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ABSTRACT 

An islanding event, which occurs when a utility is integrated with an electrical system and is cut off from the 

rest of the distributed system, is a more serious concern for electrical utilities. This is especially true when 

renewable energy sources are present. In this work, we provide a unique approach to islanding detection, based 

on a deep learning model of a convolutional neural network (CNN) improved using the RMSProp (Root Mean 

Square Propagation) algorithm to reduce the loss function of the model. The recommended technique is based 

on time frequency wavelet analysis to generate the dataset for the model, the scalogram image (RGB picture) 

that is collected from the time series data of voltage signal at the point of common coupling in the proposed 

system. Finally based on the data and model will predict the islanding and non-islanding event. 
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I. INTRODUCTION 

A circumstance known as "ISLANDING" occurs when a portion of the distribution network is powered 

by one or more distributed generation (DG) units that are linked to it but is not connected to the grid[1]. Three 

primary groups of islanding detection strategies exist: communication-based approaches [17], [18], passive 

[12]– [17], and active [2]–[11]. A little noise signal is introduced into the system via active means. 

In most circumstances, this signal won't significantly alter the system's properties. This signal will, 

however, be increased during islanding, making islanding detection easier.  

Simple techniques for passive islanding detection rely on quantifiable values at the point of common 

coupling (PCC), such as voltage, frequency, etc., to identify islanding. While communication-based techniques 

are the most-costly for detecting islanding, they are also the most accurate. 

A variety of islanding detection techniques have been put out in recent years, all with the general goal 

of reducing the non-detection zone (NDZ). The islanding detection techniques that have been previously 

suggested in the literature are DG dependent, or put another way, they have been tried and tested on a certain 

kind of DG interface. Inverter-based DG, for instance, has shown to have small or even negligible NDZ for 

islanding detection techniques such as Sandia frequency shift (SFS) [3], [4], positive-feedback-based active 

islanding detection [7], frequency drift anti-islanding [8], high-frequency signal injection [21], and Bayesian 

passive islanding detection [22]. When used with synchronous-based DG, these techniques would either not 

work correctly or could not be incorporated in the same way. Conversely, islanding detection techniques like the 

decision tree (DT)-based technique [23], the fuzzy rule-based approach [24], the pattern recognition approach 

[25], [26], and the synchronous distributed generation islanding protection using intelligent relays [27] have 

been specifically developed for synchronous-based distributed generation. Similarly, similar solutions may not 

work well for synchronous-based and inverter-based distributed generation (DG) due to their differing responses 

to an islanding state. 

 Passive islanding detection techniques that may be regarded as universal as they can be used with both 

kinds of DGs include rate of change of frequency (ROCOF) [16] and over/under frequency and over/under 

voltage protection (OFP/UFP and OVP/UVP) [15, 16]. These techniques have a significant NDZ, particularly 

for DG that uses inverters. Although it is a more expensive option than other approaches, communication-based 

islanding detection is nevertheless regarded as a universal strategy. 

 

II. RELATED WORK 

 Artificial intelligence (AI) methods for islanding detection have been presented recently. The primary 

benefit of AI approaches is their capacity to identify the best feature/parameter combinations and threshold 

settings that may drastically lower the non-detection zone of islanding detection methods. 
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 An intelligent islanding detection method was described in [23] that extracts threshold values for 

eleven system characteristics using decision trees. A fuzzy rule-based technique was created in [24] as a result 

of the method's inability to capture all potential islanding occurrences. This approach produced extremely 

accurate results for islanding identification. 

 In [22], a different passive islanding detection method was put out. This method employed a Bayesian 

classifier to identify islanding based on 64 characteristics determined by ESPRIT. The suggested method created 

features by using voltage and frequency waveforms, which were then input into a naïve Bayesian classifier to 

identify islanding instances. A pattern recognition method was used in [25] and [26] to detect islanding. To 

extract features, discrete wavelet processing was used to discretize transient voltage and current waveforms. 

Based on the energy content in the wavelet coefficients, a decision tree model was created to distinguish 

between islanding and non-islanding occurrences [26]. 

 When appropriate characteristics were collected and an appropriate classifier was employed, AI 

approaches demonstrated highly accurate results in identifying islanding for all of the aforementioned 

methodologies [22], [26]. However, each solution was evaluated and put into practice using a single kind of DG 

(synchronous or inverter). 

  

This paper proposes a smart method to determine islanding detection by using convolutional neural 

network analyzing the voltage signal in terms of time frequency analysis, which is called scalogram and 

generating dataset by varying the load values of real and reactive power. The voltage signal is converted into the 

time series data and by using this time series data is converted into scalograms. These scalograms are fed to 

CNN model and further it was optimized by using RMSProp algorithm, which results the lowest value of loss 

function of the model and it also provides accuracy of the model performance.Again, the model is further 

experimented by hyperparameter tuning with the 3 initial learning rates and obtained the loss and accuracy plots 

along with the confusion matrix for training data and validation data. 

 

III. PROPOSED METHODOLOGY 

 
3.1 System model description 

 
Figure 1 Proposed Test system 

 

From the above figure 1, PV source 2MW is connected to the DC-DC converter to stable the voltage 

and it is further converted into DC to AC voltage and is feed the PCC bus, at this bus grid, load is connected. By 

varying load values, the voltage signal is converted time series data and from their-on, the signal is converted 

into scalogram and by this way generated the dataset, tabled below in table 1. 

 

 

System Model using Simulink

Create Scalogram by 
Wavelet Time 

Frequency Analyser 
App 

CNN Model 
optimized by 

RMSProp by using 
Deep Network 
Designer App

Experiment 
Manager App for 
Hyperparameter 

Tuning
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3.2 Dataset Generation  

Table 1 Total islanding and non-islanding events 

Total Observations [𝑽𝒂𝒃𝒄] 1107 

Islanding Cases [𝑉𝑖𝑎𝑏𝑐 ] 548 

Non-Islanding Cases [𝑉𝑔𝑎𝑏𝑐 ] 559 

3.3 Scalogram 

 

 
Figure 2 Scalogram 

 

From the above figure 2, the voltage is represented in the form of scalogram, which further represents as 

islanding and non-islanding events. 

 

3.4 Load Training Data  

For Training 80% of data 

 
Figure 3 Data loaded to the model 

From the above figure 3, the data is loaded into the model in the ratio of eighty percent with respect to total data. 
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For Validation 20%  

 
Figure 4 Data loaded to the model for validation 

 

 

 

3.5 CNN model 

 

 

 

A. CNN DESIGN 

 

 

• Convolution layer 

𝑔𝑗
𝑙 = 𝑥𝑗

𝑙−1 𝑠, 𝑡 × 𝑤𝑖𝑗
𝑙 =   𝑥𝑗

𝑙−𝑖 𝑠 − 𝜎, 𝑡 − 𝑣 𝑤𝑖𝑗
𝑙 (𝜎, 𝑣)𝑛2

𝜎=−𝑛2
𝑛1
𝜎=−𝑛1 (4)  

 

• Activation or ReLu (Rectified linear unit) layer (it introduces non linearity) 

𝑥𝑗
𝑙 = max(0,  𝑔𝑗

𝑙 +𝑏𝑗
𝑙)𝑖𝜖𝑀𝑗

(5)  

 

• Max pooling (MP) layer (it picks max values from sub matrix, it performs down sampling of the 

features that are extracted in the convolution layer, i.e. feature maps) 

𝑥𝑗
𝑙+1 = 𝑓𝑝(𝑏𝑗

𝑙+1(𝑥𝑗
𝑙) + 𝑏𝑗

𝑙+1)-                                                                                          (6) 

 

• Fully Connected layer (FC)(fully developed model) 

𝑥𝐿−1 = 𝑓𝑐 𝛽
𝐿−1𝑥𝐿−2 + 𝑏𝐿−1      (7) 

 

• SoftMax layer (n-dimensional vector of real numbers and converts them into probabilities for each 

class and finalizes the loss function) 

𝑧𝑑 =
𝑒𝑜𝑑

 𝑒𝑜𝑐𝐶
𝐶=1

→
𝑒𝑥𝑑

𝐿−1

 𝑒𝑥𝐶
𝐿−1𝐶

𝐶=1

     (8) 

 

 

 

 

 

 

 

CNN model 

 

No of layers              16 

 

No of connections   15 

 

Total learnable parameters 3.3 million 
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3.6 RMSProp algorithm 

• Root Mean Square Propagation (RMSProp), it keeps a moving 

average of the element-wise squares of the parameter gradient 

𝑣𝑙 = 𝑣𝑙−1 − (1 − 𝛽2)[𝛻𝐽(𝑤𝑙)]2 − − − eq  
𝛽2= squared gradient decay factor of moving average. 

Common values of the decay rate are 0.9, 0.99, and 0.999. 

• Average lengths of the squared gradient=
1

1−𝛽2
 =10,100,1000 

parameters update respectively. 

• The RMSProp algorithm uses this moving average to 

normalize the updates of each parameter individually, 

𝑤𝑙+1 = 𝑤𝑙 −
𝛼𝛻𝐽 (𝑤𝑙)

 𝑣𝑙+𝜖
-----eq 

where the division is performed element-wise. Using RMSProp 

effectively decreases the learning rates of parameters with large 

gradients and increases the learning rates of parameters with small gradients. ɛ is a small constant added to 

avoid division by zero. 

 

 

 

 

Figure 5 CNN Architecture 

 

Type/Layers Activations Learnable parameters 

Image Input 227*227*3*1  

2-D Convolution 227*227*8*1 
Weights 3*3*3 

Bias 1*1*8 

Batch Normalization 227*227*8*1 
Offset 1*1*8 

Scale 1*1*8 

ReLu 227*227*8*1  

2-D Max Pooling 227*227*8*1  

2-D Convolution 227*227*16*1 
Weights 3*3*8 
Bias 1*1*16 

Batch Normalization 227*227*16*1 
Offset 1*1*16 

Scale 1*1*16 

ReLu 227*227*16*1  

2-D Max Pooling 227*227*16*1  

2-D Convolution 227*227*32*1 
Weights 3*3*16 

Bias 1*1*32 

Batch Normalization 227*227*32*1 
Offset 1*1*32 
Scale 1*1*32 

ReLu 227*227*32*1  

2-D Max Pooling 227*227*32*1  

Fully Connected 1*1*10*1 
Weight 10*1648 

Bias 10*1 

Softmax 1*1*10*1  

Classification Output 1*1*10*1  
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 Step 1 Initialize weights and biases 

in convolutional and fully connected layers 

 Step 2 Initialize β = 0.9 

 Step 3 compute the gradient of the 

loss function with respect to the model’s weights. 

 Step 4 if gradient ∇𝐽(𝑤) received 

𝑣𝑙 = 𝑣𝑙−1 − (1 − 𝛽2)[𝛻𝐽(𝑤𝑙)]2 

𝑤𝑙+1 = 𝑤𝑙 −
𝛼𝛻𝐽 (𝑤𝑙)

 𝑣𝑙+𝜖
//RMSProp Weight 

update 

 Step 5 repeat the step 3 and 4 until 

converges the loss function 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 Training Options 

 

 

 

 

 

 

 

 

 

 

 

 

Frequently used options  

Solver RMSProp 

InitialLearnRate 0.01 

MiniBatchSize 128 

MaxEpochs 30 

ValidationFrequency 50 

yes 

start 

Acquired 3 Phase 

Voltages𝑉𝑎𝑏𝑐  at PCC 

Concatenate 

𝑉𝑎  ,𝑉𝑏 , 𝑉𝑐  𝑡𝑜 𝑓𝑜𝑟𝑚 𝑉𝑎𝑏𝑐  

Compute Scalogram (RGB 

images) of 𝑉𝑖𝑎𝑏𝑐 𝑎𝑛𝑑 𝑉𝑔𝑎𝑏𝑐  

Trained CNN image classifier 

optimized by RMSProp algorithm 

Is Islanding? 

  

 No 

Figure 6 Flowchart 
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IV. RESULTS AND DISCUSSIONS 

 

 

 
Figure 7 Accuracy Vs Iterations Plot 

 
Figure 8 Loss Vs Iterations plot 

 

From the above plot 7, 8, represents the accuracy versus iterations, the model performance is measured in terms 

of accuracy and loss function, from plot 7, the accuracy of the model, initiated from the 50 percent in the first 

epoch and reached almost 99 percent in its first epoch. The loss function value is almost zero first its first epoch. 

 

 
Trial 1 initial learning rate = 0.0001 

 

 
Figure 9 Accuracy and Loss function Vs Iterations 
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From the above plots, under trial 1 initial learning rate is 0.0001, the accuracy curve is started from 50 percent 

and reached almost 99 percent in its first epoch, while the loss function is almost becoming zero in its first 

epoch with respect to iterations. 

 
Matrix 1 Confusion Matrix for Training Data 

 

 
Matrix 2 Confusion Matrix for Validation Data 

 

From the above results in terms of matrix, under training data matrix, 438 events were islanded as true class and 

447 events were non islanded as true class with respect to predicted class. No events were misclassified. Under 

confusion matrix for validating data, 110 events were classified as islanded events under true class and 112 

events were classified as non-islanded, no events were misclassified under predicted class.  
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Trial 2 initial Learning Rate = 0.001 

 
Figure 10 Accuracy and Loss Function Vs Iterations 

 

 

 

From the above result, the learning rate is 0.001 and optimized the model accuracy improved and loss value is 

decreased. 
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Matrix 3 Confusion Matrix for Training Data 

 

 
Matrix 4 Confusion Matrix for Validation Data 

 

From the above matrix, under trial 2, the initial learning rate is 0.001 true class versus predicted matrix is same 

as for learning rate 0.0001. 

 

Trial 3 Initial Learning rate = 0.01 

 
Figure 11 Accuracy and Loss Function Plot 
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Matrix 5 Confusion Matrix for Training Data 

 
Matrix 6 Confusion Matrix for Validation Data 

 

From the above matrix, under trial 3, the initial learning rate is 0.01 true class versus predicted matrix is same as 

for learning rate 0.00001. 

 

V. CONCLUSIONS 

A new islanding detection method is obtained for the DG system is having CNN model is optimized by 

using Root mean square propagation algorithm for the reduction of the loss value of the function and model 

performance is improved in terms of accuracy with respect to the iterations under 3 different learning values, the 

validation accuracy is obtained over 99 percent. It is extremely fast in detecting islanding, which is a very 

important factor in 
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