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ABSTRACT: Considering electric vehicle charging equipment breaks down frequently, a fault diagnosis 

method based on an improved Extreme Learning Machine (ELM) is proposed to address frequent and difficult-

to-accurately-diagnose faults in electric vehicle charging equipment. Firstly, Random Forest is utilized to 

extract fault characteristic parameters of the charging equipment as the dataset for model training. Secondly, 

an improved Crayfish Optimization Algorithm (COA) is introduced to optimize the output weights in the ELM 

model, resulting in an optimized model. Lastly, the optimization model is employed to diagnose faults in electric 

vehicle charging equipment. Simulation results demonstrate that this method achieves higher accuracy 

compared to other technologies, thereby validating the reliability of the fault diagnosis approach based on 

adaptive-COA-ELM. This holds significant importance for the research and application of electric vehicle 

charging equipment fault diagnosis. 
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I. INTRODUCTION  

Given the tight energy supply situation, the electric vehicle industry is thriving. Unlike the traditional 

fuel vehicle industry, the field of electric vehicles represents a nascent and rapidly evolving sector, and its 

related technologies are still in a process of continuous exploration and optimization[[1]]. Especially the 

charging equipment of electric vehicles plays a crucial role in the operational performance of the vehicle. 

Therefore, fault diagnosis and analysis of electric vehicle charging equipment are particularly important. 

Scholars both domestically and internationally have proposed corresponding research methods for 

diagnosing faults in charging equipment. Hou Junjie[[2]] focuses on improving the safety and stability of 

charging equipment, accelerating the fault handling process, and envisioning and implementing a system based 

on B/S architecture and ASP NET technology for monitoring the status and remote fault diagnosis of electric 

vehicle charging facilities. Gao Hui et al[[3]] explored the safety integration mechanism between power battery, 

charging pile, and power supply equipment, a set of integrated fault logic judgment processes was designed, and 

a fault tree model of phased online fault diagnosis of equipment was constructed. The variety of fault types in 

charging equipment poses a serious challenge to traditional diagnostic methods. These methods often rely on 

human experience and preset rules, making it difficult to identify and deal with new or complex faults quickly 

and effectively. To cope with this problem, scholars have turned their attention to artificial intelligence 

technology. Park, S. J. et al[[4]]create a data collection system to assess module statuses by utilizing the 

gathered information and implementing a Multi-Layer Perceptron (MLP) neural network for classification 

model training. Meanwhile, Meckel S. et al[[5]] introduce a structured machine-learning approach to develop an 

online diagnostic system for hybrid electric vehicle models. Mao Min et al[[6]] propose an improved 

backpropagation neural network, the simulation demonstrates that the optimized BP model provides both rapid 

and accurate fault state diagnosis for the charging pile. The intelligent algorithms mentioned by these scholars 

have improved the fault diagnosis rate of charging equipment to a certain extent. However, there are still certain 

deficiencies in accuracy and diagnosis speed[[7]]. 

Based on the above analysis, because of the challenges faced in the current fault diagnosis of charging 

equipment, an improved COA is proposed. This algorithm focuses on enhancing the parameter configuration 

and structural design of the ELM to improve its effectiveness as a fault diagnosis model. Specifically, by 

introducing the dominant characteristics of crayfish in nature, we designed a more efficient search mechanism to 
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improve the accuracy and robustness of ELM in fault diagnosis tasks. Comparative experiments will validate the 

enhanced algorithm's superior capabilities in recognizing complex fault modes, which not only provides a new 

idea for the fault diagnosis of charging equipment but also opens up a new direction for the application of 

intelligent algorithms in related fields. 

 

II. CHARGING INDICATORS FOR ELECTRIC VEHICLE CHARGING EQUIOMENT 

2.1.Charging equipment analysis 

EV charging equipment is an important part of EV infrastructure, and its core function is to provide a 

safe and efficient power supply for EVs. The charging equipment is mainly composed of two parts: the charger 

and the charging pile[[8]]. The charger is the core component of the whole system, which is mainly responsible 

for converting the alternating current (AC) energy of the grid into direct current (DC) suitable for EV battery 

charging and adjusting the output power to ensure a stable charging voltage and current for the EV. Chargers 

typically use advanced power electronics, such as insulated-gate bipolar transistors (IGBT modules), to achieve 

efficient and precise power conversion and power control[[9]]. The charging structure of an electric vehicle is 

shown in Figure 1. 
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Figure 1. Charging structure of an electric vehicle 

 

2.2. Charging equipment fault type analysis 

Due to the complex physical hardware structure of the charging equipment and the changeable working 

state, there are many kinds of failures. This paper combs and summarizes the fault data of charging equipment 

collected in the actual operation process. This data covers different brands, models, and operating environments, 

providing a valuable basis for analyzing failure modes. Through in-depth mining of these data, we summarize 

and analyze the common fault types of charging equipment and their corresponding fault causes, and the 

specific summary results are detailed in Table 1. 

 

Table 1. The common faults and causes of faults of charging equipment 
Fault number Description of the fault Cause of the failure 

1 Normal state - 

2 The charging module outputs an overvoltage 

The output voltage of a single module is too 

large, causing the system to have overcurrent 

protection 

3 The charging module outputs an overcurrent 
The output current of the charging module 

exceeds the preset value of the system 

4 The charging module is over-temperature faulty 
(1) The charging module fan is faulty 
(2) The temperature setpoint is on the low side 

(3) The temperature sensor is faulty 

5 The DC bus outputs an overvoltage 

(1) The impulse voltage on the output side of 

the DC bus is too large, and the output of the 

module is out of control 

6 Faulty AC circuit breaker (1) The circuit breaker tripped 



Adaptive-COA-ELM based-Fault Diagnosis Method for Electric Vehicle Charging Equipment 

220 

(2) The circuit breaker device is damaged 
(3) Short circuit or overcurrent 

7 BMS communication failure 

(1) BMS system failure 

(2) The vehicle does not receive auxiliary power 
(3) Poor contact with the charging connector 

8 AC input failure 

(1) AC power failure 

(2) AC input is out of phase 
(3) AC input overvoltage 

 

2.3. Random forest-based fault feature parameter extraction of charging equipment 

During the operation of EV charging equipment, the information transmitted is key to ensuring 

effective, safe, and efficient charging, and this information covers several important parameters. Based on the 

research results, there is a strong coupling relationship and nonlinear characteristics between the fault 

characteristic parameters of electric vehicle charging equipment. With the help of the multivariate 

spatiotemporal relationship analysis method, the intrinsic relationship between the state data of charging 

equipment can be explored. This paper employs the random forest algorithm[[10],[11]] to assess the importance 

of the aforementioned monitoring parameters in determining the fault diagnosis outcomes of charging 

equipment. As a robust ensemble learning approach, the random forest method effectively evaluates the impact 

of each input feature on the final result. It achieves this by constructing a large number of decision trees, 

combining their prediction results through voting, and ultimately deriving the final diagnosis outcome. During 

the training phase, the algorithm systematically evaluates the significance of each feature during node splitting 

to rank their contributions. Leveraging the random forest algorithm's ranking results, we identified the key data 

with the greatest influence on fault diagnosis outcomes and utilized these as input for subsequent model training. 

The fault characteristic parameters are summarized in Table 2. 

 

Table 2. Fault characteristic parameters of charging equipment 

Serial number Description Label 

1 Charging device voltage #1 

2 Charging device current #2 

3 Electric vehicles demand voltage #3 

4 Electric vehicles demand current #4 

5 DC bus voltage #5 

6 Charging device temperature #6 

7 EV charging time #7 

8 Charging equipment fault, power supply voltage #8 

 

III. FAULT DIAGNOSIS METHOD BASED ON ADPTIVE-COA-ELM  

3.1. Extreme learning machine model 

ELM [[12],[13]]is a computationally efficient single-hidden layer feedforward neural network, that has 

gained significant traction in machine learning and pattern recognition. Figure 2 provides a visual representation 

of the ELM's structure and the interconnection of its layers. 
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Figure 2. ELM model structural diagram 

 

ELM distinguishes itself from traditional feedforward networks through its unique architecture and 

training approach, leading to enhanced computational speed and generalization capability, particularly when 

tackling complex problems. The ELM model comprises an input, a hidden, and an output layer, interconnected 
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via feature mappings that establish a complete pathway for information flow and processing. According to the 

structure diagram, the ELM algorithm is shown below， 
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The output weight matrix is obtained by solving the linear system 

                                                                              H Y                    (6) 

H+ is the generalized inverse matrix of H. 

 

3.2. Adaptive Crayfish Optimization Algorithm 

The COA is a novel swarm intelligence optimization algorithm proposed by Professor Heming Jia in 

2023[[14]]. The algorithm's design is influenced by the behavioral patterns of crayfish in their natural habitat, 

particularly focusing on three main behaviors: foraging, heat avoidance, and competition. As a highly adaptable 

organism, crayfish can survive in complex aquatic environments, and its behavioral characteristics provide 

unique inspiration for the design of optimization algorithms. 

In COA, the act of escaping the heat (Evasion) is seen as central to the exploration phase. Crayfish 

actively seek out cool habitats in hot environments to avoid the threat of extreme temperatures to their survival. 

In the algorithm, this behavior is modeled as a global search mechanism, where random walks or perturbation 

techniques are employed to explore various regions of the solution space, thereby preventing convergence to 

local optima. The introduction of summer avoidance behavior makes COA have a strong global exploration 

ability and can effectively discover potential excellent solutions. 

Foraging behavior reflects the strategy of crayfish in search of food resources, manifested by 

meticulous search of their surroundings and pursuit of food. This behavior is implemented as a local search 

process in the algorithm, refining the solution within the vicinity of the current solution to enhance its quality. 

Competitive behavior, on the other hand, simulates the adversarial interaction of crayfish in competition for 

limited resources. Competitive behavior is reflected in the interactions among individuals, fostering continuous 

improvement of the solution through a competitive mechanism. 

In general, COA cleverly combines global exploration with local development by simulating the 

foraging, heat avoidance, and competitive behavior of crayfish, forming an optimization algorithm with both 

diversity and efficiency[[15]]. 

 

3.2.1 Crayfish Optimization Algorithm 

(1) Summer retreat stage 

The crayfish optimization algorithm employs a mathematical model to represent crayfish feed intake p, 

factoring in the impact of ambient temperature. This relationship is defined by equation (7). 

 15 20temp r                                   (7) 
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The range of temp is set from 20℃ to 35℃, and 25℃ is determined to be the most ideal foraging temperature, r is 

a random number ranging from 0 to 1,  represents the optimal temperature for crayfish to feed, C1 is a 

constant 0.2, and   is a constant 3, which can be adjusted to control the amount of crayfish at different 

temperatures[[16]]. 

When temp>30℃, the crayfish will enter the summer retreat stage, and the summer shelter position Xs is 

shown in equation (9). 
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 ( ) / 2s G LX X X                                  (9) 

XG denotes the global best position and XL represents the current population's local best. In the summer burrow 

competition phase, where r < 0.5, the location is updated using the formula (10). 

 1

, , 2 ,( )t t t

i j i j s i jX X C r X X              (10) 

t indicates the current iteration count, while
,

t

i jX represents the j-dimensional position of the ith crayfish during 

the tth iteration is represented. Additionally, C2 signifies a descending curve that ranges from 2 to 0, as 

illustrated in equation (11). 

 
2 2 ( / )C temp T                         (11) 

where T is the maximum number of iterations. 

(2) Competitive stage 

When temp>30℃ and 0.5r  , it indicates that there are other crayfish participating in the competition, and 

the position update formula of crayfish is shown in (12). 

 1

, , ,

t t t

i j i j z j sX X X X      (12) 

z represents another randomly obtained crayfish individual, and the formula is as follows, 

 ( N-1 ) 1z round r  （ ）  (13) 

N is the number of crayfish populations. 

(3) Foraging stage 

When 30temp  ℃, crayfish will locate food, they assess its size. If the food is too large, they will break it 

into smaller pieces before consuming it; if the size is appropriate, they will eat it directly. The position of the 

food is denoted as Xf, where Xf, = XG,, and the size of the food Q is defined as detailed in equation (14). 

 3 ( / )i foodQ C r fitness fitness     (14) 

C3 is a constant food factor set to 3. fitnessi represents the fitness of the ith crayfish, and fitnessfood is the fitness 

of the food source. When 
3( 1) / 2Q C  , signifying overly large food, the crayfish's decomposition process is 

modeled using a combination of sine and cosine functions, detailed in equations (15) and (16). 

 
1

exp( )f fX X
Q

                          (15) 

 1

, , (cos(2 ) sin(2 ))t t

i j i j fX X X p r r                      (16) 

When 3( 1) / 2Q C  , The crayfish simply moves towards the food position and eats, the formula is: 

 1

, , ,( - )t t t

i j i j f i jX X X p p r X        (17) 

 

3.2.2 Adaptive Crayfish Optimization Algorithm 

While the Crayfish Optimization Algorithm (COA) is a promising new swarm intelligence 

optimization method with numerous advantages, it also has certain limitations that merit consideration. The 

advantage of COA lies in its powerful global search ability, which is due to its simulation of crayfish's summer 

escape behavior, which enables the algorithm to carry out extensive exploration in the solution space and avoid 

falling into the local optimal prematurely. However, the performance of COAs is also limited by several factors. 

Firstly, the effectiveness of the COA is significantly influenced by the initial population distribution. A poor 

initial distribution can hinder the algorithm's search efficiency and convergence rate. Secondly, the COA tends 

to exhibit relatively slow local convergence. Due to its main focus on global exploration, its ability in local 

search is relatively weak, so it may not be able to quickly converge to the optimal solution in the later stage of 

search. In addition, the search efficiency of COA is not stable, and its performance may fluctuate greatly under 

different optimization problems and parameter settings, which makes it necessary to carry out a lot of parameter 

adjustment and experimental verification in practical applications. More critically, COAs tend to fall into local 

optimals. Therefore, in this paper, ACOA was established around the initial population distribution and 

attenuation factor of crayfish, and the specific improvements are as follows[[17]]. 

 

(1) Chaos is initially dissolved 

The initial solution is set by random initialization in COA, which may lead to uneven distribution of 

individual positions and lack of flexibility. To overcome this problem, Circle mapping is introduced as an 

alternative. Specifically, by introducing chaos mapping, the algorithm can cover a wider solution space at the 

initial stage, ensuring that the potential global optimal solution can be more fully explored. The introduction of 

this method directly improves the global search capability of COA, enabling it to find the global optimal 

solution more efficiently when facing complex optimization problems. The expression for Circle mapping is as 

follows, 
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 1 mod( sin(2 ),1)
2

i i i
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      (18) 

where i represents the number of iterations, l=0.5, k=0.2; Xi is the individual position of the population after 

chaos mapping, and mod represents the remainder operation. 

 

(2) Nonlinear convergence factor 

The attenuation factor C2 in the COA is a static constant, which restricts the algorithm's global 

exploration and exploitation capabilities. To address this, an improved nonlinear convergence factor is 

employed in place of C2 to enhance the algorithm's convergence rate, as described in equation (19). 
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where
1 means that the initial value of the control factor is 2, and 

0 means that the final value of the control 

silver is 0, replace C2 with equation (10) to complete the update of the formula. 

 

3.3. Adaptive-COA-ELM 
Introducing the ACOA algorithm to optimize the output weights of the ELM allows for a more effective 

exploration of the solution space and facilitates the identification of optimal output weight solutions. Flow chart 

of the ELM model optimized by the ACOA as Figure 4. The specific steps are as follows. 

Step 1: Initialize algorithm parameters. 

Step 2: Determine the network fitness function, calculate the fitness value, and determine the initial optimal 

solution. 

Step 3: If the temperature temp>30, define the elite cave according to equation (9). 

Step 4: If the random number r<0.5, according to equation (10), the crayfish enters the summer stage, otherwise, 

according to equation (11), the crayfish enters the competitive stage. 

Step 5: If the temperature temp<30, define the foraging volume p and size of the food Q according to equations 

(8) and (14). 

Step 6: If the size of the food Q>(C3+1)/2, eating is simulated according to equations (15) and (16), otherwise, 

eating is simulated according to equations (17). 

Step 7: Update the optimal solution 

Step 8: If the number of iterations is reached, obtain the global optimal solution and calculate the optimal output 

weight of the ELM; otherwise, return to step 3. 

Step 9: Calculate the error, and update the output weights. 

Step 10: If the number of iterations is reached, output the optimal solution and optimal value; otherwise, return 

to step 9. 
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IV. EXPERIMENT AND DISCUSSION 

4.1. Data preprocessing 

In this part, EV charging equipment fault data in a certain area in 2024 are randomly selected as data 

inputs, and fault diagnosis accuracy as output. Data preprocessing can provide a high-quality foundation for 

subsequent model training and analysis. After the data is preprocessed accordingly, there are a total of 120 sets 

of experimental test sample data. Among them, 60 sets of EV charging equipment fault data are used to train a 

fault diagnosis model to ensure that the model can fully capture the characteristics and patterns of EV charging 

equipment faults. The performance of the fault diagnosis model was tested using 60 sets of EV charging 

equipment fault data, which can more realistically reflect the performance of the model in real-world 

applications. 

 

4.2. Case analysis 

In the fault diagnosis model constructed in this paper, precise parameters should be set to ensure the 

best prediction performance and computational efficiency. The number of neurons in the input layer is set to 10. 

In the hidden layer of the model, the number of neurons is a crucial parameter, after considering the balance 

between improving prediction accuracy and maintaining computational efficiency, we set the number of neurons 

in the hidden layer to 50. In addition, the number of neurons in the output layer is set to 1, mainly because the 

fault diagnosis output is single, which can characterize the fault state of the device. In the overall structure 

design of the whole network, the population size of the model is also set to 20, to control the complexity of the 

model, and ensure that it can work efficiently with reasonable computing resources. Finally, we set the 

maximum number of iterations to 50. 

Compare the optimized model in this article with ELM, PSO-ELM[[18]], and COA-ELM, the fitness 

value is crucial for evaluating the convergence and optimization performance of algorithms, Figure 7 presents 

the population fitness variation curves of PSO, COA, and ACOA optimization processes. In the figure, it can be 

seen that ACOA achieves the lowest fitness value within the number of iterations, indicating that the 

optimization effect is the best. 

 

 
Figure 4. Optimization algorithm fitness curve of different models 

 

To assess the effectiveness of our proposed improvement, we conducted several comparative 

experiments. The results indicate that our method significantly outperforms the traditional ELM model in 

diagnosing faults in electric vehicle charging equipment. Figure 5 and Table 3 show the diagnostic results of 

different models for faults. The traditional ELM model achieved the lowest fault diagnosis rate at 75.93%, while 

our proposed model reached the highest at 96.3%. This improved accuracy demonstrates the effectiveness of our 

algorithmic enhancements.  
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         (a)ELM diagnostic results                 (b)PSO-ELM diagnostic results 

 
    (c)COA-ELM diagnostic results             (d)ACOA-ELM diagnostic results 

Figure 5. Comparison of diagnostic results of different models 

 

Table 3. Fault diagnosis results of the sample 

Model Average accuracy 

ELM 75.93% 

PSO-ELM 85.19% 

COA-ELM 90.74% 

ACOA-ELM 96.3% 

 

V. DISCUSSION AND CONCLUSION 

This article presents a novel fault diagnosis method for electric vehicle charging equipment utilizing an 

adaptive COA-ELM approach, aimed at enhancing the precision of fault detection. Through a comprehensive 

simulation analysis and subsequent discussions, the proposed model demonstrates strong predictive capabilities. 

When compared to other methodologies, it yields superior results, affirming the accuracy and effectiveness of 

the presented approach. The findings of this research can serve as valuable insights for the study and 

implementation of fault diagnosis in electric vehicle charging systems, offering the potential for more reliable 

and efficient solutions in practical applications related to fault diagnosis. 
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