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ABSTRACT  
With the increasing human population comes increased demand for electricity, making power systems more 

complex than ever and operating close to their stability limit. Considering the importance of stability in power 

system security, proposing an approach for enhancing transient stability is essential, considering the consistent 

uncertainties in power systems. This research proposes an artificial neural network (ANN) to resolve power 

system transient stability. Cochran’s formula determined the number of Monte Carlo samples in the system 

operations data collected from the case study injection substation. Time domain simulation (TDS) was carried 

out using DigSILENT Power Factory software, while the ANN training was done using MATLAB toolbox. ANN 

and TDS were used to compute fault clearing time (FCT) and critical clearing time (CCT) for different fault 

locations and conditions. A notable finding from the research is that result analysis highlighted that changing 

the synchronous generator (SG) on a power grid to doubly-fed induction generator converters (DFIG) weakens 

the system’s transient stability. Also, integrating DFIG into the existing network improved the transient stability 

by decreasing the overall average risk of the system. 
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I. INTRODUCTION  

Power systems are typically highly complicated and entirely nonlinear due to the environment’s 

constant change, which controls the balance between supply and demand for electricity (Olulope et al., 2010). 

Power system stability is defined as the capacity to quickly recover from disturbances, which, in most 

circumstances, expose the system to varying degrees of vulnerabilities and lead to unfavourable outcomes that 

are costly to network operators (Santhoshkumar and Senthilkumar, 2020). According to Lackovic (2017), power 

system security, also known as resiliency, is assessed based on the possibility that a crucial system infrastructure 

would continue to provide service to customers despite a disruption. A system that cannot produce enough 

power cannot be stable, even though two systems with comparable stability margins may differ in security due 

to instability (Samuel, 2017). Hence, the necessity for power system stability assessment is crucial to the 

consistent and efficient operation of the power grid. Transient stability assessment must be precisely and 

accurately assessed using real-time procedures to ensure stable and reliable power supply. 

Senyuk et al. (2023) stated that conventional techniques such as numerical integration of a cluster of 

algebraic differential equations (higher-order differential-algebraic equations) and energy-based evaluation 

(equal area criterion) were the go-to solutions to power system transient stability problems. Still, they are 

inefficient and slow to respond to real-time disturbances. Conversely, several modern stability assessment 

methods have been proposed by several authors, including the use of machine learning, as put forward by Wani 

et al. (2019), and the use of active learning, as presented by Zhang et al. (2021). Also, Particle Swarm 

Optimisation (PSO) Technique combined with Deep Belief Network (DBN) was explored as a solution to the 

stability challenge of power systems by (Liu et al., 2021), as well as the method of Hyperplane presented by 

(Ma et al., 2023) and that of Convolution Neural Network (CNN) and support vector regressor proposed by (Jin 

et al. (2023). Among these approaches, Artificial Neural Network (ANN) is the most routine and prevalent due 

to numerous benefits: modular design and parallel processing capabilities, and it does not require intensive 

mathematical modelling for training (Gill, 2021). In particular, ANN can quickly map nonlinear relationships 

between input and output data.  
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In this study, the major objective is to analyse the Critical Clearing Time (CCT) of the circuit breakers 

integrated with generators grouped as a single machine linked to an infinite bus system on a segment of the 

Nigerian power system (Idongesit Nkanga Secretariat injection substation, Uyo). From the conventional point of 

view, ANN for power studies is generally separated into three major stages: data generation, data preprocessing 

(features selection/ extraction) and data evaluation. These steps will be adopted in the evaluation of the TSA 

technique selected for this study. This paper is arranged into sections as follows: Section 1 is the introduction to 

the study, some related articles are reviewed in Section 2, and the design methodology is presented in Section 3. 

Results achieved are summarised in Section 4, briefly followed by a conclusion with references appended after 

that. 

 

II. RESEARCH METHODOLOGY 

2.1 Case study site 

The selected location for the study is a 33/11 kV injection substation close to Akwa Ibom State 

Secretariat, Uyo. The substation houses two transformers (T1 and T2) of 15 MVA capacity, each with a direct 

incoming from a 33 kV line emanating from Afaha-Ube Transmission Station, Uyo. Four outgoings from the 

station consisting of an 11 kV line supply power to the State Secretariat on the first feeder, IBB way and Federal 

Secretariat on the second feeder, Udo-Udoma, Shelta Afrique and Oron Road are fed from feeder number three. 

In contrast, Aka Road is fed from the remaining feeder. The substation also provides an isolation point for the 

33 kV transmission line feeding Ibesikpo and Nsit Atai. An earthing transformer with a 300 kVA 33/0.415 kV 

capacity is installed to improve earth fault protection handling and as an added safety requirement at the 

substation. A single-line diagram of the station configuration in DIgSILENT Power factory software is shown in 

Figure 1. 

 
Figure 1: Configuration of Secretariat Injection Substation 

 

The proposed study methodology is shown in Figure 2, where the number for the Monte Carlo (MC) 

simulation is represented by the symbol  . A static system topology is employed at first, meaning it is presumed 

that all system components—primarily generators and transformers—will be functioning correctly and fault-free 

before the occurrence of a fault. The selection of each load value is the following stage. The load bus is chosen 

using the Gaussian Probability Density Function (PDF). After conducting a load flow analysis to determine the 

system’s state, PDFs are used to select the faulted line, fault type, fault clearing time (FCT), and fault location. 

For the sake of this study, the fault is produced at time         and a   -second time-domain stability 

simulation is run for each sample of MC (system transiently unstable or stable). Based on the highest rotor angle 
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difference,      , these two outcomes are established (the system is stable if           and unstable 

otherwise). In other words, the risk of transient instability is evaluated for the     sample,   , if the system is 

transiently unstable (value is subsequently used for estimation of the average risk index,   ). The steps to 

determine N are outlined in Section 3.2.2, after which the MC simulation is terminated at     samples, and 

the value of    is computed. The FCT is decremented in phase by about        for each MC sample, affecting 

the non-zero value of   , ensuring that    and    remain zero. The minimal transient stable risk of the system is 

defined as the value of    at     . As shown in Figure 2, the marginal transient stable risk is the designation 

for the predicted risk for fault occurrence that is cleared at critical clearing time (CCT). 

 

Ideal Network Configuration 

Assumed

i = 1

Initialize load flow

Add system load (based on 

normal PDF for each bus load)

Select faulted line (random)

Select fault type (random)

Select fault location (random)

Select fault clearing time 

(random)

Initiate time-domain TSA 

simulation

Assess the impact of integrating 

renewable source RA

Perform CBA to justify CB 

replacement for achieving Ri (and 

RA = 0)

Compute and sort RA values

Reduce FCT for each unstable 

sample Ri (and RA) = 0

Determine Ri

Compare proposed (probabilistic) 

method with deterministic 
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NO

NO

YES

YES

Network Transiently Stable?
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Start

Stop

 

Figure 2: Research methodology 

    

A cost-benefit analysis (CBA) minimises this anticipated risk and justifies changing circuit breakers 

(CBs) used for nominal fault clearing with the proposed probabilistic model. The next step involves comparing 

the proposed probabilistic method with a deterministic solution to changing the CB. Lastly, artificial neural 

network (ANN)-based supervised machine learning (SML) algorithms with provision for classification and 

regression are utilised in the forecast of the probable value of the benefit-cost ratio (BCR) of     line 

(represented by        , and classify transient stability status,   , correspondingly. The basic ML outline for 

the proposed training is also presented in Figure 3. 
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Figure 3: Marginal stability concept 

      

2.2 Modelling of Transient Instability Risk 

The severity function in a risk-based approach defines the likelihood and related impact (or effect). 

Risk is typically defined as the likelihood, probability, and related severity product (McCalley et al., 2004). It is 

imperative to understand that CCT is the time limit for fault clearing, after which the system becomes unstable.  

Using the theoretical framework for the risk assessment described in the works by Datta and Vittal (2017), and 

Li-jie et al. (2011), it is assumed that    represents the risk of transient instability for the     MC sample. 

Additionally, assuming a decision-making interval of half a decade and an average risk index for transient 

instability of   , Equations 1 and 2 mathematically explain the relationship; 

     (          (           (1) 

   (      (          (     

   
∑   

 
   

 
 

∑   (      (          (   
 
   

 
       (2) 

where   is the number of MC samples (Each sample shows a faulty line). 

 

Figure 4 gives the flowchart of the ANN technique as applied in the work. 

The expression   (       represents the joint probability of: 

(i) Transient instability event    and  

(ii) Occurrence of    ( 
   fault event). 

In line with conditional probability theory,   (       can be written as   (      (      , as mirrored by 

Equation 1.   (       is the probability of a transient instability event given    has happened, with ranging 

between denoting values 1 and 0 unstable and stable system (for      fault event), correspondingly as expressed 

in Equation 3; 

   (       {
                  
                             

                      (3) 

 

  (    denotes the probability of    ( 
   fault event) mathematically defined in Equation 4; 

   (      (       (       (              (4) 

 

where   (        (     and   (    , represent the fault type, fault location  and the probability of fault event, 

respectively, for the     MC sample (Abapour and Haghifam, 2012; Papadopoulos and Milanovic, 2017). Taking 

to an arbitrary     be variable preceding an even probability mass function (PMF) on the interval {          } 
as defined in Equation 5. 

  (     {
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where    is the total number of power lines in the pilot system. Also, taking     to be an arbitrary variable 

preceding a continuous uniform PDF evaluated within 0 to 100, as expressed in Equation 6. 

   (     {
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where         



Transient Stability Assessment of Nigerian Sub-transmission Network using Artificial Neural .. 

242 

  (     is selected based on PMF values given in Table 3.1, where         and 4 symbolise three-phase fault 

(LLL), double line-to-ground (LLG), line-to-line (LL) and single-line-to-ground (LG) fault, respectively 

(Abapour and Haghifam, 2012).    (    measures the gravity of    for transient instability mathematically given 

in Equation 7. 

Start

Feature 

selection

Model selection

Conduct training 

and testing

Evaluate 

PerformanceMat

rics

Stop

Source for 

Data
Time-domain Simulation

System load

Fault type

Fault location

Fault clearing time
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Figure 4: Basic framework of applied ANN technique 
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                 (7) 

 

where      is the transient stability index for the     MC sample as presented in Equation 8.  
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Table 1: Probability fault types 

    (     
1 0.7 

2 0.17 
3 0.1 

4 0.05 

           Source: Shahzad (2021) 

 

     
         

         
          (8) 

where,       represents the post-fault maximum rotor angle difference between any two synchronous 

machines in the system at the time of a fault on the     line, commonly expressed in degrees (Abapour and 

Haghifam, 2012). When the      is negative, it means that the system is momentarily unstable for the     MC 

sample. Using a normal PDF with a mean equal to the predicted values and an accompanying standard deviation 

is appropriate to recreate the uncertainty in each load prediction (Billinton, 1979). Taking the PDF for load at     

bus as  (    as presented in Equation 9; 

 (    
 

√     
 
 (     )

 

             (9) 

where   and    are the mean and standard deviation (10% of the mean) of the predicted peak load for     bus.  

A normal PDF with a mean and standard deviation of 0.9 s and 0.1 s is assumed to come before the FCT (Miao 

et al., 2013; Faried et al., 2010; Shi et al., 2014). Using Equation 10’s mathematical representation of the     

MC sample’s transient stability status   , the two modes (stable and unstable) are easily related. 

   {
            (         
             (       

                              (10) 

Hence, for a transiently stable system at     MC sample, the value of    will be 0 and 1 otherwise. Equation 10 

contains the data adopted to train the ML model for the classification challenge. 

 

2.3 Cost Benefit Assessment (CBA) Modelling 

The cost-benefit analysis (CBA) is a valuation procedure used to determine the viability of a power project and 

develop an economic case for investment. The premise of the investment decision is on benefit-cost ratio - BCR 

(BCR greater than 1 justifies the investment while BCR less than 1 does not. This study uses CBA to ascertain 

whether the current CBs (TSA technique) are due for replacement with more efficient ones for decreasing 

transient stability enhancement.    (as well as    ) to zero.  

 

2.4 Costs Implication of Transient Instability Risk 

Evaluating the indirect and direct expenses incurred owing to synchronous generators (SGs) tripping due to two 

components—replacement cost and CB replacement cost—allows one to quantify the cost impact of transient 

instability (Abapour et al., 2016).  

a. Cost of Replacement: The generating energy at an original cost of       (N/MW) must be substituted for 

  hours by a superior cost-intensive generation, with a cost of       (N/MW) as the emergency generation, 

especially for the generation lost for n
th

 SG,    . Taking     
  as the replacement cost of     SG, as given 

in Equation 11. 

       = (            )       h                                    (11)  

 

It is assumed that       is N16000/MW and        is N32000/MW. The lost time   is presumed to be 10 units. 

Hence, the replacement cost (for     unstable MC sample), for   transiently unstable SGs, is given in Equation 

12.  

             ∑    
 
                                  

(12) 

b. Cost of Repair and Start-Up: Given that the SG must be repaired and restarted,      taken to be the cost 

for transient instability for     transiently unstable sample. Mathematically, 

     = 60,000                                         (13)  

where;    is the number of synchronous machines that are transiently unstable for the     MC sample. Hence, 

the cost related to an     transiently unstable sample,   , is  

   =            . 

      (    ∑    
 
   )  (                                           (14) 

Thus, the cost accompanying the risk    [     (       (   ] given by   . This expression then becomes the 

financial gains made by lowering    to zero (marginal stability risk). 
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2.5 Number of Samples Used 

The required number of MC samples ( ) used for the time-domain simulation was determined using Cochran’s 

formula (see Equation3.15) with a 2% margin of error and 95% confidence level illustrated as presented by 

Equation 3.15 as follows: 

   
 (      

                        (15) 

where  0 is Cochran’s sample size recommendation, 𝑒 is the margin of error, 𝑧 is the reliability level, and 𝑝 is 

the population proportion.  

For confidence level of 95%, 𝑧 = 1.96, Equation 15 becomes; 

   
      (            

                    

For small population, a modified Cochran formula to determine new sample size is used as shown by Equation 

16 as thus; 

  
  

  
(     

  

                      (16) 

From system operation data collected, a threshold population size ( ’
) of 631 is used to determine the sample 

size as presented in Equation 17, 

  
    

  
(       

   

                                       (17) 

Note that the value of  ’
 used in the calculation is based on the estimated number of fault incidences (major and 

minor faults) recorded in a year. 

III. RESULTS AND DISCUSSION 

3.1 Time Domain Simulation (TDS) Results 

 The test system in Figure 1 is modelled and simulated using the DIgSILENT software to aid in 

interpreting the system operation data from the Secretariat Injection Substation effectively. The external grid 

(Afaha-Ube) was modelled as a generator of 6
th

 order with an automatic voltage regulator. The same 

environment was used to compute the critical fault clearing time (CCT), vital in establishing the model 

performance. The CCT value of the investigated network was first calculated using a time domain simulation 

and a trial-and-error methodology. This was done to produce sufficient data for the ANN model training. The 

sampled data is produced by applying a single contingency (three-phase fault) to line 1 on the test system at 

various fault locations while maintaining constant generated power. Each sampled piece of data is assessed 

based on the behaviour of the generator rotor angle. For the analysis, eight fault locations with percentage 

representations were considered. At 30, 40, 50, 60, 70, 80, 90, and 100% from bus 2, there were superimposed 

defects (11 kV). The reactive power of the generator utilised in the model, which is kept constant, is 80 MVAR, 

and the true power of the generator is 100 MW. Each fault incidence was initialised, and then it was cleaned by 

isolating the faulted line. On line 1, the fault was introduced at 0.1 seconds; at 0.15 seconds, the line was 

removed, erasing the fault. Table 2 displays the recorded value for CCT for the TDS at several fault locations. 

 

Table 2: Critical clearing time (CCT) and fault location 
Fault Fault location from 11 kV bus (%) Fault location from 11 kV bus (km) CCTTDS (Sec) 

F1 30 26.04 0.53 

F2 40 34.72 0.54 

F3 50 43.40 0.59 

F4 60 52.08 0.60 

F5 70 60.76 0.61 

F6 80 69.44 0.63 

F7 90 78.12 0.66 

F8 100 86.80 0.71 

 

Preparatory to TDS, the state variable was initialised using power flow. With an integration time step 

of 0.01 seconds, the simulation was conducted for 20 seconds. The critical time threshold (CCT) was 

determined by moving the FCT to the point at which an increase in time will cause the system to become 

unstable. Data were gathered for each fault location, and 100 samples were taken 0.1 seconds after the fault was 

fixed. The features of the generator speed, rotor angle, active power, reactive power, and terminal voltage have 

been chosen and are considered significant for determining CCT. Eight sites were taken into account, resulting 

in a size of 800 data points for five features (      . The total amount of data has dimensions of        .  

Three fault cases were also tested by introducing third order generator Doubly Fed Induction 

Generator (DFIG) at bus 1 (case 1), bus 2 (case 2), and the two buses (bus 1 and 2 simultaneously) to replace 
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the SG as highlighted in the research model from Figure 3.2. This is to model the system’s reaction to including 

renewable energy (wind energy) furnished with terminal voltage control to the studied electricity grid. The 

increased generation from the simulated results increased the capacity of the studied grid by an average of 

   . The typical PDF, with a mean of 20 MW and a standard deviation of 2 MW, is used to depict the active 

power forecast error distribution of each DFIG. The active power from the expanded capacity is likewise 

represented as 20 MW and 2 MW, respectively. For the three cases,    values obtained from the DIgSILENT 

Power Factory were 0.0052, 0.0061, and 0.0074 for the different cases. 

 

3.2 Artificial Neural Network Training Outcome 

Regression: On the MATLAB toolbox interface, a multi-layer feed-forward neural network (NN), generally 

called multi-layer perceptron (MLP) NN, was utilised. Levenberg-Marquardt algorithm was used for the data 

training because of its characteristic fast convergence and better performance, along with ten (10) hidden layers 

(selected on a trial-and-error approach) between the input and output. The logistic activation function (the tan-

sigmoid activation function) was used to evaluate the hidden layer neurons, and the identity activation function 

was used for the neuron output layer. The weights and biases were iteratively adjusted until minimum square 

error (MSE) was obtained between the target value and network output. The substation operation data collected 

was divided into training (70%), testing (     and validation (15%) subsets. This was done with the aid of 

MATLAB toolbox. The performance of the transient stability assessment using the trained ANN was done by 

calculating the minimum square error (MSE) between the estimated CCT (        and the target CCT 
(       . 

The first step in applying ANN model to TSA is to use collected operations data under different fault 

conditions to train the ANN algorithm. From the computed number of samples in the previous subsection, each 

fault condition is iterated using 500 random MC samples. Each sample randomly chooses fault location, system 

load, fault type, and FCT (based on the defined characteristics). Two regression and classification approaches 

were applied with the aid of ANN to improve the computation efficiency, especially concerning FCT. For 

regression, input and output data were selected from the operation data for the case study site for the ANN 

training model. The output of the regression training is presented in Figure 5, while the algorithm learning 

performance curve is given in Figure 6. Epoch 166 of the trained algorithm has the best validation performance. 

A crucial hyperparameter for the ML algorithm is this number (epoch). The epoch determines how many full 

transitions of the entire training dataset go through the algorithm’s learning phase. At every epoch cycle, the 

internal algorithm parameters of the dataset are updated. The mean squared error (MSE) value at epoch 160 is 

0.0030722. The ANN training took a time of 1 second with 166 epochs on an Intel Core i5 10
th

 generation 

processor with 16 GB RAM configuration. The training ended after 166 epochs since the approach of the early 

stoppage was used to improve the accuracy of the trained network. 

Classification: A similar procedure with the recorded classification error was applied for the classification task. 

The choice of input and output data for the ANN classification model was the first stage. System transient 

stability status (   , a chosen output was obtained from the ANN using network system load, fault kind, fault 

location, and FCT as inputs. 
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Figure 5: Performance of regression using the correlation coefficient (R) plot 

 

 

Figure 6: Learning curve of trained data 

   

A total of 9180 training data samples were used (510 for each line). The randomised data division was 

set at 6426 (70 percent), 1 377 (15%), and 1 377 (15%), correspondingly, for training, validation, and testing. A 

similar algorithm to the one used for the regression (Levenberg–Marquardt back propagation algorithm) was 

also adopted for the ANN classification training. Confusion matrix was applied to assess the performance of 

the trained classifier, as presented in Figure 7. The observations along the diagonal (the green boxes) indicate 

correctly classified samples, while the opposite diagonal indicates incorrect predictions. 



Transient Stability Assessment of Nigerian Sub-transmission Network using Artificial Neural .. 

247 

 

 

Figure 7: Transient stability performance confusion matrix 

          

A receiver operating characteristics (ROC) plot for an ML classification model with accurate 

discrimination passes through the upper left corner (100 %sensitivity, 100 %specificity), meaning that its area 

under the curve (AUC) is equal to 1. The classification accuracy increases as the AUC approaches 1. The 

classification accuracy (CA) for the confusion matrix (whole sample) is quite good (99%), as can be shown in 

Figure 8. This infers that for any input (fault location, faulted line, system load, fault type, and FCT), the ANN 

model correctly predicted the Si status 99 out of 100 times. Similarly, it has been found that the error rate is 

typically 1%. Additionally, Figure 8 shows the error histogram acquired for the ANN classifier. The values of 

the various performance metrics obtained for classification and regression are listed in Table 3, where it is clear 

enough that the values for all of the performance measures fall into the high accuracy range (> 0.98). Therefore, 

it can be concluded that the trained ML algorithm correctly (99%) categorised the transient stability state, Si, 

and predicted    . 

 
Figure 8: Histogram of classification error 
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Table 3: Summarised performance metrics 
 Metric Training Validation Testing All 

Regression R 0.927 0.999 0.958 0.940 

Classification CA 0.997 0.997 0.993 0.996 

 AUC 0.997 0.994 0.995 0.999 

 

3.3 Performance Assessment  

 In this study, TSA was carried out using TDS and ANN. To initialise TDS, the required MC samples 

were determined with the aid of Cochran’s formula with    margin of error and     confidence level. The 

number of MC samples used for iteration was determined to be 2401. An abridged two-bus network consisting 

of 33 kV (bus 1) and 11 kV (bus 2) was modelled in DIgSILENT Power Factory. The incoming from Afaha-

Ube was modelled as a 6
th

 order generator, while the feeders were the simulated load. The impact of renewable 

energy inclusion on the studied grid stability was investigated, and it was observed that the order of the 

generator model determined the overall system stability. 

 On the other hand, results achieved from the ANN algorithm showed a trend of elongated FCT and 

CCT with increased fault location. Hence, prolonged system instability modelled and quantified in terms of 

time. The analysis proved that changing SG to DFIG weakens the transient stability. Furthermore, by lowering 

the system’s average risk, adding DFIG to an existing network increased transient stability. Regression and 

classification SML techniques based on ANNs were utilised to improve the computation efficiency. These 

algorithms’ performance measurement measures showed that they could be used to achieve the desired result of 

cutting down on calculation times.  

 Pandey et al. (2007) focused on bulk power systems with no transient stability assessment as this study 

did. Also, no evaluation was done on his proposed work by including renewable energy sources. Shahzad 

(2021) and Shahzad (2022) utilised the IEEE 14-bus network to model their algorithms with no real network 

operation data to test their findings, as was obtainable in this study. 

 

IV. CONCLUSION  

This study has focused on power system transient stability analysis on a substation close to the Akwa 

Ibom State Secretariat. Findings based on station-specific operation data highlighted the different response 

characteristics of the system based on dynamic fault events and disturbances resulting from the integration of 

renewable energy into the grid. Two automated analyses - TDS and ML (ANN) - were applied to the system to 

appropriately improve the overall system response to disturbances and performance concerning CCT. From 

TDS results, increased distance resulted in increased CCT, with prolonged network instability being the 

consequence. The values of different performance metrics for classification and regression presented in this 

report show an apparent inclination towards a high accuracy range (> 0.98) for all metrics considered. 

Consequently, inference can be drawn that the trained ML algorithm predicted   m and classified transient 

stability status,    with a high accuracy of approximately 99%. 
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