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ABSTRACT: For a good design framework and performance evaluation of MIMO wireless channel models, it is 

imperative to have accurate and realistic channel models. Furthermore, this arduous task is achieved using MIMO channel 

simulators. Thus, the MIMO simulator reproduces the statistical properties of the non-realizable reference model with 

sufficient accuracy while keeping complexity very low. However, designing accurate and efficient deterministic MIMO 

channel simulators is often challenging. In this paper, the theoretical performance of the MIMO channel simulator is studied 

under an isotropic environment with existing and newly modified parameterisation methods. The existing methods are the 

Extended Method of Exact Doppler Spread (EMEDS) and the Modified Method of Equal Area (MMEA). The Modified 

Extended Method of Exact Doppler Spread (MEMEDS) and New Modified Method of Equal Area (NMMEA) are the new 

improved parameterization methods.  Theoretical performance evaluation of the existing conventional parameterisation 

methods with the newly enhanced methods is investigated.       
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I. INTRODUCTION 

  The wireless communication system can be divided into three basic segments: transmitter (Tx), 

receiver (Rx), and the wireless channel, which stands between the Tx and the Rx antennas facilitate the 

propagation of wireless signals. In contrast to the Tx and Rx, which can be designed to provide the wireless 

communication system with a better tradeoff between reliability and efficiency, the wireless channel cannot be 

remodeled or changed. While all channel models are wrong, some are useful. Hence, a good understanding of 

the wireless channel model is the basis for a reliable multiple input multiple output (MIMO) communication 

system design and analysis [1]. Therefore, MIMO channel simulators play an essential role in channel modeling; 

they replicate the statistical characteristics of the channel, considering the temporal, spatial, frequency 

correlation power spectral density (PSD), level crossing rate (LCR) etc. However, to fully exploit the 

advantages inherent in deterministic MIMO channel simulators, one must carefully decide, define, and classify 

the parameters necessary for model specification. 

 The literature on channel modeling in MIMO systems has shown a variety of modeling approaches: 

Geometric-based stochastic model (GBSM), Non-Geometric stochastic model (NGSM), Correlation-based model 

(CBM), Propagation motivated model and Ray-tracing. However, of recent, many studies have explored using 

regular-shaped geometry-based stochastic modeling (RS-GBSMs) techniques in MIMO communication networks 

[2], [3], [4]. These studies collectively highlight the importance, versatility and potential of RS-GBSM in diverse 

MIMO communication environments: fixed-to-mobile (F2M), vehicle-to-vehicle (V2V) and machine-to-machine 

(M2M). The RS-GBSM techniques used are the one-ring, two-ring and ellipse models presented in two-

dimensional (2D) and three-dimensional (3D) domains, and they have been an effective and suitable method. The 

channel simulator's performance for these techniques mainly depends on the parameterization method adopted. It 

thus extensively affects the accuracy and efficiency of the channel simulators to perfectly mimic the MIMO 

channel model. 

  

 One-ring and two-ring models have gained popularity in the past and are primarily known for modeling 

narrowband channels in MIMO limiting its applications. Of recent, the ellipse model has become popular and has 

shown promising outcomes for a realistic and effective method of modeling both narrowband and wideband 

channel models symmetric (isotropic) and asymmetric (non-isotropic) scenarios. The elliptical models have 

attractive features for investigating the performance of MIMO wireless systems for high data rates with its 
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frequency selectivity feature, which has been an interest of most researchers. It also leverages on its elliptical 

geometry to model scattering environments extending to adjustable dimensions to capture the streets and 

highways with their length and width accordingly. A 2D ellipse RS-GBSM was first proposed in [5] to model a 

line of sight (LOS) multipath radio channel with adaptive low antenna heights, and the model was further 

improved in [6] for a single input multiple output (SIMO) network. The elliptical model was fully explored in [7] 

to model a wideband MIMO channel, considering the azimuth angle of departure (AoD) and azimuth angle of 

arrival (AoA). The model's performance was limited to the existing parameterization methods, which are less 

optimal for determining channel’s statistical properties.  

 In this paper, we study the existing performance-limited parameterization computation methods, i.e. 

EMEDS and MMEA, as well as the new class of recently proposed methods, NEMEDS and NMMEA. The 

performance of the MIMO simulator with respect to the existing parameterization method is compared with that 

of the newly modified methods. The channel simulator investigates the following statistical properties: AoD, 

AoA, the temporal autocorrelation function (ACF) and the 2D cross-correlation function (CCF). The remainder of 

the paper is outlined as follows: Section II describes the theoretical reference and simulation models, with the 

closed-form solutions outlined. A focus on the parameter computation methods is discussed in III. The MIMO 

simulator's performance analysis under different computation methods is investigated in IV, followed by section 

V, which summarises and draws conclusions. 

 

II. ELLIPTICAL MODEL FOR MIMO CHANNELS 

Based on the approach and concept presented in [7], the geometric-elliptical shape, as depicted in Fig. 1, 

is used to model the MIMO channel in a macrocell scenario. The elliptic model has leverage, for it can model 

both the narrowband and the wide-band models under symmetric and asymmetric conditions. It acknowledges the 

relationship and dependency between the AoD and AoA, simplifying general analytical solutions and reducing 

computational complexity. The diagram illustrates the position of the transceivers at the ellipse focal points and 

all the direction of scatterers associated with the path lengths impinging on the antennas of the transceiver. 

Without loss of generality, we constrained our investigation accordingly: only scatterers within the ellipse are 

considered; the LOS component is neglected; infinite number of scatterers when deriving a theoretical reference 

model. The other parameters shown in Fig. 1 are defined in Table 1. 

 

 
Fig. 1: Elliptical Geometric model [7] 

 

Table 1.  Definition of parameters of the elliptical channel model in Fig.1 

𝑎, 𝑏 Semi-major axis and semi-minor axis of the ellipse 

2𝑓 Distance between the centres of the Tx and Rx spheres 

𝛿𝑇 , 𝛿𝑅 Antenna element spacing of the Tx and Rx, respectively 

𝛽𝑇 , 𝛽𝑅 Tx and Rx antenna element tilt angles 

𝛼𝑣 The angle of motion of Rx 

𝑣 Velocity of the mobile Rx 
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𝛼𝑛
𝑇 

(𝑛 = 1,2, … , 𝑁) 

AoD from Tx impinging on theeffective scatterer (𝑆𝑛) 

𝛼𝑛
𝑅 

(𝑛 = 1,2, … , 𝑁) 

AoA from the effective scatterer (𝑆𝑛) reaching the Rx 

𝐷𝑙𝑛
𝑇 ,𝐷𝑛𝑙

𝑅  Path length: 𝐴𝑇
𝑙 − 𝑆𝑛 and 𝑆𝑛 − 𝐴𝑅

𝑘  

𝐷𝑇
𝑛,𝐷𝑅

𝑛 Path length:𝐵𝑆 − 𝑆𝑛 and 𝑆𝑛 − 𝑀𝑆 

𝑀𝑇 , 𝑀𝑅 Number of antenna elements at BS and MS 

 

A. THE THEORETICAL REFERENCE MODEL FOR THE ELLIPTICAL MIMO CHANNEL 

SIMULATOR 

 The realization of the reference model is based on the relationship between the Tx at the base station 

(BS), the Rx at the mobile station (MS) and the pathways travelled by certain scatterers between them, as shown 

in Fig. 1. For simplicity, the MIMO channel can be expressed by the matrix 𝐻(𝑡) = [ℎ𝑘𝑙(𝑡)]𝑀𝑅×𝑀𝑇
 for the link 

𝐷1𝑛
𝑇 − 𝑆𝑛 − 𝐷𝑛1

𝑅 , and 𝑀𝑅 = 𝑀𝑇 = 2 . As shown in [7], [8], the MIMO channel gains ([ℎ𝑘𝑙(𝑡)]𝑀𝑅×𝑀𝑇
) of the 

elliptical model is expressed by the following: 

 

 ℎ𝑘𝑙(𝑡) = 𝑙𝑖𝑚
𝑁→∞

1

√𝑁
∑ 𝑎𝑙𝑛𝑏𝑛𝑘𝑒𝑗(2𝜋𝑓𝑛𝑡+𝜃𝑛+𝜃0)

𝑁

𝑛=1

,                                                                    (1) 

where 

𝑎𝑙𝑛 = 𝑒𝜋(𝑀𝑇−2𝑙+1)(𝛿𝑇 𝜆0⁄ ) 𝑐𝑜𝑠(𝛼𝑛
𝑇−𝛽𝑇),(1) 

𝑏𝑛𝑘 = 𝑒𝑗𝜋(𝑀𝑅−2𝑘+1)(𝛿𝑇 𝜆0⁄ ) 𝑐𝑜𝑠(𝛼𝑛
𝑅−𝛽𝑅),                                                            (3)                                                               

 

𝑓𝑛 = 𝑓𝑚𝑎𝑥 𝑐𝑜𝑠(𝛼𝑛
𝑅 − 𝛼𝑣),                   (2) 

𝜃0 = −
4𝜋𝑎

𝜆0
.                                 (3) 

 Where the symbols 𝜆0 and 𝑓𝑚𝑎𝑥 denote the wavelength and the maximum Doppler frequency at Rx. The 

phase shift 𝜃0 is i.i.d random variable with a uniform distribution ranging from [0, 2𝜋).  

 

 

 Since the AoD is dependent on the AoA in the elliptical geometric model within the range of  [0, 2𝜋), 

the following equations exist for AoD 𝛼𝑛
𝑇: 

𝛼𝑛
𝑇 = {

𝑓(𝛼𝑛
𝑅), 𝑖𝑓   0 < 𝛼𝑛

𝑅 ≤ 𝛼0

𝑓(𝛼𝑛
𝑅) + 𝜋, 𝑖𝑓  𝛼0 < 𝛼𝑛

𝑅 ≤ 2𝜋 − 𝛼0

𝑓(𝛼𝑛
𝑅) + 2𝜋    𝑖𝑓  2𝜋 − 𝛼0 < 𝛼𝑛

𝑅 ≤ 2𝜋,

 (4) 

where 

                                         𝑓(𝛼𝑛
𝑅) = 𝑎𝑟𝑐𝑡𝑎𝑛 [

(𝐾0
2−1) 𝑠𝑖𝑛(𝛼𝑛

𝑅)

2𝐾0+(𝐾0
2+1) 𝑐𝑜𝑠(𝛼𝑛

𝑅)
],(5) 

and 

𝛼0 = 𝜋 − 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝐾0

2−1

2𝐾0
),(6) 

Also, the parameter 𝐾0 represents the reciprocal of the ellipse eccentricity 𝑒 value and is denoted by 𝐾0 =
1 𝑒 = 𝑎 𝑓⁄⁄ . 
We also consider the PDF distribution of AoA and AoD of the scattering linked to the correlation functions (CFs) 

according to Von Mises distribution[9] .  

𝑓(𝛼𝑛
𝑅) =

𝑒𝑥𝑝 [𝐾0𝑐𝑜𝑠 (𝛼𝑅−𝑚𝑅)]

2𝜋𝐼0(𝐾)
,     (7) 

and 

𝑓(𝛼𝑛
𝑇) =

𝑒𝑥𝑝 [𝐾0𝑐𝑜𝑠 (𝛼𝑇−𝑚𝑇)]

2𝜋𝐼0(𝐾)
,   (8) 

The parameters are defined accordingly as: 𝐼0(. ) known as zeroth-order modified Bessel function of the first 

kind. 𝑚𝑅 and 𝑚𝑇 are the mean angle at the AoA and AoD respectively.𝐾 is designated as kappa and it defines the 

uniform scattering type; for when 𝐾 > 0 it is referred to as non-isotropic scattering and when 𝐾 = 0 it is known 

as isotropic scattering approximating the Von Mises PDF to 
1

2𝜋𝐼0(𝐾)
. 
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Then, the various CFs of the reference model at Tx and Rx are obtained according to [7] For instance, the 3D 

space-time CCF is written as  

𝜌𝑘𝑙,𝑘′𝑙′(𝛿𝑇 , 𝛿𝑅 , 𝜏) = ∫ 𝑎
𝑙𝑙′
2

𝜋

−𝜋

(𝛿𝑇, 𝛼𝑇)𝑏
𝑘𝑘

′
2

(𝛿𝑅, 𝛼𝑅)𝑒−2𝜋𝑓(𝛼𝑅)𝜏𝜌𝛼𝑅(𝛼𝑅)𝑑𝛼𝑅,                                    (11) 

where 

𝑎𝑙𝑙′(𝛿𝑇 , 𝛼𝑇) = 𝑒𝑗𝜋(𝑙−𝑙′)(𝛿𝑇 𝜆0⁄ ) 𝑐𝑜𝑠(𝛼𝑇−𝛽𝑇) ,                 (9) 

𝑏𝑘𝑘′(𝛿𝑅, 𝛼𝑅) = 𝑒𝑗𝜋(𝑘−𝑘′)(𝛿𝑅 𝜆0⁄ ) 𝑐𝑜𝑠(𝛼𝑅−𝛽𝑅),             (10) 

𝑓(𝛼𝑅) = 𝑓𝑚𝑎𝑥 𝑐𝑜𝑠(𝛼𝑅 − 𝛼𝑣). (11) 

This result clearly buttresses the fact that 3-D space-time CCF is not dependent on the major component 𝑎, 𝑏 and 

𝑐 that describes the ellipse. 

 The 2D-CCF is defined from the 3D space-time CCF by making 𝜏 = 0, i.e 𝜌𝑘𝑙,𝑘′𝑙′(𝛿𝑇 , 𝛿𝑅, 𝜏) =

𝜌𝑘𝑙,𝑘′𝑙′(𝛿𝑇 , 𝛿𝑅, 0). Hence,  

𝜌𝑘𝑙,𝑘′𝑙′(𝛿𝑇 , 𝛿𝑅) = ∫ 𝑎𝑙𝑙′
2

𝜋

−𝜋

(𝛿𝑇 , 𝛼𝑇)𝑏𝑘𝑘′
2 (𝛿𝑅, 𝛼𝑅)𝜌𝛼𝑅(𝛼𝑅)𝑑𝛼𝑅 .                                     (15) 

It can also be obtained from the 2D space-time CCF by either substituting 𝛿𝑇 = 0 or 𝛿𝑅 = 0 and it is given as: 

𝜌𝑘𝑙,𝑘′𝑙′(𝛿𝑇 , 𝜏) = ∫ 𝑎𝑙𝑙′
2

𝜋

−𝜋

(𝛿𝑇 , 𝛼𝑇)𝑒−2𝜋𝑓(𝛼𝑅)𝜏𝜌𝛼𝑅(𝛼𝑅)𝑑𝛼𝑅                                                             (16) 

𝜌𝑘𝑙,𝑘′𝑙′(𝛿𝑅, 𝜏) = ∫ 𝑏𝑘𝑘′
2

𝜋

−𝜋

(𝛿𝑅, 𝛼𝑅)𝑒−2𝜋𝑓(𝛼𝑅)𝜏𝜌𝛼𝑅(𝛼𝑅)𝑑𝛼𝑅 ,                                                        (17) 

 

The time autocorrelation (ACF) function can also be obtained from the 3D space-time CCF in (11) by substituting 

𝛿𝑇 = 𝛿𝑅 = 0. And ACF can be obtained as: 

𝑟𝑘𝑙(𝜏) = ∫ 𝑒−2𝜋𝑓𝑚𝑎𝑥 𝑐𝑜𝑠(𝛼𝑅−𝛼𝑣)𝜏

𝜋

−𝜋

𝜌𝛼𝑅(𝛼𝑅)𝑑𝛼𝑅 .                                                               (18) 

 

The ACF integral can be solved analytically especially for the case of isotropic scattering (𝐾 = 0), where  

𝜌𝛼𝑅(𝛼𝑅) =
1

2𝜋
. An analytical solution of 𝑟𝑘𝑙(𝜏) = 𝐽0(2𝜋𝑓𝑚𝑎𝑥𝜏) is obtained. 

 

B. THE DETERMINISTIC SIMULATION MODEL FOR THE ELLIPTICAL MIMO CHANNEL 

SIMULATOR 

The deterministic simulation model is derived from the reference model by making fundamental 

assumptions: fixing all model parameters, including phases, and ensuring that the scatterers number around the 

Tx and Rx is finite. Thus, the MIMO channel matrix is expressed as H̃(t) = [h̃kl(t)] making it relatively 

deterministic dependent. The expression for the elliptical MIMO channel gain h̃kl(t) with propagation from the 

Tx antenna element (AT
l − Sn) to the Rx antenna element (Sn − AR

k ) is expressed according to [8]. 

ℎ̃𝑝𝑞(𝑡) =
1

√𝑁
∑ 𝑎𝑙𝑛𝑏𝑛𝑘𝑒𝑗(2𝜋𝑓𝑛𝑡+𝜃𝑛)

𝑁

𝑛=1

                                                                                 (19) 

The parameters𝑎𝑙𝑛 , 𝑏𝑛𝑘 , and  𝑓𝑛 defined in (2)-(4) accordingly. From the knowledge of (1), the 3D CCF can be 

computed as follows: 

�̃�𝑘𝑙(𝛿𝑇 , 𝛿𝑅 , 𝜏) = ℎ̃11(𝑡) ∗ ℎ̃22(𝑡 + 𝜏),  (12) 

�̃�𝑘𝑙,𝑘′𝑙′(𝛿𝑇 , 𝛿𝑅 , 𝜏) =
1

𝑁
∑ 𝑎𝑙𝑙′

2𝑁
𝑛=1 (𝛿𝑇)𝑏𝑘𝑘′

2 (𝛿𝑅)𝑒−𝑗2𝜋𝑓𝑛𝑡.     (13) 

The 2-D CF for the Tx and Rx is given as 

�̃�𝑇(𝛿𝑇 , 𝜏) =
1

𝑁
∑ 𝑎𝑙𝑙′

2𝑁
𝑛=1 (𝛿𝑇)𝑒−𝑗2𝜋𝑓𝑛𝑡,        (14) 

�̃�𝑅(𝛿𝑅 , 𝜏) =
1

𝑁
∑ 𝑏𝑙𝑙′

2𝑁
𝑛=1 (𝛿𝑅)𝑒−𝑗2𝜋𝑓𝑛𝑡.    (15) 

The temporal ACF of the simulation model is obtained as 

�̃�ℎ𝑝𝑞
(𝜏) =

1

𝑁
∑ 𝑒−𝑗2𝜋𝑓𝑚𝑎𝑥 𝑐𝑜𝑠(𝛼𝑛

𝑅−𝛼𝑣)𝜏𝑁
𝑛=1 . (16) 

 
III. PARAMETERIZATION METHODS FOR MODEL IMPLEMENTATION 

 

 In the literature, several efficient techniques for parameter computation have been identified. However, 

to fully exploit the advantages associated with each technique, it must be able to replicate the reference model 
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accordingly. Again, a parameterization method is assumed effective if its computation complexity is minimal and 

has sufficient accuracy. 

 In order to design and implement the elliptical model simulator on the MIMO channel model, we 

assume all other model parameters are identical for both the simulation and the corresponding reference models 

and our emphasis is on AoA {𝛼𝑛
𝑅}𝑛=1

𝑁  parameter. Four computation methods were studied in total, comprising of 

two already existing techniques (EMEDS, MMEA) and two improved modified methods (MEMEDS, NMMEA) 

from the existing methods [10] to simulate the elliptical model on MIMO channel. 

 

A. EXTENDED METHOD OF EXACT DOPPLER SPREAD 

The extended method of doppler spread (EMEDS) was first introduced in [11] as an extension of the 

method of doppler spread (MED) studied in [8]. This techniqueis often referred as a high-performance 

computation method suitable for determining statistics of a MIMO channel simulation in an isotropic scattering 

environment. This computation technique can be conveniently applied to an elliptical model for MIMO channel 

and the closed form solutions of AoDαn
T and AoA αn

R  are given as: 

𝛼𝑚
𝑇 =

2𝜋

𝑀
(𝑚 −

1

2
) + 𝛼𝜐

𝑇 , 𝑚 = 1,2, … , 𝑀,                  (17) 

𝛼𝑛
𝑅 =

2𝜋

𝑁
(𝑛 −

1

2
) + 𝛼𝜐

𝑅 , 𝑛 = 1,2, … , 𝑁,(18) 

The parameters αυ
Tand αυ

R are referred to as the angle of rotation at Tx and Rx  given by: 

𝛼𝑣
𝑇 =

𝛼𝑛
𝑇−𝛼𝑛−1

𝑇

4
=

𝜋

2𝑁
 ,                 (19) 

𝛼𝑣
𝑅 =

𝛼𝑛
𝑅−𝛼𝑛−1

𝑅

4
=

𝜋

2𝑁
.  (20) 

B. MODIFIED METHOD OF EQUAL AREA 

The modified method of equal area (MMEA) is quite useful for modeling MIMO channel parameters 

and is not restricted to isotropic scattering models. It has shown promising results in modelling 

unsymmetrical-scattering scenarious and thus greatly implemented in the lab analysis of mobile wireless 

systems under non istropic scattering conditions. Studies in [12] shows that MMEA originated from the 

method of equal area (MEA) and can be applied to any given distribution. The parameters of interest AoD 

αn
T and AoA αn

R can be obtained via numerical root finding techniques on  the equations given below: 

𝑚 − 1 4⁄

𝑀
− ∫ 𝜌𝛼𝑇

𝛼𝑚
𝑇

𝑚𝛼
𝑇−𝜋

(𝛼𝑇)𝑑𝛼𝑇 = 0,   𝑚 = 1,2, … , 𝑀,                                        (29) 

𝑛 − 1 4⁄

𝑁
− ∫ 𝜌𝛼𝑅

𝛼𝑚
𝑅

𝑚𝛼
𝑅−𝜋

(𝛼𝑅)𝑑𝛼𝑅 = 0,   𝑛 = 1,2, … , 𝑁                  (30) 

 
 

C. MODIFIED EXTENDED METHOD OF EXACT DOPPLER SPREAD 

The modified extended method of exact doppler spread (MEMEDS) is among the recent parameter 

computation solutions proposed in [10]. It has the advantage of generating a multiple numbers of wave form 

signal while maintaining low complexity. The equations of interest of parameters for simulation AoD αn
T and 

AoA αn
Rare given below: 

𝛼𝑚
𝑇 =

2𝜋

𝑀
𝑚 + 𝛼𝜈

𝑇 , 𝑚 = 1,2, … , 𝑀,(211) 

𝛼𝑛
𝑅 =

2𝜋

𝑁
𝑛 + 𝛼𝜈

𝑅 , 𝑛 = 1,2, … , 𝑁.(32) 

Where αν
T and αν

R are known as the angle of rotation at the Tx and Rx respectively and are defined accordingly 

as: 

𝛼𝜈
𝑇 =

𝛼𝑚
𝑇 −𝛼𝑚−1

𝑇

2
=

𝜋

𝑀
(33) 

𝛼𝜈
𝑅 =

𝛼𝑛
𝑅−𝛼𝑛−1

𝑅

2
=

𝜋

𝑁
(34) 

D. NEW MODIFIED METHOD OF EQUAL AREAS 

The MMEA computation technique has a major limitation of increasing absolute error of the simulation 

model in non-isotropic scattering scenarios. The new modified method of equal areas (NMMEA) also 

demonstrated in [10] shows promising results of keeping the absolute error functions marginal. According to the 

NMMEA, the AoD αn
T and AoA αn

R can be obtained as follow: 

𝑚 − 0.55

𝑀
− ∫ 𝜌𝛼𝑇

𝛼𝑚
𝑇

𝑚𝛼
𝑇−𝜋

(𝛼𝑇)𝑑𝛼𝑇 = 0,   𝑚 = 1,2, … , 𝑀.                                                           (35) 
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𝑚 − 0.55

𝑁
− ∫ 𝜌𝛼𝑅

𝛼𝑚
𝑅

𝑚𝛼
𝑅−𝜋

(𝛼𝑅)𝑑𝛼𝑅 = 0,   𝑛 = 1,2, … , 𝑁.                                    (36)  

 

 

IV. PERFORMANCE ANALYSIS BASED ON COMPUTATION METHODS 

 

  Several statistical properties exist as metrics to measure the performance of MIMO channel simulator 

models.In this subsection we will investigate the AoA, AoD, correlation properties (temporal ACF and 2D-space 

CCF) and evaluate the performance based on the parameter computation method used. The EMEDS and 

MEMEDS computation methods are applied on the elliptical model and its performance superiority compared. 

Again, the MMEA is matched with NMMEA for performance evaluation. Numerical results validating the utility 

of results from the comparison presented. 

1) EMED Vs MEMEDS: All results presented in this section are obtained using 𝐟𝐦𝐚𝐱 = 𝟗𝟏, 𝐍 = 𝟐𝟓, 𝛃𝐓 =
𝛃𝐑 = 𝟗𝟎, 𝐤 = 𝟎. Fig. 2-4) compares the difference in the time ACF and the 2D-space CCF of the 

simulation model obtained using the  EMEDS and MEMEDS parameter computation methods. Fig. 2 

depicts time ACF using the EMEDS and the MEMEDS techniques to the reference model. It is clear that 

the MEMEDS consistently outclass the EMEDS for different isotropic scattering settings. It was also 

observed that  there is a good agreement between the MEMEDS and the reference model and the equality of  

𝐫(𝛕) = �̃�(𝛕) strongly holds between [𝟎, 𝐍 𝟒]⁄ . Figure 4.1 further shows that the EMEDS results in a 

relatively considerable difference with the reference model. A plot of 2D-space CCF, the absolute error 

against the transmit antenna separation and the receive antenna separation respectively for the reference and 

simulation model applying the EMEDS and MEMED is illustrated in Fig. 3 and Fig. 4. The performance of 

the reference and the simulation model using both methods are in good agreement with values hardly 

distinguishable. Nevertheless, EMEDS has more computation complexity. 

 

2) MMEA vs NMMEA: All results presented in this section are obtained using 𝐟𝐦𝐚𝐱 = 𝟗𝟏, 𝐍 = 𝟓𝟎, 𝛃𝐓 =
𝛃𝐑 = 𝟗𝟎, 𝐤 = 𝟎. Fig. 5 depicts the corresponding time ACFs using EMEDS and MEMED. Inspite of 

thedifferent methods, it is clear that ACF from two computation methods are alike with of the reference 

model, particularly the result from the NMMEA provides a fairly better approximation of the reference 

model. For example, the approximation of 𝐫(𝛕) = �̃�(𝛕) is exceptional between the range of [𝐍 𝟏𝟎⁄ , 𝐍 𝟐⁄ ]. 
The CCFs performance comparison of MMEA and NMMEA shows a good fit with the reference model. 

Nevertheless there is a more excellent agreement using NMMEA as illustrated with Fig. 6 and Fig. 7. 

Further evaluation of the absolute error for both methods as also plotted in Fig. 6 and Fig. 7, and are 

undoubtedly in agreement showing a ripple behaviour and a maximum error value max{𝐞𝐓(𝛅𝐓, 𝛅𝐑)}=3.0. 

Again, it is evident that the error function decreases using the NMMEA.  

 

V. CONCLUSION 

  These studies collectively demonstrate the potentials of elliptical channel models in capturing the 

complex characteristics of a MIMO wireless channel in an isotropic scatterring environment. In this context, two 

new modified methods MEMED and NMMEA were applied in the design of MIMO simulation model. A 

performance analysis of the new proposed method and its original method is implemented. Numerical results 

have shown that the proposed simulation model with MEMED and NMMEA outperforms, giving a fairly good 

approximation of the desired properties of ACF, CCFs and {eT(δT, δR) to reference model.Summing up the 

results, it can be concludethat the performance of MIMO wireless channel simulators can be implemented with 

enhance parameter computerization methods. Thus, with this achievement, a more accurate and efficient MIMO 

simulator model can be obtained. 



Space-Time Correlated Model for Mobile-to-Mobile Rayleigh Fading Channel: Simulator .. 

87 

 
Fig. 2: ACF comparison of the reference and simulation model using EMED and MEMED (𝑓𝑚𝑎𝑥 = 91, 𝑁 =

25, 𝛽𝑇 = 𝛽𝑅 = 90, 𝑘 = 0) 

 

 
Fig. 3:2D-CCFs of reference, simulation models and Absolute error function using EMEDS (𝑓𝑚𝑎𝑥 = 91, 𝑁 =

25, 𝛽𝑇 = 𝛽𝑅 = 90, 𝑘 = 0) 

 

 
Fig. 4: 2D-CCFs of reference, simulation models and Absolute error function using MEMED (𝑓𝑚𝑎𝑥 = 91, 𝑁 =

25, 𝛽𝑇 = 𝛽𝑅 = 90, 𝑘 = 0) 
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Fig. 5: ACF comparison of the reference and simulation model using MMEA and NMMEA(𝑓𝑚𝑎𝑥 = 91, 𝑁 =

50, 𝛽𝑇 = 𝛽𝑅 = 90, 𝑘 = 0) 

 

 
Fig. 6: 2D-CCFs of reference, simulation model and Absolute error function using MMEA (𝑓𝑚𝑎𝑥 = 91, 𝑁 =

50, 𝛽𝑇 = 𝛽𝑅 = 90, 𝑘 = 0) 

 

 
Fig. 7: 2D-CCFs of reference, simulation model and Absolute error function using NMMEA(𝑓𝑚𝑎𝑥 = 91, 𝑁 =

50, 𝛽𝑇 = 𝛽𝑅 = 90, 𝑘 = 0) 
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