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ABSTRACTAn islanding event is a more serious concern for electrical utilities, which occurs when the utility is 

separated from the rest of the distributed system, mainly in the presence of renewable sources, and is integrated 

with an electrical system.In this study, we propose a new islanding detection technique based on a deep learning 

model using a convolutional neural network (CNN).The proposed method is based on time frequency wavelet 

analysis, which is used to represent the scalogram image (RGB image) obtained from the time series data at the 

point of common coupling in the proposed system.The time-series data were converted to scalograms, and the 

CNN was designed to detect islanding and non-islanding events. The efficiency of the proposed model was 

optimizedby creating Deep Learningexperiments with three trials of three different hyperparameter tuning and 

results with higher accuracy and a minimal loss function were obtained. 

INDEX TERMSRed Green Blue (RGB) image, scalogram, convolutional neural network (CNN), distributed 

generation (DG), Islanding Detection, Time-frequency Wavelet Analysis. 
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I. INTRODUCTION 

The requirement for stable and improved power quality (PQ), capital investment, liberalization of the 

energy market, and environmental concerns have contributed to the increased focus on the prompt integration of 

distributed generation (DG). In a classical electrical power system (EPS), electricity generation is centralized 

and distributed to customers through transmission and distribution networks. In addition to the benefits and 

advantages of DG integration, there are new difficulties and flaws in the power system, such as accidental 

islanding caused bytripping the main utility circuit breaker (CB). Personnel safety, overvoltage, out-of-phase 

reconnection, PQ, and equipment protection are the key concerns associated with inadvertent islanding [1], [2]. 

A range of international and local standards provides the criteria and requirements for islanding detection [3]. 

International guidelines state that islanding should be detected in the range of 0.16 to 2 seconds[4][5]. 

Therefore, to address this major issue with DG power systems, have focused a lot of attention on the unintended 

islanding detection problem over the past ten years. The security of a DG power system depends on accurate, 

dependable, and quick islanding detection technology (IDT). 

Currently, more research is being conducted, and various IDT are categorized into three main groups: 

local, remote, and intelligent approaches.There are three types of local strategies 

forislandingdetection:hybrid,passiveandactive. 

A large non-detection zone (NDZ) and low speed are associated with passive islanding schemes such 

as under/over voltage and frequency, voltage phase jump, harmonic measurement, etc., while active methods 

such as slip-mode frequency shift (SMFS), slip-mode voltage shift (SVS), and Sandia frequency shift (SFS) 

have problems with noise and power quality [6] [7][8]. Conversely, passive islanding techniques with low speed 

and a wide non-detection zone (NDZ) include voltage phase jump, harmonic measurement, and under/over 

voltageandfrequency[9][10]and [11].Hybrid schemes combine active and passive techniques, and their 

implementation is complex [12], [13].Owing to their complexity and high cost, remote approaches are not 

practical for small-scale or microgrid systems.They require a contact link and are consistent with large systems. 

Compared with local and remote schemes, intelligent islanding detection techniques are considered to 

be the most reliable and rapid. Fast detection, low NDZ, high precision, and minimal impact on the PQ of the 

DG power system are the primary causes of this dominance. A hybrid IDT for multiple inverter-based DG that 

combines Decision Trees and Sandia Frequency Shift. A novel approach based on active and reactive power was 

presented and to develop DT logic for the classification of islanding and non-islanding events, which quickly 

corresponds to the NDZ. The IDT was introduced for an inverter-based DG. Rotational invariance was used for 
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feature extraction at the point of common coupling (PCC) to approximate the signal parameter and naive-Bayes 

classifier was used for event classification. 

 

An ANN-based global islanding detection solution for several DGs was proposed. An innovative IDT 

for single-phase inverter-based DG was introduced using an SVM. Based on the SVM classifier, the IDT for a 

hybrid DG with IEEE 30-bus was proposed. The authors of presented a novel hybrid strategy for NDZ 

elimination using FL and SFS. The author proposed an islanding detection technique that limits interfering 

injection using fuzzy positive feedback (PF). An IDT based on ANFIS for inverter-based DG was presented. In 

a novel ANFIS system methodology for low-voltage inverter-interfaced microgrid islanding detection was 

proposed.  

In this study, a novel IDM based on image categorization using a convolutional neural network (CNN)-

based classifier is proposed. With the help of the proposed method, time-series data are transformed into images 

that convey system information in the form of distinct patterns for both grid-connected and islanded systems. 

The treatment of the islanding classification problem as an image classification problem is novel in this method. 

Additionally, by applying picture classification algorithms, we can take advantage of advances in computer 

vision and image processing technology. These developments were made using both hardware and software. 

There have been no prior reports on this strategy in the literature. This is an initial attempt to categorize 

islanding incidents using a CNN and image classification technique. 

The rest of this paper is organised in the following manner. Section 2 describes the process of 

converting time-series data into images. Section 3 gives an account of the system description and the data set 

that is generated for training and validating the proposed method. Section 4 explains the details about CNNs and 

their general architecture and also presents design aspects of the CNN that is designed to classify islanding and 

non-islanding events. 

 

II. THEORITICAL DETAILS 

A. SCALOGRAM 

The process of converting time-series data to images is presented. The Continuous Wavelet transform of a signal 

x(t) is defined asany sinusoid as a Scaled(“mother”) reference sine wave 𝜓𝜊 =  𝑒𝑗2𝜋𝐹  

 

𝑋 𝜏, 𝑠 =  𝑥(𝑡)
1

 𝑠
𝜓∗  

𝑡−𝜏

𝑠
 

∞

−∞
(1) 

𝜓 − analytic function 

τ- translation parameter 

s- scaling parameter 

In wavelet analysis, the time–frequency energy density representation obtained by the wavelet transform is 

called a scalogram. It is defined as the square of the amplitude of the 

wavelet transform [35]. In simple terms, a scalogram can be defined as a visual representation of wavelet 

transform, in which x and y axes represent time and frequency, whereas z-axis represents magnitude displayed in 

terms of the colour gradient in figure 1 

 

 
FIGURE 1 Typical Scalogram 
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FIGURE 2 Schematic Diagram of Test System 

 

B. GENERATION OF DATASET 

Any supervised learning-based method requires a large amount of suitably labelled data to be tested 

and trained. Standard data sets like ImageNet [14]and MNIST [15] are accessible for picture classification tasks. 

However, there isn't a common data set like that for islanding detection. Therefore, in order to build a data set, a 

standard system is needed. Consideration is given to a 2MW grid-connected photovoltaic system to produce the 

picture data set needed for the suggested method. This system's MATLAB/Simulink model is derived. The 

model has been modified to align with the specifications of the suggested project. In the MATLAB/Simulink 

simulations, Va, Vb, and Vc from the point of common coupling (PCC) are acquired for a total of 6 cycles at 

120 samples/second. An islanding event is generated at a time instant of 0.2 s with respect to fault. The 

simulations are performed using a single CPU running Windows 11 with an Intel Core i5 processor and 16 GB 

of RAM. 

The following procedure is used to create the picture data set for islanding and non-islanding scenarios. 

A number of islanding and non-islanding events are generated, and for each event, from figure 1, 2 time-series 

data pertaining to the three-phase voltages Va, Vb, and Vc from the PCC is obtained. Concatenation is the 

process of joining two arrays to create a single array. In the case of three-phase voltages, this results in V[abc], 

which represents the state of each of the three phases together. The concatenated voltage V[abc] is now 

subjected to CWT in order to produce a scalogram image that contains data from all three phases. After that, 

these pictures are suitably labelled as either an islanding or non-islanding scenario.The scalogram images of 

concatenated voltages V[abc] for grid-connected and islanded modes of operation are shown in (see 

Fig. 3). It is evident from these images that there is a clear distinction between islanded and non-islanded modes 

of operations, indicating the potential of image classification techniques for islanding detection. 

When the power disparity between the DG source generation and the demand is close to nil or minimal, 

it might be exceedingly challenging to detect an islanding event in the case of most passive IDMs. Several 

instances with almost no power mismatch are taken into consideration in the data set in order to account for this 

factor and from figure3, dataset has generated by varying P and Q values of load. 

 

 

 

TABLE 1 Dataset Details 

Total Observations [𝑽𝒂𝒃𝒄] 1107 

Islanding Cases [𝑉𝑖𝑎𝑏𝑐 ] 548 

Non-Islanding Cases [𝑉𝑔𝑎𝑏𝑐 ] 559 
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FIGURE 3 Voltage Signal to Scalogram 

 

C. Problem formulation 

min  𝐽 𝑤 =   min𝑤 𝐽(𝑤) =  − log𝑍𝑑𝑑 (2) 

𝑒𝑜𝑑

 𝑒𝑜𝑐𝐶
𝐶=1

→
𝑒𝑥𝑑

𝐿−1

 𝑒𝑥𝐶
𝐿−1𝐶

𝐶=1

 (3) 𝑧𝑑 =

Minimizing the loss function is the objective function with 

respect to parameters weights and bias. 

 

III. PROPOSED ISLANDING DETECTION 

TECHNIQUE 

A. CNN DESIGN 
• Convolution layer 

𝑥𝑗
𝑙−1 𝑠, 𝑡 × 𝑤𝑖𝑗

𝑙 =   𝑥𝑗
𝑙−𝑖 𝑠 − 𝜍, 𝑡 − 𝑣 𝑤𝑖𝑗

𝑙 (𝜍, 𝑣)𝑛2
𝜍=−𝑛2

𝑛1
𝜍=−𝑛1                          𝑔𝑗

𝑙 =

(4) 
• Activation or ReLu (Rectified linear unit) layer (it 

introduces non linearity) 

𝑥𝑗
𝑙 = max(0, 𝑔𝑗

𝑙+𝑏𝑗
𝑙)𝑖𝜖𝑀𝑗

                                (5) 

• Max pooling (MP) layer (it picks max values from sub 

matrix, it performs down sampling of the features that are 

extracted in the convolution layer, i.e. feature maps) 

𝑥𝑗
𝑙+1 = 𝑓𝑝(𝑏𝑗

𝑙+1(𝑥𝑗
𝑙) + 𝑏𝑗

𝑙+1)-   (6) 

• Fully Connected layer (FC)(fully developed model) 

𝑥𝐿−1 = 𝑓𝑐 𝛽
𝐿−1𝑥𝐿−2 + 𝑏𝐿−1     (7) 

• SoftMax layer (n-dimensional vector of real numbers 

and converts them into probabilities for each class and finalizes the  

• loss function) 

𝑒𝑜𝑑

 𝑒𝑜𝑐𝐶
𝐶=1

→
𝑒𝑥𝑑

𝐿−1

 𝑒𝑥𝐶
𝐿−1𝐶

𝐶=1

                                   (8) 𝑧𝑑 =

 

 

No of layers              16 

No of connections   15 

Total learnable parameters 3.3 million  

 

 

FIGURE4 CNN Architecture 
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IV. STOCHASTIC GRADIENT DESCENT WITH MOMENTUM ALGORITHM 

Stochastic Gradient Descent with Momentum (SGDM) Algorithm 

• Step 1: Initialize the model’s weights randomly and bias 

     Weight w randomly 

• Step 2: Shuffle the training dataset. 

• Step 3:  compute the gradient of the loss function with respect to the model’s weights. 

• Step 4: Update the weights using the computed gradient  

and the learning rate. 

𝑤𝑛𝑒𝑤  = 𝑤𝑜𝑙𝑑 − 𝛼𝛻𝐽 𝑤𝑜𝑙𝑑  (9) 

• Repeat steps 3–4 until the stopping criterion is met. (Converges- minimum point with respect to 

minimum weight of  

the loss function) 

𝑣𝑡+1 = 𝜌𝑣𝑡 + 𝛼𝛻𝐽(𝑊)                  (10) 

𝑤𝑡+1 = 𝑤𝑡 − 𝑣𝑡+1         (11) 

 

𝑤𝑛𝑒𝑤  = 𝑤𝑜𝑙𝑑 − 𝛼𝛻𝐽 𝑤𝑜𝑙𝑑                    (12) 

 

 

ρ momentum 

𝛻𝐽(𝑊) gradient of the loss function 

 

 

 

 
FIGURE 5Flow Chart of Islanding Detection Method 

 

 

V. RESULTS AND DISCUSSION 
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FIGURE 6Accuracy vs Iterations 

The above plot between Accuracy and Iterations, which is cluster of epochs, provides accuracy of the model 

with respect to iterations, started from 50% in its first epoch and reaches almost 90% in its first epoch and ends 

with 98.65% in its fourth epoch and maintained it accuracy till 130 iterations. 

 

 

 

TABLE 2 Training and Validation Result 

Validation Accuracy 98.65% 

Epoch 10 

Iterations 130 

Iterations per Epoch 13 

Maximum Iterations  130 

 

FIGURE 7Loss Vs Iterations 
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From the above plot figure 5, it is observed that the value of loss is certainly decreased to almost less than one in 

its first epoch and maintained the same until 130iterations. 

Further, the obtained result is experimented for hyperparameter tuning by using experiment manager, by 

initializing learning rate to 0.000001under a trial, optimized further and reaches to the values provided int the 

table3. 

TABLE 3Hyperparameter Tuning Results 

Training Accuracy 98.43 

Training loss 0.05 

Validation Accuracy 99.09 

Validation loss 0.04 

 

 
FIGURE 8Accuracy and loss Vs Iterations 
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MATRIX 1: Confusion Matrix for Training Data 

From the above confusion matrix for training data, only 8 islanding observations were misclassified with 1.8% 

and 430 islanding events were classified with 99.2% accuracy against true class and 99.8% islanding events 

were classified against predicted class. 

 

 
Matrix 2 Confusion Matrix for Validation Data 

 

From the above matrix, it is evident that, 108 islanded events were classified against true class with 98.2% and 

100% against predicted class and only 2 were misclassified with 1.8% against predicted class. 

 
VI. CONCLUSION 

In this paper, by using novel hybrid method, presented a classification of islanding and non-islanding 

occurrences for the proposed system, which consists PV module is integrated with utility with help of PCC. 

Scalogram is created with time series data recorded at PCC. A total 1107 observations have created under 

islanding and non-islanding in the presence of L-G fault with 0.2s and 100 samples per cycles of sampling 

frequency. The proposed IDT’s performance of the model is obtained 98.65% validation accuracy and it is 

further experimented for hyper parameter tuning with different learning rates using experiment manager app, 
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training accuracy of 98.43% and 99.09% validation accuracy obtained shown in table and confusion matrix for 

training data and validation data. This shows that the proposed method is more accurate, which is very important 

for the emerging power system integrated with renewable sources. 
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