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Abstract 
Traditional Total Productive Maintenance (TPM) frameworks, relying on manual interventions and periodic 

maintenance schedules, struggle to efficiently process and act on real-time data. AI, with its powerful 

algorithms and machine learning capabilities, offers the potential to revolutionize TPM by enabling predictive 

maintenance, condition-based monitoring, and autonomous decision-making. This research explores the 

integration of AI into the core pillars of TPM, including Autonomous Maintenance, Planned Maintenance, 

Quality Maintenance, and Focused Improvement, highlighting the ways in which AI can enhance predictive 

accuracy, reduce downtime, and improve Overall Equipment Effectiveness (OEE). Moreover, the paper 

discusses the various AI applications such as predictive maintenance, digital twins, and automated Root Cause 

Analysis (RCA), and addresses the benefits like cost reduction, improved decision-making, and scalability. 

However, challenges such as data integration, high initial costs, skill gaps, and cybersecurity risks are also 

examined. Finally, the paper outlines future directions for AI-driven TPM, including the integration with 

advanced robotics, edge computing, sustainability-driven AI, and AI-enhanced workforce training. As AI 

continues to evolve, it holds the potential to redefine maintenance strategies, by driving greater efficiency, 

reliability, and sustainability in smart factories. 
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I. Introduction 

Over the years, manufacturers across the globe have consistently looked for better ways to improve their 

manufacturing processes by enhancing productivity and efficiency, and a crucial aspect is proper industrial 

equipment maintenance. In the past, maintenance policies have always been reactionary, disruptive, costly, and 

inefficient, as machines and equipment were only serviced after breakdown or when faults are detected. 

However, the emergence of the fourth industrial revolution and the application of Artificial intelligence (AI) and 

other advanced technologies have led to a better and predictive maintenance strategy known as Total Productive 

Maintenance (TPM). 

 

Okpala and Egwuagu (2016) defined TPM as a philosophy of machine maintenance that involves 

activeparticipation of a company’s staff to ensure the enhancement of the general effectiveness of a plant,by 

eliminating or reducing resources and timewastage through the incorporation of the skills of theworkforce. As a 

maintenance strategy that entailsa modern approach for equipment and plantmaintenance, TPM accentuates all 

features ofproduction, as it integrates maintenance andservices of machines into a plant’s daily routine, in order 

to minimize unplanned and emergencystoppages and repairs to the barest minimum.According to Okpala, 

Anozie and Mgbemena (2020), the TPM is a crucial improvement process that emphasizeson equipment 

maintenance approach, and its positive impact hasmade many manufacturing companies to adopt it in order to 

improve organizations'responsiveness in achieving their customers’ satisfaction. TPM has traditionally played a 

crucial role in manufacturing, by enhancing equipment reliability, minimizing downtime, and fostering 

continuous improvement through employee involvement.  

 

The tools and techniques of total productive maintenance, their purposes, and description are depicted in Table 

1. 
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Table 1: The tools and techniques of TPM. Source: Okpala, Anozie and Ezeanyim (2018) 
TPM Tools Purpose Description 

5S Practice  Reduces time wastage and motion 
level  

Organized approach to housekeeping that ensures 
tools, parts and other objects are in known, optimum 

locations.  

Poka yoke  Prevents the occurrence of mistakes or 
defects.  

Uses a wide variety of ingenious devices to prevent 
mistakes. An example is an automotive gasoline tank 

cap that has an attachment that prevents the cap from 

being lost.  

One Point Lesson  To provide immediate, visual 
information that enables people to 

make correct decisions and manage 
their work and activities.  

One point lesson uses a wide variety of signs, signals 
and controls, to manage people and processes.  

Autonomous Maintenance  To provide personal care of equipment 

by the operator.  

The operator of the equipment haven understood the 

functions of the equipment, does activities like 

cleaning, lubricating, dusting and inspection. This 
helps to prevent sudden breakdown of the machine 

and also give the operators the sense of ownership of 

the equipment.  

Root Cause Analysis  Tacklesproduction problems at the 

base level.  

When root causes are eliminated, breakdowns of 

equipment are reduced, which would reduce the 

downtime of machine and ultimately increase the 
Overall Equipment Effectiveness (OEE).  

Kaizen(Continuous 

Improvement)  

Institutionalizes the practice of 

achieving small daily improvements 

and improvement of overall 
efficiency.  

Continuous Improvement refers to the idea that a 

large number of small improvements in processes are 

easier to implement than major improvements that 
have a large cumulative effect.  

 

Despite its benefits, traditional TPM frameworks, reliant on human intervention and scheduled 

maintenance routines, struggle to keep up with the fast-paced, data-driven demands of smart factories. However, 

as manufacturing enters the Industry 4.0 era, traditional TPM faces challenges in handling the vast volumes and 

complexity of data generated in smart factory environments. The integration of TPM with smart technologies 

such as IoT devices and sensors improves predictive maintenance and operational effectiveness, boosting 

equipment performance (Anagnostara et al., 2024; Nadaf, 2024). 

 

The real-time data generated by IoT systems and sensors in these factories presents opportunities to 

optimize maintenance, but is too complex for traditional methods (Amangeldy and Bissembayev, 2024). 

Artificial Intelligence (AI) has emerged as a key solution that enhances TPM by processing large datasets in 

real-time. Through machine learning and predictive analytics, AI forecasts equipment failures, automates 

maintenance tasks, and optimizes schedules, representing a transformative shift in maintenance strategies. 

TPM itself, originating in Japan, emphasizes proactive maintenance practices, such as autonomous, 

planned, and preventive maintenance, involving the entire workforce to maximize equipment effectiveness. 

Advanced techniques like machine learning and Bayesian inference further enhance predictive maintenance 

accuracy (Qi et al., 2024). The rise of Industry 4.0 has led to the creation of smart factories that are automated, 

interconnected, and powered by IoT, cloud computing, and AI technologies. These factories rely on continuous 

data collection and predictive maintenance, significantly reducing downtime by enabling proactive interventions 

(Mosleuzzaman et al., 2024).  

While traditional TPM frameworks depend on periodic inspections and human decision-making, these 

approaches face limitations in the face of the fast, real-time data processing required by smart factory 

environments. This hampers their ability to fully exploit the benefits of Industry 4.0 technologies (Nwabueze et 

al., 2024; Azevedo and Almeida, 2024). AI, by contrast, empowers maintenance strategies through real-time 

data analysis, improving predictive maintenance, automating tasks, and optimizing resource allocation, thereby 

increasing equipment reliability and lifespan (Lee et al., 2024). Nonetheless, challenges such as cybersecurity 

risks and the need for workforce adaptation remain critical in fully utilizing the potential of AI in manufacturing 

(Shrouf et al., 2024). 

 

1. AI-Driven Total Productive Maintenance: A Paradigm Shift 

Artificial Intelligence (AI) is an array of technologies that equip computers to accomplish diverse 

advanced functions, which include the capacity to see, comprehend, appraise and translate both spoken and 

written languages, analyze and predict data, make proposals and suggestions, and more (Okpala and Okpala, 

2024).The integration of Artificial Intelligence (AI) with TPM represents a transformative shift in maintenance 

strategies, especially in smart factories. Okpala, Igbokwe and Nwankwo (2023), explained that AI’s proactive 

approach enables manufacturers to pre-emptively address issues, decrease downtime, and also optimize resource 

allocation,thereby leading to enhanced overall efficiency. They pointed out that one of the key areas where AI is 
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making remarkable in-roads is in the optimization of production processes, where machine learning algorithms 

are applied in the analysis of historical production data, patterns identification, as well as in the prediction of 

potential bottlenecks or inefficiencies. 

AI enhances traditional TPM pillars by enabling proactive, efficient, and data-driven maintenance 

processes. In the context of Industry 4.0, where interconnected systems generate vast amounts of real-time data, 

AI's ability to analyze and optimize maintenance tasks is revolutionizing equipment reliability and production 

quality.AI-powered monitoring tools enable real-time anomaly detection and predictive maintenance, and 

enhances equipment reliability and operational efficiency. By analyzing sensor data, AI detects irregularities 

such as temperature, vibration, and pressure, providing timely maintenance recommendations to reduce 

equipment failures (Gowekar, 2024; Simion et al., 2024). Machine learning optimizes maintenance schedules, 

balancing preventive measures with actual usage to minimize costs and resource wastage (Babayeju et al., 2024; 

Liu, 2024). AI also improves quality control by identifying defect-causing factors and predicting potential 

quality issues, ensuring consistent production standards (Ghelani, 2024).  

Additionally, AI-driven Root Cause Analysis (RCA) accelerates issue resolution by quickly pin-pointing 

failure causes through comprehensive data analysis, supporting continuous improvement and enhancing overall 

factory performance (Mathew and Kaur, 2024). By leveraging IoT-enabled sensors, AI collects real-time data on 

equipment conditions, enabling predictive maintenance that minimizes downtime and unplanned stoppages. 

Through advanced algorithms, AI processes this data to detect early signs of wear or failure, offering timely and 

accurate insights into machine health and facilitating better decision-making (Weiss, 2024).  

AI-driven TPM introduces autonomous decision-making capabilities, allowing systems to predict 

maintenance needs, recommend solutions, or automatically implement corrective actions. Integrating AI with 

Robotic Process Automation (RPA) enables tasks such as part replacement and system recalibration to be 

performed autonomously, which reduces reliance on manual labor, increases efficiency, and ensures swift 

responses to issues (Zhao et al., 2024). This autonomy is especially valuable in high-volume manufacturing 

environments, where speed and accuracy are critical. Despite the significant advantages, challenges like high 

implementation costs and the need for skilled personnel remain key obstacles for manufacturers (Yahya et al., 

2024). Overall, AI-driven TPM marks a paradigm shift in maintenance strategies, enhancing traditional 

approaches through real-time monitoring, predictive analytics, and autonomous operations, leading to increased 

efficiency, reduced costs, and improved operational reliability. 

 

2. Applications of AI in Total Productive Maintenance 

AI is revolutionizing TPM by enhancing traditional maintenance approaches and facilitating more 

efficient, intelligent, and data-driven decision-making. The integration of AI into TPM helps in the optimization 

of maintenance schedules, boosting of equipment reliability, and downtime reduction, thereby playing a crucial 

role in modern manufacturing settings. One significant application of AI in TPM is predictive maintenance, 

which predicts equipment failures by analyzing both historical and real-time data. AI systems apply advanced 

algorithms to identify failure patterns and anomalies, enabling early intervention. By calculating the Remaining 

Useful Life (RUL) of critical components, AI supports proactive maintenance scheduling, reducing unplanned 

downtime and also improves operational efficiency (Simion et al., 2024; Gowekar, 2024; Berghout et al., 2024).  

AI also enhances Condition-Based Maintenance (CBM), which continuously monitors the real-time 

health of equipment and triggers maintenance actions only when specific thresholds are exceeded. This AI-

driven approach minimizes unnecessary downtime and interventions, ensuring optimal use of resources and 

enabling timely, precise maintenance actions based on live sensor data (Shaala et al., 2024). 

Another game-changing technology is digital twins—AI-powered virtual models of physical systems 

that simulate equipment behavior in real-time. These models allow manufacturers to virtually test and optimize 

maintenance strategies, providing valuable insights into performance and risk management without disrupting 

operations. Digital twins contribute to improved decision-making and extended equipment lifespan (Singh and 

Gameti, 2024; Shi et al., 2024; Mohanraj et al., 2024). AI also accelerates Root Cause Analysis (RCA), quickly 

identifying failure causes by analyzing extensive datasets from sensors, maintenance logs, and performance 

history. This rapid analysis enables faster resolution of recurring issues, promoting continuous improvement 

within TPM (Bhambri et al., 2024; Rane and Shirke, 2024). 

Furthermore, AI-driven TPM improves Overall Equipment Effectiveness (OEE) by providing 

actionable insights into availability, performance, and quality. It analyzes real-time data to uncover 

inefficiencies, such as production bottlenecks and machine downtime, and also identifies potential quality issues 

before they affect the final product. This optimization maximizes equipment uptime, reduces waste, and ensures 

high production quality (Bhambri et al., 2024; Mohanraj et al., 2024). Therefore, AI is transforming TPM by 

enhancing predictive capabilities, enabling dynamic maintenance practices, and improving operational 

efficiency, establishing it as a key factor in the success of modern manufacturing operations. 
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3. Benefits of AI-Driven Total Productive Maintenance 

AI-driven TPM significantly enhances the efficiency and effectiveness of maintenance operations in 

smart factories by leveraging advanced algorithms, machine learning, and real-time data. These AI-driven 

strategies optimize maintenance schedules, improve equipment reliability, and reduce downtime, thus 

contributing to the competitiveness and sustainability of manufacturing systems. One of the key benefits of AI 

in TPM is enhanced predictive accuracy. AI uses machine learning algorithms to analyze large datasets from 

IoT sensors, detecting patterns and predicting equipment failures before they occur, which minimizes unplanned 

downtime (Gowekar, 2024). Techniques such as Random Forest and Neural Networks have been highly 

effective in forecasting equipment conditions with precision, ensuring timely maintenance interventions and 

better resource allocation (Patel and Kalgutkar, 2024; Meher and Kakran, 2024).  

 

AI also helps in the reduction of maintenance costs by optimizing maintenance schedules based on 

predicted equipment failures and condition-based interventions, rather than on time intervals. This reduces 

unnecessary repairs, emergency maintenance costs, and inventory expenditures. Additionally, predictive 

maintenance extends the lifespan of equipment and further lowering capital expenditure (Ayyagiri et al., 2024; 

Meher and Kakran, 2024). AI-driven TPM enhances equipment uptime by continuously monitoring machinery 

health and predicting signs of wear and tear before breakdowns occur. Machine learning algorithms like 

XGBoost and Random Forest detects early anomalies, ensuring proactive maintenance and minimizing 

downtime, ultimately improving production efficiency and profitability (Benarbia et al., 2024; Akyaz and Engın, 

2024). Real-time monitoring and edge computing systems contribute to this improvement by enabling 

immediate anomaly detection and proactive maintenance scheduling, thus boosting Overall Equipment 

Effectiveness (OEE) (Thakkar and Kumar, 2024). 

 

Furthermore, AI improves decision-making by providing actionable insights based on data analysis. 

Maintenance teams prioritize tasks by considering equipment health, production schedules, and resource 

availability. AI also helps to uncover hidden patterns and root causes of failures, enabling a more effective, root-

cause-driven approach to problem-solving (Pujatti et al., 2024). Also, AI solutions in TPM are scalable and 

flexible, making them adaptable to various types of equipment and manufacturing environments. Whether a 

factory has few machines or a complex network of interconnected devices, AI integrates seamlessly into 

existing infrastructure. It can also be adjusted to meet evolving production needs, ensuring that TPM strategies 

remain effective over time (Kliestik et al., 2023; Martínez-Arellano and Ratchev, 2024). 

 

4. Challenges in Implementing AI-Driven TPM 

Artificial Intelligence-driven Total Productive Maintenance (TPM) offers significant potential to 

enhance maintenance operations in smart factories. However, its implementation presents numerous challenges 

that must be overcome to fully harness its advantages, as recent research underscores. One major challenge lies 

in integrating and ensuring the quality of data from various systems. Smart factories produce extensive data 

from IoT sensors, machinery, and ERP systems, but this data is often fragmented, unstructured, or inaccurate. 

Achieving high-quality, consistent, real-time data demands substantial pre-processing, cleansing, and 

standardization—tasks that require significant resources (Aboshosha et al., 2023). Small and Medium-sized 

Enterprises (SMEs) face additional difficulties due to limited expertise and financial constraints (Yusuf et al., 

2024; Li et al., 2024).  

Nonetheless, data-driven frameworks leveraging IoT and deep learning can help address these issues 

(Ohoriemu and Ogala, 2024). Another key obstacle is the substantial upfront investment needed to adopt AI-

driven TPM. These costs include IoT sensors, AI software, data storage, computing infrastructure, and personnel 

training. For SMEs with limited budgets, such expenses can deter adoption, compounded by ongoing costs for 

system maintenance, software updates, and continuous training (Kim et al., 2024). 

A shortage of skilled personnel also poses significant challenges. Implementing AI-driven TPM 

demands expertise in data science, machine learning, advanced analytics, and manufacturing operations. The 

current skill gap necessitates extensive training, recruitment, and collaboration with academic institutions to 

develop relevant educational programs (Antomarioni et al., 2023). Without qualified professionals, 

organizations may struggle to operate AI systems effectively and interpret their outputs. Cybersecurity is 

another critical concern, as integrating AI and IoT increases vulnerabilities due to enhanced connectivity. Real-

time data exchanges can be exploited, leading to equipment malfunctions, data breaches, or production 

disruptions (Chittimalla, 2024; Neelakrishnan, 2024). Addressing these risks requires robust measures such as 

encryption, secure communication protocols, and intrusion detection systems, which add complexity and costs 

to adoption. 

Finally, organizational resistance to change remains a significant barrier. Employees may fear job 

displacement or losing control over processes, while management may hesitate due to concerns about ROI and 

system complexity. Overcoming this resistance requires clear communication about the benefits of AI, 
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comprehensive employee training, and phased technology integration. Cultivating a culture of innovation and 

continuous improvement is essential for driving acceptance and reaping the benefits of AI-driven TPM (Yusuf 

et al., 2024; Kim et al., 2024). 

 

5. Future Directions in AI-Driven TPM 

As AI-driven TPM progresses, it offers transformative opportunities to redefine maintenance strategies 

in smart factories while tackling key challenges and advancing sustainability objectives. Recent studies 

emphasize significant developments, obstacles, and future directions for AI-driven TPM. The integration of AI 

with advanced robotics is re-shaping maintenance processes, allowing for autonomous operations with minimal 

human input. Robots equipped with machine learning algorithms can efficiently handle complex tasks such as 

equipment calibration and diagnostics, significantly reducing errors and enhancing precision (Nadaf, 2024; 

Gowekar, 2024). Mobile robotic platforms enable prompt identification of operational issues, freeing personnel 

for strategic decision-making and improving overall equipment effectiveness (Vechet et al., 2024). Moreover, 

advancements in machine learning enable robots to adapt dynamically and perform unscheduled maintenance 

tasks, solidifying their role in future TPM systems. 

Edge computing emerges as another critical advancement in AI-driven TPM by enabling localized data 

processing to minimize latency and facilitate real-time decision-making. By processing IoT sensor data at the 

source, edge computing ensures rapid insights and corrective measures, reducing reliance on centralized servers 

(Liu, 2024; Nadaf, 2024). This capability enhances predictive maintenance strategies, making edge computing 

an indispensable element in the operation of smart factories. Collaborative AI models that combine 

computational capabilities with human expertise are shaping the future of adaptive maintenance systems. These 

hybrid frameworks allow maintenance personnel to assess and refine AI-generated recommendations using their 

domain expertise, which results in more precise and contextual decision-making. Such systems effectively 

position AI as a decision-support tool, maintaining a balance between automation and human intervention 

(Rojek et al., 2024). 

AI-driven TPM is also advancing sustainability efforts within manufacturing by integrating metrics like 

energy efficiency, resource optimization, and waste reduction into maintenance practices. AI optimizes energy 

consumption, predicts equipment failures to enhance resource utilization, and minimizes waste through precise 

component replacement forecasting (Samblani and Bhatt, 2024; Ahmed and Asamoah, 2024). These 

advancements align with green manufacturing practices, contributing to corporate sustainability targets while 

improving cost efficiency. As AI transforms manufacturing processes, addressing workforce challenges 

becomes essential. Immersive technologies like Augmented Reality (AR) and Virtual Reality (VR) provide 

innovative training solutions, allowing maintenance teams to practice complex tasks in virtual environments. 

These tools enhance understanding, decision-making, and problem-solving capabilities, equipping technicians to 

manage advanced AI-powered systems effectively (Samblani and Bhatt, 2024; Thakkar and Kumar, 2024). 

Despite these innovations, several challenges must be resolved to fully realize AI's full potential in 

TPM. Issues such as data integration, high implementation costs, workforce skill gaps, cybersecurity risks, and 

resistance to organizational change persist. Overcoming these obstacles requires leveraging IoT and deep 

learning technologies, fostering academic and industrial collaboration, implementing strong cybersecurity 

frameworks, and nurturing innovation-driven organizational cultures (Aboshosha et al., 2023; Kim et al., 2024; 

Yusuf et al., 2024). AI-driven TPM is revolutionizing maintenance in smart factories by fostering automation, 

delivering real-time insights, promoting sustainable practices, and advancing workforce capabilities. With 

sustained innovation and strategic problem-solving, AI has the potential to transform maintenance operations, 

by enhancing both efficiency and sustainability in the manufacturing sector. 

 

II. Conclusion 

AI-driven TPM is poised to transform maintenance strategies in smart factories by integrating AI’s 

predictive capabilities with TPM’s structured methodologies. This combination enhances equipment reliability 

and operational efficiency. By automating processes, accurately forecasting equipment failures, and optimizing 

maintenance schedules, AI-driven TPM significantly boosts productivity and minimizes unplanned downtime—

key factors for maintaining competitiveness in the digital manufacturing landscape (Nadaf, 2024; Thakkar and 

Kumar, 2024).  Despite its advantages, challenges such as data integration, high initial costs, and the need for 

specialized expertise remain. To address these issues, manufacturers must invest in robust infrastructure, adopt 

effective data management strategies, and upskill their workforce to effectively utilize AI tools. Staying abreast 

of advancements in AI technology is also vital to fully realizing its benefits (Gautam et al., 2024).   

In the era of Industry 4.0, embracing AI-driven TPM is crucial for achieving operational efficiency and 

sustainable growth. Successfully overcoming implementation challenges and leveraging AI’s potential will 

position manufacturers for success in the evolving landscape of smart factory maintenance (Hao, 2024). As AI 

technologies continue to advance, AI-driven TPM is set to revolutionize maintenance practices, delivering 



Artificial Intelligence-Driven Total Productive Maintenance: The Future of Maintenance in .. 

73 

increased productivity, cost savings, and sustainability (Saleem et al., 2024; Samblani and Bhatt, 2024; Gautam 

et al., 2024). 
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