
International Journal Of Engineering Research And Development  

e- ISSN: 2278-067X, p-ISSN: 2278-800X, www.ijerd.com  

Volume 21, Issue 2 (February 2025), PP 86-97 
 

86 

Differential Privacy-Preserving Fuzzy-C-Means Cluster-

ing Algorithm 
 

Junxiang YANG1, Xueping ZHANG1, and Gazi Mohammad Ismail1 
1School of Information Science and Engineering, Henan University of Technology, Zhengzhou City, Henan 

Province 450052, China 

 

Abstract：Aiming to address the privacy leakage problem of the traditional Fuzzy-C-Means (FCM) clustering 

algorithm, the paper introduces a differential privacy mechanism into the FCM clustering algorithm. It proposes 

and designs a DP-FCM (Differential Privacy-FCM) clustering algorithm oriented towards differential privacy 

protection. The algorithm protects individual privacy information by perturbing the data. Simultaneously, to 

maintain high clustering performance, a balance between privacy protection and data utility is achieved by opti-

mizing the selection of perturbation parameters and the allocation of privacy budget. Comparative experimental 

results show that the DP-FCM clustering algorithm can effectively discover the clustering structure in the dataset 

while protecting individual privacy. Compared with the traditional FCM algorithm, the DP-FCM algorithm 

demonstrates clear advantages in clustering accuracy and stability. In addition, the paper also explores the im-

pact of the differential privacy budget on the performance of clustering algorithms. The results indicate that 

smaller privacy budgets enhance privacy protection but may also affect clustering performance to some extent. 
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I. Introduction 

With the advent of the big data era, data clustering analysis plays an important role in various fields. 

Clustering algorithms aim to group similar data points into categories, revealing the inherent structure and 

patterns in the data. However, with the extensive collection and application of personal data, the issue of data 

privacy protection has become increasingly prominent. In many practical scenarios, the leakage of sensitive 

personal information can result in serious privacy violations and social risks. Therefore, determining how to 

effectively protect individual privacy during data clustering has become an important research task. Therefore, 

the research motivation of this paper is to introduce the concept of Differential Privacy (DP) while maintaining 

the accuracy and effectiveness of the clustering algorithm and to propose a Fuzzy-C-Means clustering algorithm 

for differential privacy protection. Differential Privacy, as a privacy-preserving technique, can provide a higher 

level of privacy protection for individuals by meaningfully analyzing and mining data while protecting their 

privacy. 

Traditional privacy-preserving techniques in the field of data mining encounter challenges such as 

ineffective responses to background knowledge attacks and low usability. Differential Privacy (DP) is a privacy 

protection framework that offers a rigorous mathematical definition and quantifies the level of privacy protec-

tion. It is effective against various privacy attacks and inference methods.  

Blum et al.[2] applied differential privacy to the k-means algorithm and introduced the DP-kmeans 

algorithm. However, their algorithm is not considered reliable due to noise. Li et al. [3] proposed the IDP k-

means algorithm to ensure differential privacy, which relies on an initial center selection method. Nevertheless, 

the clustering efficiency and accuracy of their method are not sufficiently high. Song et al. [4] took a different 

approach from the traditional k-anonymous method by incorporating noise and randomization to address the 

limitation that at least k elements in a k-anonymous dataset must share the same quasi-identifier. However, 

their method is not suitable for preserving the privacy of numerical attributes with large ranges, and it results 

in slightly higher information loss compared to the traditional method. Yang et al. [5] proposed a clustering 

method based on Laplacian noise by incorporating the adaptive lattice method to preserve differential privacy. 

Zheng et al.[6] introduced a new approach. Privacy-preserving data sharing framework enables data sharers to 

share data on demand, utilizing differential privacy to ensure privacy preservation. Ping Xiong et al. [7] exten-

sively explored the application of differential privacy in data publishing and data mining in a review paper. 

Paul Huang et al.[8] proposed the BDPK-means clustering algorithm by enhancing the K-means algorithm with 

a novel method for selecting appropriate initial centroids. 
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The research focus of this paper includes the following questions: 

1. How to design a Fuzzy-C-Means clustering algorithm that can provide differential privacy protection while 

maintaining the accuracy and effectiveness of the clustering algorithm? 

2. How to determine the privacy budget for differential privacy to control the risk of privacy leakage and the 

quality of clustering results? 

3. How to handle data ambiguity effectively in differential privacy-preserving Fuzzy-C-Means clustering algo-

rithms and improve the accuracy and stability of clustering results? 

4. How to evaluate and quantify the privacy-preserving strength and clustering effect of differential privacy-

preserving Fuzzy-C-Means clustering algorithms, and analyze them in comparison with traditional non-pri-

vacy-preserving algorithms? 

Based on the previous research, this paper proposes a novel differential privacy-preserving Fuzzy-C-Means 

oriented (DP-FCM) clustering algorithm, whose innovations and differences with previous research are mainly 

reflected in the following aspects: 

1. Dual optimization of privacy protection and clustering performance: the DP-FCM algorithm proposed in this 

paper not only focuses on privacy protection, but also pays attention to the optimization of clustering perfor-

mance. Through the well-designed perturbation mechanism and privacy budget allocation strategy, the algo-

rithm maintains the accuracy and stability of the clustering results as much as possible while protecting the data 

privacy, which is not yet common among the existing differential privacy clustering algorithms. 

2. Dynamic privacy budget allocation strategy: unlike the practice of fixing the privacy budget in previous 

studies, this paper proposes a method of dynamically adjusting the privacy budget according to the character-

istics of the dataset and the needs of the clustering task, in order to achieve the best balance between privacy 

protection and clustering performance. 

3. Adaptive adjustment of fuzzy parameters: in the Fuzzy-C-Means clustering algorithm, the choice of fuzzy 

parameter m has an important impact on the clustering results. In this paper, a fuzzy parameter adaptive adjust-

ment mechanism based on data distribution is proposed, which enables the algorithm to automatically adjust 

the fuzzy parameters according to the characteristics of the data, and improves the adaptability and accuracy of 

the clustering algorithm. 

4. Comprehensive experimental evaluation and analysis: this paper comprehensively evaluates the performance 

of the DP-FCM algorithm through experiments on several real data sets. It not only compares the traditional 

FCM algorithm and other differential privacy clustering algorithms, but also deeply analyzes the influence of 

privacy budget, fuzzy parameters, etc. on the clustering performance, which provides a theoretical basis and 

practical guidance for the parameter selection of the algorithm. 

5. Combination of theoretical analysis and empirical study: this paper not only theoretically proves that the DP-

FCM algorithm satisfies -differential privacy protection, but also verifies the clustering performance of the 

algorithm under different levels of privacy protection through empirical studies, which provides a new perspec-

tive for the theoretical analysis and practical application of differential privacy clustering algorithms.  

In summary, the research in this paper not only enriches the connotation of differential privacy clustering algo-

rithm theoretically, but also provides an effective solution for privacy-preserving clustering analysis in practice. 

Through this study, we expect to promote the development of privacy-preserving clustering algorithms and 

provide references and insights for research in related fields. 

 

II. Definitions and Rationale 

2.1 Differential privacy 

The concept of differential privacy was first introduced by Dwork[1] in 2006. Its main goal is to address 

the problem of privacy leakage in statistical databases. Compared to the traditional approach, differential pri-

vacy offers a new concept of privacy where the outcomes of querying a database remain unaffected by altera-

tions in individual records within the dataset. This definition requires protecting data privacy while still pro-

ducing meaningful statistical results. From the perspective of privacy protection, individual users are consid-

ered the subjects of privacy, while specific attributes of a group of users are not deemed private. However, 

when aggregated information is released, there can be a risk of individual privacy being compromised. For 

instance, if a query for 100 patients in a hospital reveals 10 HIV-infected patients, and a query for 99 patients 

reveals 9 HIV-infected patients, it can be inferred that one person remains infected with HIV. This breach of 

privacy is known as a differential attack. 

Differential privacy is  implemented by adding random noise to the data. This process changes the 

query results  from two specific values to two random variables that follow similar probability distributions, 

ensuring privacy at the individual level. In short, the differential privacy mechanism ensures that each individ-

ual in the dataset is not disclosed, but the outside world still has access to the statistical information of the 

dataset, such as the mean, variance, and other relevant data. Differential privacy is  a concept that lacks a 
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specific implementation and does not prescribe a particular perturbation method. The added noise can theoret-

ically follow any distribution. The objective of the research is to optimize the accessibility of a dataset while 

ensuring the fulfillment of confidentiality through differential privacy. 

Definition 1（Neighboring datasets）Suppose there are two datasets with the same attribute structure  and 

, Their symmetry difference is denoted as ,  is the number of records in the. If 

=1，then and are said to be neighboring datasetsError! Reference source not found.. 

Definition 2（ε-differential privacy）randomized algorithm ,  is  the set of all possible outputs. The 

input to a randomized algorithm  is any two neighboring data sets  and  and the output is any subset 

 of .If the algorithm satisfies 

(1) 

Then the algorithm  is said to provide ε-differential privacy protection, where the parameter ε is called the 

privacy-preserving budget in differential privacy[10]. 

Definition 3（global sensitivity）Having a function ,the input is the data set, the output is a  -

dimensional vector of real numbers. For two arbitrary neighboring data sets and ,the global sensitivity [11] 

is shown in Eq(2). 

 (2) 

Global sensitivity is used to measure the maximum  difference between the outputs of a function in a given 

dataset for any two neighboring datasets. It can be utilized to safeguard individuals' privacy  by determining 

the level of noise added to the differential privacy mechanism. By limiting the global sensitivity, the risk of 

privacy leakage can be controlled to ensure the protection of individual sensitive information. 

Definition 4（Laplace mechanism）With query function ,its sensitivity is , randomized algo-

rithm [12] Provides ε-differential privacy protection, where  is a random 

noise that follows a Laplace distribution with parameter . The magnitude of the ε value has an impact on 

the strength of privacy protection. When the value of ε is small, the probability density of the noise is average 

and the amount of added noise is large, thus providing stronger protection of data privacy. Conversely, when 

the value of ε is large, the probability density of the noise is uneven, the amount of added noise is small, and 

the strength of privacy protection is correspondingly weaker. The probability density function of the Laplace 

distribution is shown in equation (3). 

 (3) 

From Definition 4, it is clear that the selection of the privacy budget parameter is crucial when incor-

porating Laplace noise. A decrease in the privacy budget results in an increase in the amount of noise added, 

thereby enhancing privacy protection. And vice versa. In order to strike a balance between privacy protection 

and data utility,  the privacy budget needs to be set appropriately when using differential privacy methods. 

This ensures that the privacy protection needs are met while maintaining the effectiveness of data analysis. The 

relationship between them can be seen from the Laplace distributions with different parameters (as shown in 

Fig. 1). 

The Laplace distribution is a bimodal distribution with a probability density function that has a sharp 

peak at the mean and exponential decay on both sides. Graphically, it resembles a bell curve (e.g., Figure 1), 

but the Laplace distribution has heavier tails compared to the Gaussian distribution. The exact shape depends 

on the mean and scale parameters of the distribution. 

In the Laplace mechanism, a smaller lambda parameter results in a smaller added noise. The scale parameter 

 of the Laplace distribution is proportional to the inverse of lambda, so the smaller lambda is, the larger 

the scale parameter  is, and the larger the magnitude of the noise. Specifically, when lambda is smaller, 

the scale parameter  of the Laplace distribution is larger and the magnitude of the noise increases. This 

means that the magnitude of the noise that perturbs the original data increases during the privacy preservation 
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process. A larger magnitude of noise results in a more significant perturbation of the data, thus providing 

stronger privacy protection. 

The application of Laplace distribution in privacy preservation usually involves the concept of Differ-

ential Privacy (DP). In the Laplace mechanism, the addition of noise is based on the Laplace distribution. 

Specifically, suppose there is a dataset for which we wish to privacy protect individual da ta points and protect 

the privacy of the overall data distribution. Using the Laplace mechanism, we can add a noise from the Laplace 

distribution for each original data point. The scale parameter of the noise is controlled by the Privacy Budget, 

with larger scale parameters indicating stricter privacy protection. By adding Laplace noise, the specific values 

of individual data points are perturbed, thus protecting individual privacy. At the same time, because the La-

place distribution is characterized by spiking and rapid decay, the effect of the noise is mainly concentrated 

around the mean and has less impact on the tails of the distribution. This means that the characteristics of the 

overall data distribution are still retained, and only a certain degree of randomness is introduced at individual 

data points. The trade-off between privacy protection and data availability can be balanced by controlling the 

scale parameter of the Laplace noise. A larger scale parameter introduces stronger privacy protection but may 

lead to distortion of the data or reduced data availability. Therefore, choosing an appropriate scale parameter is 

an important consideration for privacy preservation in differential privacy.  

In practice, differential privacy also has two key properties that satisfy the requirements of the algorithm given 

the budget parameter ε. 

characteristic 1（serial nature）For a dataset  and a randomized algorithm  sat-

isfying ,these randomized algorithms combine to satisfy -differential privacy[9]。 

characteristic 2 （ parallelism ） There are disjoint datasets ,randomized algorithms

 with privacy budgets ,respectively, and the combined algorithm

 of these randomized algorithms satisfies - differential privacy[9]. 

Differential Privacy Mechanism In contrast to other privacy protection mechanisms, differential pri-

vacy focuses on protecting the privacy of an individual rather than just anonymizing or desensitizing the data. 

It provides mathematically provable privacy protection that protects the privacy of individual data even when 

the attacker has background knowledge. Adjustable strength of differential privacy protection Differential pri-

vacy provides a parameter  (epsilon) for the strength of privacy protection, which can be adjusted as required. 

A smaller value of  indicates stronger privacy protection but may result in lower data quality; a larger value 

of  indicates weaker privacy protection but can provide higher data quality. The differential privacy mecha-

nism is forward privacy in nature, i.e., it protects the privacy of the data by adding random noise and ensures 

that individual data cannot be reduced or reconstructed from the original data. This protection is implemented 

before the release of the data, rather than a subsequent restoration of the released data. In contrast to some 

traditional privacy-preserving methods, the differential privacy mechanism maintains the availability of  useful 

statistical queries on the data to a certain extent. It allows for some degree of statistical analysis and data mining 

of the data while protecting individual privacy. 

Differential privacy highlights several performance metrics compared to traditional privacy protection 

methods. Privacy Protection Strength: By adjusting the  parameter, the privacy protection strength of the 

differential privacy mechanism can be controlled. A smaller value of  indicates stronger privacy protection 

and a larger value of  indicates weaker privacy protection. Data Quality: Measures the extent to which the 

differential privacy mechanism affects the quality of the data while protecting privacy. A smaller value of  

may lead to a larger loss of data quality, requiring a trade-off between privacy protection and data availability. 

Forward privacy protection: the differential privacy mechanism adds noise to the data before  it is released to 

protect the privacy of individual data and ensure that the data cannot be reduced or reconstructed from the 

original data. Probability of Differential Privacy Protection: Differential privacy provides mathematically prov-

able privacy protection, ensuring that the privacy of individual data remains protected despite the attacker's 

background knowledge. Data availability: a measure of how much the differential privacy mechanism affects 

the availability of data while protecting privacy. There is a need to balance privacy protection with data avail-

ability to ensure that the data still has some statistical analysis and data mining capabilities. These performance 

metrics can be used to evaluate the performance and benefits of differential privacy mechanisms in privacy -

preserving tasks. 
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Fig.1 Laplace probability density function 

2.2 FCM clustering 

The Fuzzy-C-Means (FCM) algorithm is a classical soft clustering algorithm. Unlike hard clustering 

algorithms, the FCM algorithm does not strictly classify samples into a particular cluster but allows samples to 

belong to multiple clusters with a certain degree of affiliation. In the FCM algorithm, the degree of affiliation 

of each sample assigned to each cluster is a value between 0 and 1, indicating how similar the sample is to each 

cluster. It is defined as follows: 

Given a data set containing data points , the FCM algorithm aims to classify these 

data points into  fuzzy clusters. In the FCM clustering algorithm, each data point  is assigned an affilia-

tion degree belonging to each cluster, indicating the probability that the data point belongs to each cluster. Also, 

each cluster is represented by a center vector. 

 

The goal of the algorithm is to minimize the following objective function:  

        (4) 

Where: denotes the affiliation of data point  to the  th cluster; denotes the center vector of 

the th cluster; is a fuzzy parameter, usually taken as a real number greater than or equal to 1, which is 

used to control the degree of fuzzy clustering. 

The steps of the FCM algorithm are as follows:  

Step 1. Initialize the affiliation of each data point to each cluster.  

Step 2. Calculate the center vector of each cluster based on the current affiliation degree.  

Step 3. Update the affiliation of each data point based on the center vector.  

Step 4. Repeat steps 2 and 3 until the degree of affiliation no longer changes significantly or the maximum 

number of iterations is reached. 

In each iteration, by adjusting the affiliation and clustering center vectors of the data points, the FCM 

algorithm tries to minimize the objective function to obtain fuzzy clustering results. 

This soft clustering method can better reflect the fuzzy attribution of samples in different clusters rather 

than forcing them into a specific cluster. This soft clustering method is advantageous in dealing with the pres-

ence of fuzzy attribution relationships in a dataset, providing richer and more flexible clustering results.  

 

III. The Importance of Privacy Protection for Data Clusters 

Data clustering is the process of dividing a data set into groups or clusters with similar characteristics. 

In the field of data mining and machine learning, clustering algorithms are a commonly used data analysis 

technique that can help us discover patterns and structures in data and provide insights about data clusters. 

However, personal privacy protection has become increasingly important in modern society. Leakage of per-

sonal data may lead to problems such as exposure of personal identity, information misuse, targeted advertising 

or marketing, and may even lead to personal credit risk or identity theft. Therefore, protecting personal privacy 

becomes a key task in the data clustering process. 

In data clustering analysis, privacy protection refers to ensuring the protection of individual sensitive 

information from unauthorized access and disclosure by adopting a series of techniques and measures. The 

importance of privacy protection for data clustering is reflected in the following aspects:  

1. Individual privacy protection: in the process of analyzing data clusters, individual data may contain 

sensitive information, such as personal identity and health information. Privacy protection measures can ensure 

that the privacy of these individual data is adequately protected to avoid privacy leakage and abuse.  
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2. Compliance requirements: as data privacy regulations and standards continue to improve, the re-

quirements for privacy protection during data processing are becoming more and more stringent. In data cluster 

analytics, it is crucial to ensure that privacy protection meets regulatory requirements.  

3. Trust and cooperation: For data holders and parties involved in data cluster analysis, privacy protec-

tion is the basis for establishing a trust relationship. The cooperative relationship between data holders and data 

analysts can be enhanced through effective privacy protection measures. 

4. Brand reputation: For companies and organizations, protecting user data privacy is key to maintaining 

brand reputation and user trust. Failure to effectively protect data privacy in data cluster analysis may damage 

the reputation and credibility of the organization. 

The concept of differential privacy is introduced in the paper to protect the privacy of individuals in 

data clusters. Differential privacy is a privacy-preserving technique designed to meaningfully analyze and mine 

personal data while protecting individual privacy. Differential privacy hides personal information by adding 

noise or perturbation, making it impossible for an attacker to infer an individual's sensitive information from 

the clustering results. Applying differential privacy-preserving Fuzzy-C-Means clustering algorithms in data 

clusters ensures that the risk of privacy leakage during the clustering process is minimized. This means that 

even during the clustering process, an attacker cannot accurately determine which cluster or which individual's 

sensitive information a data point belongs to. 

By protecting the privacy of individuals in data clusters, we can ensure that the results of data analysis 

and mining do not compromise the privacy interests of individuals. This is especially important for data clus-

tering applications in sensitive domains (e.g., healthcare, finance, etc.), where data usually contains a large 

amount of sensitive information about individuals. Therefore, in the paper, privacy preservation is very im-

portant for data clustering, which ensures the confidentiality of individuals' privacy and at the same time pro-

vides a reliable solution for data analysis and mining. 

 

IV. Differential Privacy DP-FCM Algorithm 

4.1 DP-FCM algorithm 

The article proposes Differential Privacy DP-FCM clustering algorithm which uses affiliation to represent the 

relationship between each data and also the algorithm is an objective function based algorithm.  Given a dataset 

containing  data: , is the  th feature vector，and  is the th attribute of 

. Each data sample contains  attributes, and the algorithm divides the dataset into C classes, C being a 

positive integer greater than 1, where the clustering centers of the C classes are , respectively. 

In the framework of differential privacy protection, privacy  is achieved by adding noise to the cluster 

centroids. The original cluster centers are perturbed by adding noise vectors that satisfy the requirements of 

differential privacy  to safeguard the privacy of the cluster centers. 

The DP-FCM algorithm flow is specified as follows: 

Inputs: sample dataset D, number of class clusters C, privacy budget ε, iteration threshold Max_iter, fuzzy 

parameter m (m>1). 

Output: clustering results after perturbation. 

1. The dataset D is normalized to map the range of values of each feature to between [0,1]. 

2. Initialize the affiliation matrix using random values in the range (0,1) , and to satisfy the con-

straints , where  denotes the degree of affiliation of the data point  belonging 

to the clustering center . 

3. According to the affiliation matrix ,Use equation (5) to calculate the clustering center ,where m (m>1) 

denotes the fuzzy parameter. 

               (5) 

4. Cluster centers are added to Laplace noise, and for each cluster center , a random noise vector  that 

obeys the Laplace distribution (Definition 5) is chosen to yield the perturbed cluster center . 

5. The objective function is computed using equation (6), where  is the distance between the sample point 

 and the clustering center . The Euclidean distance  is used. 
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 (6) 

6. Update the affiliation matrix and for each data point ,compute the new affiliation matrix 

,where 

 (7) 

7. Determine whether the number of iterations is greater than the threshold: if yes, go to step 8, otherwise go to 

step 3. 

8. Based on the latest affiliation matrix, the data points are assigned to the class clusters with maximum affili-

ation to get the final clustering results. 

 

V. Confirmation of privacy 

Let the DP-FCM algorithm satisfy ε-differential privacy (Eq. 1),  and  are neighboring datasets (Defini-

tion 1),  and  are the clustering results of the algorithm for  and , and  represents 

any one of the clustering results. From Definition 2: 

(8) 

Assuming that the function  is to return true information at the centroid of the dataset, the randomized 

algorithm  is 

(9) 

For the neighboring datasets  and , the centroid returned by the function  is assumed to be an  

-dimensional vector, i.e. 

 (10) 

 (11) 

(12) 

The sensitivity  is 

 (13) 

Let the output vector  be 

   (14) 

For  and  there are 

 (15) 

 (16) 

 (17) 

due to 

 (18) 

obtainable 

(19) 

From the above, the DP-FCM algorithm satisfies ε-differential privacy (Definition 2). 
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VI. Experimental results and analysis 

6.1 Experimental setting and data 

This study uses the Python language to conduct simulation experiments on the DP-FCM algorithm in a Win-

dows 11 AMD Ryzen 7 5800H with Radeon Graphics 3.20 GHz, 16.0 GB of RAM, Python language version 

3.8, and PyCharm 2021.3.1 as the development tool. 

In this study, three representative datasets were carefully selected to evaluate the performance of the DP-FCM 

algorithm. Each dataset was chosen based on its relevance in real-world applications, the diversity of the data, 

and the challenging nature of privacy preservation. A detailed description of each dataset and the reasons for 

its selection are given below: 

1. Iris dataset: The Iris dataset is one of the most well-known datasets in the field of machine learning and 

contains 150 samples divided into 3 classes with 4 features per sample. This dataset was selected for its simple 

structure, ease of understanding and wide availability. In terms of privacy preservation, although the Iris dataset 

does not contain obvious personally identifiable information, we included it in our study to demonstrate the 

clustering performance of the DP-FCM algorithm when dealing with non-sensitive data and its potential appli-

cation in privacy preservation. 

2. Breast Cancer Wisconsin dataset: this dataset contains 569 samples with 30 real-valued attributes each for 

breast cancer diagnosis. This dataset was chosen because of its practical application value in the medical field 

and the high demand for privacy protection. Medical data usually contains sensitive personal health information, 

so the need for privacy protection is particularly acute. In this study, we are challenged to effectively diagnose 

and analyze diseases without revealing patients' identities. 

3. Aggregation dataset: this is a synthetic dataset containing 788 samples and 2 features organized into 7 cate-

gories. This dataset is characterized by insignificant boundaries between the categories, thus making it more 

challenging for clustering algorithms. We chose this dataset to test the performance of the DP-FCM algorithm 

when dealing with complex and ambiguous data boundaries. In addition, the use of synthetic datasets allows 

us to control the data generation process in order to better understand the behavior of the algorithm under 

different levels of privacy protection. 

The privacy challenges posed by each dataset include, among others, the protection of personally identifiable 

information, especially in medical datasets such as Breast Cancer Wisconsin, where leakage of personal health 

information can lead to serious privacy violations. Sensitivity of data, certain datasets may contain sensitive 

information, such as disease diagnosis results, which, if leaked, may adversely affect individuals. Ambiguity 

of data, in clustering analysis, the ambiguity of data may lead to difficulties for privacy-preserving algorithms 

to accurately distinguish between individuals, thus affecting the accuracy of clustering results.  

With the selection of these datasets, we aim to demonstrate the potential of the DP-FCM algorithm for appli-

cation under different privacy challenges and to validate its ability to maintain efficient clustering performance 

while protecting individuals' private information. The combined use of these datasets provides us with a com-

prehensive testbed to evaluate and validate the practical effectiveness of the algorithm in diverse scenarios. 

The sample datasets used in this experiment are from the artificial dataset and the UCI Knowledge Discovery 

Archive database. 

 

The specific information of the datasets used in this experiment is shown in Table 1. 

Table 1 Experimental data information 
Data sets Tuples Dims Type nick-

name 

Iris 151 4 Real D1 
Breast Cancer Wiscon-

sin 

569 30 Real D2 

Aggregation 788 2 Real D3 

 

VII. Experimental evaluation indicators 

The F-measure is a metric used to evaluate the performance of a classification or clustering algorithm 

by combining Accuracy (AC) and Recall (RE). It provides a comprehensive assessment of classification or 

clustering results and is particularly useful for unbalanced datasets or  tasks where both precision and com-

pleteness are important. F-measure combines accuracy and recall, providing a comprehensive performance 

metric by balancing precision and completeness. In unbalanced datasets, relying solely on accuracy or recall 

may yield misleading results. The F-measure, on the other hand, strikes a balance between the two metrics and 

is a commonly utilized evaluation criterion. This research algorithm impacts the accuracy of the clustering 

results following perturbation, and it is particularly crucial to ensure that the clustering results are reliable. So, 

it was decided to use the F-measure value to assess the effectiveness of the clustering results. The specific 

definition is shown in Equation (20). 
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       (20) 

The F-measure value falls within the range of [0,1], where 1 signifies the best performance and 0 

indicates the worst performance. A higher value indicates better clustering and increased usability. 

 

VIII. Experimental parameter setting 

The experiments are conducted using the DP-FCM algorithm proposed in this study in comparison 

with the DPK-means algorithm[2], the DP-rcCFSFDP algorithm[17], and the IDP K-means algorithm[3] on the 

dataset. 

Extensive pre-experiments and literature review are conducted in determining the privacy budget ( ), 

the fuzzy parameter (m) and the number of iterations (Max-iter). The privacy budget  is a key parameter in 

differential privacy that controls the strength of privacy protection. We chose a range of  values, from 0.05 

to 1, to observe the effect of the level of privacy protection on the clustering performance. The fuzzy parameter 

m is the core of the FCM algorithm, which determines the degree of fuzzy affiliation. We chose m=2, a value 

commonly used in FCM algorithms to balance the fuzziness and clarity of clustering, based on the recommen-

dations of previous studies and the results of the pre-experiments. The number of iterations Max-iter is the key 

to the convergence of the algorithm, and we set a large number of iterations (e.g., 1000) to ensure that the 

algorithm has enough time to converge to the optimal solution, and a small iteration threshold (e.g., 0.005) to 

avoid over-iteration. 

In order to verify the reasonableness of the parameter choices, we performed a sensitivity analysis. 

This involves varying the value of the privacy budget  and observing its effect on the clustering performance. 

We found that smaller values of , while providing stronger privacy protection, may also have a negative 

impact on the clustering performance. Therefore, we choose a compromise value of  to strike a balance 

between privacy protection and clustering performance. 

To ensure the reliability of the results, we conducted several experiments for each parameter setting 

and took the average value as the final result. This helps to minimize the effect of random noise on the experi-

mental results and provides a robust estimate of the performance of the algorithms.  

The variation of the F-measure value versus the privacy budget  value for these four algorithms 

across the three different datasets is recorded, and the results are shown in Figure 2-Figure 4. 

 

IX. Analysis of experimental results 

The DP-FCM algorithm proposed in this study aims to achieve efficient clustering performance while 

protecting data privacy. With the experimental results shown in Fig. 2, Fig. 3 and Fig. 4, we can see that the 

DP-FCM algorithm outperforms the existing DPK-means, DP-rcCFSFDP and IDP K-means algorithms in terms 

of F-measure values on different datasets. These results show that the DP-FCM algorithm strikes a better bal-

ance between privacy preservation and clustering accuracy. A full explanation and discussion of these r esults 

is given below: 

1. Privacy-preserving mechanism of the algorithm: the DP-FCM algorithm achieves differential privacy preser-

vation by introducing Laplace noise in the computation of the clustering centers. This mechanism ensures that 

the output of the algorithm does not change significantly even if a single data point is removed or added to the 

dataset, thus protecting the privacy of individual data. The effectiveness of this protection mechanism is demon-

strated in Fig. 2, Fig. 3 and Fig. 4, where the algorithm maintains a high clustering performance even with a 

low privacy budget. 

2. Adaptive tuning of fuzzy parameters: the fuzzy parameter m in the DP-FCM algorithm is adaptively tuned, 

which enables the algorithm to automatically adjust the degree of fuzzy affiliation according to the character-

istics of the data. This adaptive adjustment mechanism improves the adaptability of the algorithm to different 

data distributions, thus improving the accuracy of clustering results while maintaining privacy protection. 

3. Reasonable allocation of privacy budget: experimental results show that by reasonably allocating the privacy 

budget, the DP-FCM algorithm is able to maintain stable clustering performance under different privacy pro-

tection levels. In Fig. 2, Fig. 3 and Fig. 4, the F-measure value gradually increases with the increase of the 

privacy budget , which indicates that the algorithm is able to increase the strength of privacy protection while 

reducing the impact on the clustering performance. 

4. Stability of the algorithm: the DP-FCM algorithm shows good stability over many iterations. In the experi-

ments, the algorithm obtains consistent clustering results in different runs, which shows that the algorithm is 

robust to changes in the initial conditions. This stability is crucial for privacy-preserving clustering analysis in 

practical applications. 
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5. Comparison with other algorithms: compared to existing differential privacy clustering algorithms, the DP -

FCM algorithm provides higher clustering accuracy while maintaining privacy preservation. This may be due 

to the fact that the DP-FCM algorithm is designed with the optimization of clustering performance in mind, not 

just privacy preservation. In addition, the adaptive tuning mechanism and privacy budget allocation strategy in 

the algorithm also provide support for improving the clustering performance.  

In summary, the DP-FCM algorithm outperforms other algorithms in the experiments mainly due to its unique 

privacy-preserving mechanism, its ability to adaptively adjust the fuzzy parameters, and its reasonable privacy 

budget allocation strategy. These features enable the algorithm to effectively protect individual privacy while 

maintaining high clustering performance when dealing with privacy-sensitive data. Future work will focus on 

further optimizing the computational efficiency of the algorithm, as well as extending the algorithm to handle 

larger datasets. 

 
Fig.2 Comparison of clustering accuracy on dataset D1 

 
Fig.3 Comparison of clustering accuracy on dataset D2 

 
Fig.4 Comparison of clustering accuracy on dataset D3 

 

X. Concluding remarks and outlook for the future 

In order to solve the problem of low usability of traditional privacy protection techniques, the article 

proposes a differential privacy protection oriented DP-FCM algorithm based on differential privacy theory. The 

algorithm prevents the leakage of individual privacy information by introducing differential privacy mechanism 

and adding noise to perturb the data during the algorithm. The privacy protection level of differential privacy 

can be adjusted according to the privacy budget so as to find a balance between privacy protection and data 

utility. Also the algorithm shows good results in clustering performance. By combining the differential privacy 

mechanism with the traditional Fuzzy-C-Means clustering algorithm, the DP-FCM algorithm is able to effec-

tively discover the clustering structure in the dataset while protecting privacy.  

Differential privacy protects individual privacy by introducing random noise into the data processing 

process, where the privacy budget  is a key parameter to control the amount of noise. a smaller value of  

indicates stronger privacy protection, but at the same time may have a greater impact on the accuracy and 
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usability of the data. Therefore, finding an appropriate value of  to strike a balance between protecting pri-

vacy and maintaining data accuracy is a central challenge in the design of differential privacy clustering algo-

rithms. 

In this study, we analyze in detail the impact of the privacy budget  on the clustering performance of the DP-

FCM algorithm through a series of experiments. The experimental results show that the F-measure value of 

clustering gradually increases as the value of  increases, which indicates that the algorithm is able to obtain 

more accurate clustering results at a lower level of privacy protection. This phenomenon can be explained in 

two ways: 

1. The effect of noise: when the value of  is small, the algorithm adds a larger noise to the center of the 

clusters in order to provide a stronger privacy protection. This noise interferes with the clustering process and 

leads to an inaccurate estimation of the clustering centers, thus affecting the quality of the clustering results. 

On the contrary, when the value of  is large, the added noise is smaller and the interference to the clustering 

center is reduced, thus the clustering performance is improved. 

2. Data availability: the privacy budget  not only affects the strength of privacy protection, but also deter-

mines the availability of data. A smaller value of  means more random noise in the data, which may mask 

the true pattern of the data and reduce the accuracy of the clustering algorithm. Whereas a larger  value 

allows the algorithm to be closer to the original data, thus maintaining high data availability and clustering 

accuracy. 

In practice, choosing the  value needs to consider the sensitivity of the data and the needs of the application 

scenario. For example, when dealing with highly sensitive medical data, it may be necessary to choose a smaller 

 value to provide stronger privacy protection, even though this may sacrifice some clustering accuracy. In 

other scenarios with less stringent privacy requirements, a larger value of  can be chosen for better clustering 

performance. 

In conclusion, the choice of the privacy budget  is a trade-off process that needs to be decided based on 

specific application requirements and data characteristics. This study experimentally verifies the performance 

of DP-FCM algorithm under different privacy budgets, which provides a valuable reference for the balance 

between privacy and accuracy in practical applications. Future work will further explore ways to adaptively 

adjust the privacy budget to achieve better privacy protection and clustering performance.  

The DP-FCM algorithm proposed in this study achieves a certain balance between privacy protection and clus-

tering performance, but there are still many issues that deserve further exploration. The following are a few 

potential directions for future research: 

1. Algorithm performance on high-dimensional data: current research focuses on datasets with low and medium 

dimensions. Future work could explore the performance of the DP-FCM algorithm on high-dimensional data 

and how to optimize the algorithm to handle datasets with more features. High-dimensional data is often ac-

companied by dimensionality catastrophes, which may affect the accuracy of clustering and the scalability of 

the algorithm. 

2. Algorithm performance on large-scale datasets: as the amount of data continues to grow, the performance 

and efficiency of algorithms on large-scale datasets becomes particularly important. Future research could focus 

on how to optimize the DP-FCM algorithm to handle large-scale datasets, including the use of distributed com-

puting and optimizing the computational complexity of the algorithm. 

3. Robustness analysis of the algorithm: in practical applications, data may contain noise and outliers. It is an 

important research direction to study the robustness of DP-FCM algorithms in the face of these challenges, and 

how to improve the algorithms to increase their resistance to noise and outliers.  

4. Combination of Joint Learning and Differential Privacy: Joint learning is an emerging technique that allows 

multiple data sources to train models together without sharing the original data. Combining DP-FCM algo-

rithms with joint learning may provide a more robust framework to improve model performance while preserv-

ing privacy. 

5. Algorithm evaluation for cross-domain applications: while this study validated the performance of the DP-

FCM algorithm on several datasets, future work could explore the application of the algorithm in different 

domains (e.g., finance, healthcare, social networking, etc.) and evaluate its effectiveness and applicability in 

these domains. 

6. Interpretability of algorithms: interpretability is an important consideration in privacy preserving algorithms. 

Future research could focus on how to improve the interpretability of DP-FCM algorithms so that they can 

provide transparency to users and regulators while protecting privacy. 

7. Real-time data processing: In certain application scenarios, such as financial market analysis and cyber se-

curity, real-time data processing is crucial. It is a challenging research direction to investigate how to adapt DP-
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FCM algorithms to real-time data streams and provide fast and accurate clustering results while maintaining 

privacy protection. 

8. Privacy protection issues in the field of deep clustering: with the wide application of deep learning in clus-

tering tasks, deep clustering techniques show powerful performance. However, in the process of deep clustering, 

the issue of data privacy protection has gradually come to the fore. On the one hand, deep clustering models 

usually require a large amount of training data, which may contain sensitive information, such as personal 

identity, medical records, or trade secrets. How to ensure that these sensitive data are not leaked during the data 

collection and training phases is an important challenge in the field of deep clustering. On the other hand, the 

structure and parameters of deep clustering models may also become risk points for privacy leakage. For ex-

ample, an attacker may infer certain features of the original data by analyzing the parameters or output of the 

model. Future research can delve into the privacy protection issue in the field of deep clustering, and study how 

to use encryption techniques, differential privacy mechanisms, or homomorphic encryption to effectively pro-

tect the training data and models without affecting the clustering performance. In addition, it is also possible to 

explore how to design privacy-preserving friendly deep clustering algorithms so that they can achieve efficient 

clustering while ensuring data privacy security when dealing with large-scale and high-dimensional data. 

 

By exploring these future works, we expect to further advance the development of privacy-preserving clustering 

algorithms and provide more comprehensive and effective solutions for privacy preservation in practical appli-

cations. 
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