3

1,2,3Computer Science Engineering, Shri Vishnu Engineering College For Women,Vishnupur, Bhimavaram,
West Godavari District, AndhraPradesh, India.

Abstract—In the present day digital world, it is imperative that all organizations and enterprises facilitate efficient

processing of queries on XML data. XML queries typically specify patterns of selection predicates on multiple elements

that have specified tree structured relationships. The primitive tree-structured relationships are parent-child and ancestor-

descendant. Finding all occurrences of these relationships in an XML database is a core operation for XML query

processing. In this paper the pattern matching algorithms TwigStack and TwigStackList are discussed. The behavior of

TwigStack is analyzed, and a comparison of these two algorithms is attempted. The TwigStack algorithm the initial

holistic algorithm, has features of performing simultaneous scan over streams of XML nodes to match their structural

relationships holistically, reducing a number of unnecessary intermediate results, and skipping XML nodes that will not

contribute to final answers. The family of holistic pattern matching algorithms has appeared as the major important

algorithms for processing XML query patterns due to its efficiency and performance advantage. The experimental results

show that the query performance is significantly improved especially for queries having relatively more complex structures

and/or higher selectivities.

Keywords––Xml,TwigStack,TwigStackList;

I. INTRODUCTION
XML employs a tree-structured model for representing data. In Xml, XPath and XQuery [1] are used for

addressing the parts of an xml document and for specifying patterns of selection predicates on multiple elements that have
specified tree-structured relationships. For example, the XQuery path expression

Book [author=suciu] // [title=XML]

An XML tree pattern query, represented as a labeled tree, is essentially a complex selection predicate on both

structure and content of an XML. Tree pattern matching has been identified as a core operation in querying XML data. The
data in Xml is arranged by using the grammar DTD (Document Type Definition) fig 2. In web mining, the data is retrieved
from web through XML tree. The XML tree gives all relevant information to the users of the web. Xml allows for
structuring of data on the web. The structure of XML data is represented in fig 1. An XML document is made of elements

limited by tags and is hierarchically structured.

II. BACKGROUND
The extensible markup language XML has recently emerged as a new standard for information representation and

exchange on the Internet. XML allows users to make up any new tags for descriptive markup of their own applications. Since
XML data is self-describing, XML is considered one of the most promising means to define semi-structured data, which is
expected to be ubiquitous in large volumes from diverse data sources and applications on the web. In Xml Tree there is a
Parent-Child (P-C) and Ancestor and Descendant (A-D) relationships which are represented as / and // in fig 3. A tree which is
maintained by both Parent-Child (P-C) and Ancestor and Descendant (A-D) relationships is presented in fig.3. There are some
pattern matching algorithms [4][5], which are not much efficient than TwigStack [2]discussed in III. Twigstack
implementation is discussed in section IV. To overcome some limitations of TwigStack a TwigStack List is discussed in
section V. Section VI concludes the paper. TwigStack [2] is one of the pattern matching algorithms, which can efficiently

retrieve information much faster than many other algorithms [4][5]. TwigStack [2] is optimal for tree pattern queries with only
A-D edges. In other words, TwigStack [2] processes the tree pattern holistically without decomposing into several small
binary relationships. TwigStack [2] guarantees that there is no useless intermediate result for queries with only Ancestor-
Descendant (A-D) relationships.

XML Tree Pattern Matching Algorithms

40

Fig 1, An XML Tree Representation

Algorithm TwigStack operates in two phases. In the first phase (lines 1-11),some (but not all) solutions to

individual query root-to-leaf paths are computed. In the second phase (line-12), these solutions are merge-joined to compute

answers to the query twig pattern as delineated in fig 4.

<!ELEMENT bib (book*)>
<!ELEMENT book (author+, title, chapter*)>
<!ELEMENT author (#PCDATA)>
<!ELEMENT title (#PCDATA)>

<!ELEMENT chapter (title, section*)>
<!ELEMENT section (title, (text | section)*)>

<!ELEMENT text (#PCDATA | bold | keyword | emph) *>
<!ELEMENT bold (#PCDATA | bold | keyword | emph)*>

<!ELEMENT keyword (#PCDATA | bold | keyword | emph)*>
<!ELEMENT emph (#PCDATA | bold | keyword | emph)*>

Fig 2, An DTD For XML Data

//Phase 1
1 while ~end(q)
2 qact = getNext(q)
3 If (~isRoot(qact))
4 cleanStack(parent(qact), nextL(qact))

5 If(isRoot(qact) V ~empty(S parent(qact)))
6 cleanStack (qact, next(qact))
7 moveStreamToStack (T qact,S qact, pointer to
 top(S parent(q act)))
8 if (isLeaf(q act))
9 showSolution WithBloacking(S qact,1)
10 Pop(Sqact)
11 else advance(Tqact)

//Phase 2
12 mergeAll PathSolutions()
Function getNext(q)
1 if (isLeaf(q)) return q
2 for qi in children(q)
3 ni=getnext(qi)
4 If(ni isnotEqualto qi) return ni
5 nmin = minarg ni , nextL(T ni)
6 nmax = maxarg ni , nextL(T ni)

7 while (nextR(Tq) < nextL(T nmax))
8 advance(Tq)
9 If (nextL(Tq) < nextL(T nmin)) return q
10 Else return nmin

XML Tree Pattern Matching Algorithms

41

Procedure cleanStack(S, actL)
1 while (~empty(S) and (topR(S) <actL))
2 pop S.

Fig 4, TwigStack Algorithm.

III. TWIGSTACK IMPLEMENTATION

TwigStack [2] 1) avoids generating large intermediate results Which do not contribute to the final answer, 2)
avoids unnecessary scanning of source documents, 3) avoids unnecessary scanning of irrelevant portions of XML
documents. For example, the query is /library/category[@name=France]/book/title[@language=English]

At each node a stack is maintained by the TwigStack [2] algorithm. A diagrammatic representation of the
processing of a query is made in fig.5. And how the data is arranged in the stack in each and every node is presented in fig 6.

XPath Query String

Query Tree

Query Tree With Metadata

Phase1:

Path List=Intermediate result

Phase:2

TreeList=result.

Fig 5, TwigStack implementation.

XML Tree Pattern Matching Algorithms

42

In fig 5, the TwigStack algorithm comprises two tasks. The first task is to perform query pattern matching against
XML data and to generate partial solutions. Meanwhile, the second task is to merge the partial solutions generated by the first
task for final solutions.

Same XML tag Can be nested

Query Node Stack

Fig 6. Arranging of data in stack at each node.

The values of a stack for a query are shown in fig.6 Query Node Stack. The limitations of TwigStack [2] Algorithm
are redundancy is maintained, retrieving of data through XML is not much faster than TwigStackList [3], the efficiency of
retrieving large queries in XML data is not effective and the intermediate results are not reduced.

IV. TWIGSTACKLIST
TwigStackList [3] is combination of TwigStack [2] and Lists. It improves efficiency of large queries on XML data

and overcomes the limitations of redundancy in TwigStack [2]. The tree structure of XML data using TwigStackList [3] is
shown in fig 7. At each node the stack and lists are maintained.

Fig 7, TwigStackList [3] where „Sn‟ stands for Stacks and „Ln‟ for Lists.

XML Tree Pattern Matching Algorithms

43

TwigStackList [3] operates in two phases. In the first phase (line 1-11), it repeatedly calls the getNext algorithm

with the query root as the parameter to get the next node for processing. We output solutions to individual query root-to-leaf
paths in this phase. In the second phase (line 12), these solutions are merge-joined to compute the answer to the whole query.

The getNext algorithm is presented in fig 8 and TwigstackList [3] Algorithm in fig 9.

Fig 3, XML tree with A-D and P-C relationships.

At line 2-5, in Algorithm getNext, we recursively invoke getNext for each ni 2 children (n). If any returned node gi

is not equal to ni , we immediately return gi (line 4). Line 6 and 7 get the max and min elements for the current head elements
in lists or streams, respectively. Line 8 skips elements that do not contribute to results. If no common ancestor for all C ni is
found, line 9 returns the child node with the smallest start value, i.e. gmin . Line 10 is an important step. Here we look-ahead

read some elements in the stream Tn and cache elements that are ancestors of Cnmax into the list Ln. Whenever any element
ni cannot its parent in list Ln for ni 2 children(n), algorithm getNext returns node ni (in line 17). In TwigStack[2], getNext(n)
return n0 if the head element en0 in stream Tn0 has a descendant e ni in each stream Tni , for ni 2 children(n0) and
getNext(root) in TwigStackList[3] returns b1.

By using TwigStackList Algorithm, we can reduce the intermediate results of a query on xml data, and thereby
reduce the redundancy level in TwigStack[2].

Algorithm 1 getNext(n)

1 If isLeaf(n) retun n
2 For all node n, n children(n) do
3 gi = getNext(ni)
4 If (gi isNotEqualTo ni) return gi
5 End for
6 nmax = maxarg ni ← children(n) getStart(ni)
7 nmin = minarg ni ← children(n) getStart(ni)
8 while (getEnd(n) < getStart(nmax)) proceed(n)

9 if (getStart(n) > getStart(nmin)) return nmin
10 MoveStreamToList(n, nmax)
11 For all node ni in PCRchildren(n) do
12 If (there is an element ei in listLn such that ei is the parent of getElement(ni)) then
13 If(ni is the only child of n) then
14 Move the cursor pn of list Ln to point to ei
15 end if
16 End for

17 Return n

Procedure getElement(n)
1. If ~empty(Ln) then
2. return Ln.elementAt(pn)
3. Else return cn

Procedure getStart(n)

1. return the start attribute of getElement(n)

Procedure getEnd(n)
1 return the end attribute of getElement(n)

Procedure MoveStreamToList(n,g)
1 while Cn.start < getStart(g) do
2 if Cn.end > getEnd(g) then
2 Ln.append(Cn)

3 end if
4 advance(Tn)

XML Tree Pattern Matching Algorithms

44

5 end while

Procedure proceed(n)
1 if empty(Ln) then

2 advance(Tn)
3 else
4 Ln.delete(Pn)
5 Pn =0 {Move pn to the point to the beginningof Ln}
6 End if

fig 8, getNext algorithm

Algorithm 2 TwigStackList
1 While ~end() do
2 nact = getNext(root)

3 If (~isRoot(nact)) then
4 cleanparentStack(nact, getStart(nact))
5 end if
6 if (isRoot(nact)V~empty(Sparent (nact)) then
7 clearSelfStack(nact, getEnd(nact))
8 moveToSatck(nact,Snact,pointertotop(Sparent(nact))
9 if (isLeaf(nact) then
10 showSolutionsWithBloacking(Snact,1)

11 pop(Snact)
12 endIf
13 else
14 proceed(nact)
15 endif
16 end while
17 mergeAllPathSolutions

Function end()
1 return ni subtreeNodes(n): isLeaf(ni) and endC(ni)

Function moveToStack(n, Sn,p)
1 push (getElement(n),p) toStack Sn
2 proceed(n)

Procedure clearparentSatck(n, actStart)

1 while(~emptySparent(n))
 ^ topEnd(Sparent(n))<actStart)) do
2 pop(Sparent(n))
3 end while

Procedure clearSelfStack(n, actEnd)
1 while (~empty(Sn) and topEnd(Sn)<actEnd) do
2 pop(Sn)
3 end while.

Fig 9, TwigStackList Algorithm

Fig10, Example TwigQuery and Documents

TwigStack [2] pushes c1 to stack Sc and outputs two \useless" intermediate path solution <a1; b1> and <a1; c1;

d1; f1>. The behavior of TwigStack[2] is also reasonable because based on region coding of g1, one cannot decide

whether g1 has the parent tagged with e. TwigStackList[3] does not hastily push c1 to stack , but first checks the parent-

XML Tree Pattern Matching Algorithms

45

child relationship between e1 and g1. If e1 is not the parent of g1, then TwigStackList[3] caches e1 in a list and reads
more elements in Te. In this simple case, e1 is the only element in stream Te

V. CONCLUSION
The XMl tree construction and importance of pattern matching algorithms for searching the data is discussed. The

TwigStack Algorithm has a Time complexity but, the limitation is space complexity. How the TwigStackList overcomes the
limitations of TwigStack in reducing the intermediate results in a query on XML data has been elaborated upon.Our
experiments have demonstrated that these pattern matching algorithms have an edge over other pattern matching algorithms

REFERENCES
[1]. A. Berglund, S. Boag, and D. Chamberlin, XML Path Language (XPath) 2.0, W3C recommendation,

http://www.w3.org/TR/xpath20/, Jan. 2007.

[2]. N. Bruno, D. Srivastava, and N. Koudas, “Holistic Twig Joins: Optimal XML Pattern Matching,” Proc. ACM SIGMOD, pp. 310-

321, 2002.

[3]. J. Lu, T. Chen, and T.W. Ling, “Efficient Processing of XML TwigPatterns with Parent Child Edges: A Look-Ahead Approach,”

Proc. 13th ACM Int‟l Conf. Information and Knowledge Management (CIKM), pp. 533-542, 2004.

[4]. Q. Li and B. Moon, “Indexing and Querying XML Data For Regular Path Expressions,” Proc. Int‟l Conf. Very Large Data Bases

(VLDB), pp. 361-370, 2001.

[5]. H. Jiang et al., “Holistic Twig Joins on Indexed XML Documents,”Proc. Int‟l Conf. Very Large Data Bases (VLDB), pp. 273 -

284, 2003.

