
International Journal Of Engineering Research And Development

e- ISSN: 2278-067X, p-ISSN: 2278-800X, www.ijerd.com

Volume 21, Issue 4 (April 2025), PP 67-74

67

An Efficient Real-time Cryptography Algorithm for IoT

Devices

Fagbohunmi Griffin Siji 1 Uchegbu Chinenye. Eberechi 2
1 Computers Engineering Department Abia State University Uturu Nigeria.

2 Electrical and Electronic Engineering Department, Abia State University Uturu Nigeria.

Abstract:

The use of cryptographic algorithms are to enable secure transmission of data between any two nodes on a

network. The mechanism used by cryptographic algorithms where their action is based on processing of data

blocks make them unsuitable to be deployed in IoT devices network This is because IoT devices are mostly

embedded any thus energy and memory constrained. The aim of this paper is to design a cryptographic algorithm

that has low memory requirement and real time ability. The algorithm is based on a variant of the AES

cryptographic algorithm specifically designed for memory constrained IoT devices with additional features such

as real time operation. The additional feature of real time operation is to enable the algorithm to be used in most

IoT network system where response is usually needed in real time. The algorithms also makes use of threads that

enable certain operation to be suspended if they are not immediately needed for the task at hand. This capability

makes the algorithm to optimize the use of the IoT device’s RAM for multitasking operations. The design proposed

in this paper employs an AES algorithm using an updating process comprising a cipher key of 10KB of flash and

780 bytes of RAM with a real-time response of about 13.5μs

Keywords: Computer Network Security, Cryptography, Embedded Systems, Internet of Things.

--- ----------

Date of Submission: 02-04-2025 Date of acceptance: 12-04-2025

--- ----------

I. INTRODUCTION

Internet of things (IoT) comprises of connected groups of embedded devices, each having

microcontrollers, microprocessors, specialized software and a number of sensors. These IoT devices always

operate on the internet to transmit data to one another (Gehrmann and Gunnarsson, 2019). IoTs are responsible

for providing distributed resources and services which are shared amongst themselves to different organisations,

home or sites requiring them. It is therefore possible to send data to any device or anyone using IoT network (Latif

et al.2020). The embedded devices have the similar functionality as the computer, however they are small as they

are normally inside another device. They also have specialized functions with varieties of sensors for receiving

different types of data and converting them to electrical signals using their transducers., these makes them different

from general purpose computers (Rosero-Montalvo et al., 2021). With their varieties of sensors, it is therefore

possible to get a large volume of data, from which certain information or knowledge can be adduced using machine

learning algorithms for a better and effective utilization in real life scenario (Islam et al., 2019). Despite these

good functionality of IoT devices, there is the need to protect them from adversarial threats and attacks. It therefore

becomes imperative to protect IoT networks especially when there output can affect human life or industrial

processes. Standard security techniques such as cryptography algorithms with end to end signatures must then be

employed to safeguard IoT networks (Khan et al., 2021). Due to the amount of overhead required in cryptography

algorithm processing, they usually involve a high volume of information (blocks of data) therefore, their

compilation requires a lot of resources which cannot be done by the IoT devices due to their memory and

computationally constrained nature. Moreover the block size of the IoT devices is much smaller than that used in

cryptography algorithm, these leaves spaces in the cryptography blocks leading to wastage of memory and

inefficient resource utilization.

Cryptography algorithms will therefore result in overheard for the IoT devices thereby causing increased

computational requirement which cannot be carried out by the memory and computationally constrained IoT

devices. It should be realized here that IoT devices can only compile small volumes of data due to its small RAM

flash sizes, limited power consumption, processor speed and real time capabilities (Prakash et al., 2019). IoT

devices uses different types of wireless network protocols to connect themselves together with a low rate of

transfer to the cloud, their low transfer rates if combined with the cryptography algorithm to be compiled cause

low response time for real time applications (Shah and Venkatesan, 2018).

http://www.ijerd.com/

An Efficient Real-time Cryptography Algorithm for IoT Devices

68

There is a new technique which involves the use of Trusted Execution Environments (TEE) to leave out

the cloud computing side’s users. Consequently microcontrollers with a trusted platform module (TPM) are being

designed to isolate certain software from the other system operations. It can be assumed that a microcontroller is

trusted since it runs only one application and therefore does not have multi-user security issues (Szymanski 2017).

With this assumption, the adversarial threats that can affect IoT devices are those external to it, which means that

the communication channel is susceptible to attack since many devices transmit data on the wireless

communication channel using the 802.11 protocols that are vulnerable to many weaknesses (Naru et al., 2017).

With this in mind, IoT devices are now designed to overcome weakness in security that is due to authentication.

In other words IoT devices are designed to authenticate the source of data, therefore if individual devices on the

network is secured the entire IoT network is also secured. An example of microcontroller with Trusted Execution

Environment (TEE) is the Arduino IoT products which has a crypto chip incorporated with specific libraries for

the connection of cloud services (Sung et al., 2018). The main function of the crypto chip is to connect the IoT

devices to the cloud. Generally in IoT devices wireless sensor networks, the devices repeatedly transmit data

between themselves while the IoT acting as the central node in the star topology communicates the aggregated

data to the cloud (Fotovvat et al., 2023), in this way, the information sent to the cloud will be secured since the

individual IoT devices in the network has incorporated in them the Trusted Execution Environment. (TEE).

However this mechanism cannot protect against malicious damage to the IoT devices or the injection of spam

onto the network.

The inclusion of cryptography application in IoT devices increase the overhead resulting in an increase

in latency which invariably affects the device’s response time. In this type of situation, it is important to increase

the algorithm efficiency by implementing parallel processing where a number of instructions which do not depend

on one another can be executed simultaneously. This can be done using a rea time operating system where

redundancy are inserted into the algorithm so as to increase the likelihood of running the program function in

appropriate time slots. This will increase the efficiency of the program execution, the aim of inserting these

redundancies is to simultaneously run the crypto library together with checking the remaining battery lifetime,

while the sensors are being calibrated before transferring data to other IoT devices. With these method one can be

sure that the data been transferred are authenticated.

The aim of this paper is therefore to propose an embedded cryptography algorithm using real time

operating system with optimum memory utilization. With this method, an encrypted message will be transmitted

in the IoT wireless sensor network within the memory and computational capability of the IoT devices with

enough memory to compile the program. In order to achieve this, it was assumed that the IoT devices and sensors

were trusted because of the Trusted Execution Environment (TEE) embedded in their microcontrollers while only

the wireless communication medium channel (802.11 n) is not.

The average RAM and flash size needed to execute the algorithm for the crypto library of AES 128 is 8

bits data bus size, this is compatible with the Arduino specification. The application used above was deployed for

the design a low latency response time software, by optimizing the parameters such as size of algorithm and

overhead. In order to further secure the wireless network, a function to update the cryptographic keys was

embedded in the TEE, this is necessary to secure the data transferred by the IoT devices. The size of the Real

Time Operating System used in implementing the AES cryptography algorithm was 0.8KB of RAM and 10KB

of flash, while the response time of the software was 075μS.

The remainder of the paper is organized as follows, a review of related works on implementation of IoT

cryptographic algorithm was discussed in section 2, the experimental setup was described in section 3, where the

requirements assumed for both RAM and flash size was designed. Section 4 discussed the result and analysis of

the experiments carried out, here the schedule of the real time function and optimization used was designed.

Section 5 concludes the paper.

II. REVIEW OF RELATED WORKS

Cryptographic algorithm of minimal size for IoT devices are currently new in the research field, this is

not unconnected with the type of information being gathered by sensors which often times are related to human

lives and other sensitive data in industries. So a lot of care and relevant advancement must be available before

delving into such sensitive areas. The advantages of wireless communication is not without security challenges,

and the IoT device being memory and computationally constrained cannot use the traditional cryptography

algorithms. Therefore cryptographic algorithms which can be deployed in hostile environments and also consume

little memory must be designed. According to (Khan et al., 2022); (Fotovvat et al., 2023), their work presented

an exhaustive comparisons of cryptography algorithm with comparatively small sizes deployed in different

environmental conditions Their result shows that the limited memory size of the IoT devices did not permit

security of transmitted data in hostile environment. According to (Guo et al., 2019), the researchers proposed a

reduction in the complexity of the block encryption while verifying their advantages on complex task like image

encryption. In the work of the researchers in (Jalaly and jalaly 2019), a new chaining encryption algorithm was

An Efficient Real-time Cryptography Algorithm for IoT Devices

69

presented for LPWAN IoT network while also providing statistical properties of the method. The aim of the work

was to empirically give data involving their memory and power consumption. In the work of (Dang et al., 2022),

an encryption algorithm for LORA wireless sensor network communication was presented. In the works of (Naru

et al., 2017); (Prakash et al., 2019); (Ramesh and Govindarasu, 2020); (Prakash et al., 2019); (Hijawi et al., 2023),

a new low memory design of cryptographic algorithm were proposed, where the method of traditional encryption

algorithm were modified to be conformable to the memory constrained wireless sensor network and provide

immediate response to query.. According to the works of researchers in (Gope and Hwang 2016); (Islamet al.,

2019), they employed FGPA and dual ARM processors in the design of low memory encryption algorithm suited

for IoT devices. In the work of (Tsai et al., 2018), the researchers designed an AES 128 secure channel using the

LORAWAN communication channel for IoT devices.

The works reviewed in this paper described the design of cryptographic algorithm for IoT networks,

however none of the works considered the option of transmitting data to the cloud. In recent works the cloud are

considered an extension of IoT network

Due to this development, cryptography algorithm must be designed to be conformable to this trend i.e.

aggregated data from the IoT network must be transmitted to cloud for enhanced security and compatibility with

current practice. For this reason, an IoT communication channel must be secured so as not to transmit corrupted

message to the cloud. Also the response time of the IoT network must be instant so as not to compromise its

purpose as well as the cryptography algorithm consuming little memory space.

III. Setup of Experiment

In this section, the Advanced Encryption Standard will be described together with its configuration The

assumptions made is then presented together with part of the network that is trusted and which components are

not

3.1 Advanced Encryption Standard

The Advanced Encryption Standard uses a symmetric block cipher for its encryption and decryption. In

this encryption, a block of plaintext is encrypted to give a block of ciphertext having the same size as the block of

plaintext. The encryption key sizes supported by AES are 128, 192 and 256 There are five modes supported by

AES, these include (i) Electronic Code Block (ECB) , (ii) Cipher in the block chaining mode (CBC mode), (iii)

Cipher Feedback mode (CFB mode), (iv) Output Feedback mode (OFB mode) and (v) Counter mode (CTR mode)

(Serra et al.,2021). Among these five modes, the CBC mode is the most widely used because it encrypts the

plaintext block to the ciphertext block while successive encryption blocks are XORed with the plaintext to get the

ciphertext, this is done until the last plaintext block is encrypted. The security of the CBC mode stems from the

fact that when the same plaintext is encrypted using this method at different times, it will obtain different

ciphertext due to the different encrypting keys used (Borges al., 2023).

.3.2 Current Cryptographic Libraries

A good number of Cryptographic libraries use the AES for the encryption and decryption of large

datasets. These libraries are not however compatible to the 8-bit/16-bit architecture of the IoT devices. In fact

very few research work has been done on cryptographic algorithm using AES on IoT devices. Among the few

works is that by (Rosero-Montalvo et al., 2021) where data received from some environmental conditions were

encrypted using AES into a 16-bit data bus. In this work a real time cryptographic system is designed using two

well-known libraries, Library 1 (Van Heesch, 2018) and Library 2 (Landman 2022)

3.3 Design of AES Encryption for IoT Devices

In order to design an AES encryption/decryption algorithm for IoT devises, the following simplification

will be made, (i) It is assumed that the data acquired by the IoT devices from the sensors of other ioT devices are

not corrupt or tampered with. (ii) The software used by the IoT devices does not contain virus. (iii) The program

in the RAM are customized so as to run the computationally involved AES algorithm. (iv) The network topology

of the IoT network is of star type where data is aggregated at a particular IoT device acting as the hub. (v) The

IoT at the hub is equipped with the encryption keys prior to deployment and (vi) the IoT devices receive the 16

bytes data from the AES encryption algorithm in series of two consecutive transmission

It is a well-known fact that AES is a synchronous cipher algorithm where both sender and receiver must know the

encryption/decryption key before initiating it. It is therefore a complex task to update the cipher keys, however

this can be done by generating two random numbers, where the first determines the number of times the encryption

key is used. After using the encryption key for that amount of time, the next cipher key will be generated by

XORing the cipher key with the next random number. The position of the next random number (i.e. number of

times the cipher key is repeated) in the ciphertext is only known to the IoT device at the hub of the star topology.

This means that only the IoT device at the hub can update the cipher key. The cipher key update is stored in the

An Efficient Real-time Cryptography Algorithm for IoT Devices

70

EEPROM so as to make the process unknown to other IoT devices on the network. In order to reduce the

computation in the RAM, the Rijndael S-box is stored in the flash. . At the end, the real time operating system is

used to reduce the response latency thereby using symmetric multiprocessing into the IoT device.

An IoT system used as an autonomous robot in greenhouses is shown in figure 1, it acquires various types of data

from its environment. LT-35 temperature sensor is used to sense the temperature of its surroundings, VEML6075

was used for the measurement of Ultraviolet rays’ level. Data were also gotten from the robot motors so as to

determine its velocity and gyration

. Figure 1 Robot in greenhouse environment

Operating Principle of the Autonomous Robot: The following series of operations are performed by the

autonomous robot, they are: Motor control, reception of motor parameters, battery status, receiving environmental

data, data encryption and transmitting information to neighbouring IoT devices Of all these steps, this paper only

concentrates on the data encryption. The processes involved in the encryption of data are: (i) receiving plain text

data input from the environment, (ii) converting the data into 16 hexadecimal bytes, (iii) Rotation of data, (iv)

substitution of bytes (v) x-box and shift rows (vi) Round key substitution comprising of circular byte left shift and

byte substitution, (vii) XORing the cipher text between either the rotation of data and round key substitution

IV. Results and Analysis

Here, the amount of memory used by each of the library used in this work is described. Together with the

description of the real time operating system adopted by the encryption/decryption algorithm. Finally the amount

of memory used by the RAM, flash and the real time response time was given

4.1 Used Memory

In order to calculate the resources required to compile the AES algorithm used fin this work, the memory

consumption and response time for lib 1 and lib 2 were computed. The algorithm was designed using almost all

the registers available in the RAM with optimization. The correct size for each register variable was then defined

together with some constant variable size registers. The code blocks for making the threads were then defined, all

these were inserted in the real time operating system (AES-RTOS v4) of the IoT devices. The response time to

any query and the amount of memory consumed were determined at compile time of the cryptographic program.

The keys used for encryption was stored in the ROM of the IoT device acting as the central hub so as not to be

accessible to any other IoT devices on the network,

4.2 The Design of the Real Time Operating System

The advanced encryption system defined for the IoT network comprises of four threads, these are (i)

plain text consisting of 16 hexadecimal bytes, (ii) data rotation which defines the byte substitution and number of

rows to be shifted, (iii) round keys which defines the number of bytes for the cyclical shift bytes and byte

substitution (x-box) and (iv) the cipher text which was obtained by XORing the data rotation key and the round

key. It should be noted here that the number of consecutive keys required to encrypt the plain text is equal to the

number of the cyclical bits. As said earlier, these keys are stored in the ROM of the IoT device acting as the central

hub of the star topology network. In order to implement this design, the IoT devices acquire the plaintext from its

environment using their sensors, these are stored in two consecutive 8-bit hexadecimal in the IoT data bus as it

can be recalled that the data input from the AES encryption is 16 bit hexadecimal. In order to update the encryption

keys, the following was done, The initial encryption key is stored in the ROM of the IoT device acting as the

central hub. It should be realized here that the central node has the encryption keys of all the IoT devices on the

network. Any IoT device on the network can transfer its sensed data to the central hub, for this transfer to be

enabled, the encryption key flag on both the IoT device and the central hub must be high. It should be noted here

that the encryption key flag of only one IoT device can be in high state, all other IoT device on the network will

An Efficient Real-time Cryptography Algorithm for IoT Devices

71

have their encryption key file on low status. Now when the encryption key flag of any particular IoT device is

high, it computes its first random number which will be used to decide the number of times the ciphertext will be

decrypted using the same cipher key,. After completing the round of ciphertext / cipher key combination, an

update will be performed on the cipher key by XORing the ciphertext with the second 8-bit number. The second

8-bit number is used to encrypt the plaintext using data rotation and then forwarded to the central hub IoT. In

order to further update the cipher key, the random number that was generated the first time will again be XORed

with the next plaintext to generate a new round of ciphertext. The ioT advanced encryption system generates the

first random number as long as a hard reset is done irrespective of the flag status of the IoT device. A comparison

between the standard Advanced Encryption Standard and the real time (AES-RTOS) encryption designed for the

IoT network is given in Table 1. The used RAM, Flash and the time of response of each library is shown in Table

1. From the table it is realized that lib 1 consumes a lot of RAM, while lib 2 takes much time to perform text

encryption. The library (AES V1 AND V2) defined for the IoT network, requires a much reduced resources for

computation, coupled with a reduced response latency. On the other hand the flash memory consumed by

Advanced Encryption Standard libraries designed for the IoT devices (lib AES-RTOS) is more than for the

Standard AES The flowchart for the AES-RTOS is shown in figure 2

This is because the thread in the lib AES-RTOS consumes 65 bytes. Overall, the real time operating system

designed for the IoT network manages the system’s resources more efficiently and the fact that the threads has

priorities for enabling them make their use in the encryption only when necessary. This means that threads based

on their priorities may be enabled or disabled to free up more spaces for algorithm execution. The libraries used

for the IoT encryption can be found in AES-RTOS lib. Figure 3 shows the pseudocode of the AES-RTOS.

N

START

I = 0

PLAIN TEXT

DATA ROTATION = D

COMPUTE ROUND KEY = K

K XOR D

CIPHERTEXT C

I = 1 + 1

IF I = K

K
N

STOP

FIGURE 2 IMPLEMWBTATION OF AES-RTOS

An Efficient Real-time Cryptography Algorithm for IoT Devices

72

Algorithm Implementation of Advanced Encryption System

Needed Queue s-box input [6][6] output 36

 Cipher [6][6] key 24 random

 Procedure PLAIN TEXT priority 4 stack size 96

 For k = 1 to 36 do

 If k < sensor reading then

 Input[xk] < sensed data

 Elseif

 input [xk] < 00x0H

 elseif

 r = random key then

 input[sensor reading] < flag status

 initiate random procedure

 end if

 end for

end procedure

function DATA ROTATION priority 2, stack size 96

 for j = 1 to 10 do

 input < s-box[:j]

 for m = 1 to 5 do

 input [:] < input [:i] >> n

 input round constant [:]

 end for

 initiate Queue ()

 end for

 end procedure

function ROUND KEY priority 2, stack size 96

 if cipher < key

 for m = 1 to 10 do

 g(ciphe[r3])

 s.box cipher([3])

 elseif cipher[i] < cipher [i] XOR s.box(cipher[3])

 for h 1 to 4 do

 else cipher[h] < cipher [h – 1] XOR cipher[k]

 end if

 end for

 end for

 end procedure

function CIPHER TEXT (priority 1, stack size 96)

 if queue != 0 and QUEUE != 10 then

 output[:] < input [:] XOR cipher[:]

 elseif QUEUE == 10 then

 transmit > out[:]

 endfi

 end procedure

Figure 3 Algorithm Implementation of AES-RTOS

Table 1 Comparison of the computational resources used up by each AES library
LIBRARIES FLASH RAM RESPONSE TIME

Lib 1 6880 1070 3.45μs

Lib 2 7460 805 14.5μs

IIB AES Version 1 5050 602 10.54μs

Lib AES Version 2 4621 358 5.45μs

Lib AES-RTOS Version 3 11220 790 7.93μs

4.3 The Proposed Environment

The algorithm proposed in this paper for IoT encryption was validated in an actual environment by

transmitting data from the sensors in greenhouses (controlled environmental conditions). In order to get the data

from the environment, the sensors were installed on autonomous robots which moves around the greenhouse

vicinity to obtain environmental data. Based on this, the following assumptions are made: (i) The secured nature

An Efficient Real-time Cryptography Algorithm for IoT Devices

73

of the IoT devises are guaranteed based on the AES installed on it. (ii) The architecture of the IoT devices are

known by the IoT device acting as the central hub, this includes the capture of environmental parameters using

the LoRa protocol having a preamble of 3 bytes , a header of 3 bytes with an end of frame of 2 bytes, while 1 byte

was used for the detection of error. The library of the IoT AES uses 8 bits to compile data which makes it

compatible with most microcontrollers. In order to capture data sent from the autonomous robots, the IoT

AES uses 8 bytes to receive the following: 1 byte to obtain the robots position, encryption key update (1 byte),

sensing of environmental temperature (1 byte), Humidity sensing (1 byte), Ultraviolet ray sensing (1 byte), status

of battery (1 byte), forward movement of robots (1 byte), backward movement of robot (1 byte) It should be noted

here that the IoT sensor was designed to capture three different types of environmental condition, however in this

paper, the environmental temperature was captured by the autonomous robots and their readings were sent to the

IoT devices.

The implementation of the AES algorithm on top of the IoT devises has the following performance

measures: (i) time to encrypt input data, (ii) error detecting function to determine if correct encrypted data was

decrypted at the receiver. In order to validate the results obtained from the experiments, the algorithm was tested

in two ways (i) using the real time operating system on the IoT, and (ii) without using the RTOS. This was used

to ascertain if the time response for data aggregation at the central hub was good. From the experiments, it was

observed that the response time for the AES implementation with real time operating system was 14.2μs, while

the corresponding time without the RTOS was 34μs. Also the time taken for the transmission of the encrypted

data to the receiver with the rea time operating system was 21μs while the corresponding time without the RTOS

was 43μs. The reduction in time for the RTOS system was due to the parallel programming employed where

multiple instructions which do not depend on one another can be

run simultaneously Also operation which are not needed for certain concurrent operations can be disabled

by setting higher priorities to those operations needed while setting low priorities to operations that are not needed,

this can help shot off unneeded operations thereby making the RTOS algorithm run faster and increasing the

battery lifetime of the IoT devices. It was observed that the battery lifetime was increased by 34%, while the RAM

consumption was reduced by 43% when compared to the non RTOS implementation. The time of response was

also reduced by 45% when compared to the non RTOS implementation. For the experiments, where the ESP8255

board was used to implement the AES-RTOS, it consumed 23% of flash and 30% of RAM, with response times

in the range of 4 μs and 7 μs. This was an improvement of 28% over the non RTOS implementation. It was

observed that the central hub IoT device was able to efficiently update the encryption keys with no loss of data

between it and the other IoT devices on the network. The design in this paper serves a good background for further

studies inti the use of machine learning on AES-RTOS system implementation

V. CONCLUSION

The aim of cryptography is to ensure that transmitted data gets to its destination without being corrupted.

Cryptographic algorithms however presents overhead in IoT devices thereby reducing their efficiency. It is

therefore pertinent that a cryptographic algorithm with less memory consumption be designed for IoT devices due

to their memory and computational restraint. Cryptographic libraries are good for normal network security but it

is too heavy for network involving IoT devices. This brings about the design of a real time operating system with

certain optimization property such as pipelining and parallel operation, which will help in the design of secure

network for IoT network. In this paper a reduced RTOS was designed for IoT network with improvements in

device’s response time with conserved memory consumption. The optimization technique used also helped in the

reduction of RAM usage in thread suspension. The advantage of this is an efficient and secure IoT network, the

device’s flash and RAM usage was reduced, so as to be used for other operations in the network such as data

aggregation. From the experiments conducted, on the Arduino Uno, the encryption library used 30% of flash and

37% of RAM while the time of response was between 4 and 7 us. When ESP8266 board was used in place of the

Arduino microcontroller, it consumed 23% and 30% of flash memory for the AES-RTOS and RAM respectively.

The response time in this case was between 6 and 10.5 μs. The IoT device acting as the central hub could

effectively utilize the change of encryption keys without loss of data packets as a result of regular encryption key

update. This makes the future improvement of the use of machine learning on secure data packet transmission in

IoT network possible.

REFERENCES
[1]. Borges, M., Paiva, S., Santos, A., Gaspar, B., and Cabral, J. (2023). Azure RTOS thread design for low-end robot device. In 2023

2nd International Conference on Societal Automation (SA), pp 1–8.

[2]. Dang, T.-P., Tran, T.-K., Bui, T.-T., and Huynh, H.-T. (2022). Lora gateway based on soc-fpga platforms. In 2021 International
Symposium on Electrical andbElectronics Engineering (ISEE), pp 48–52.

[3]. Fotovvat, A., Rahman, G. M. E., Vedaei, S. S., and Wahid, K. A. (2023). Comparative performance analysis of lightweight

cryptography algorithms for IoT sensor nodes. In IEEE Internet of Things Journal, Vol 8 No 10 pp 8279–8290.
[4]. Gehrmann, C. and Gunnarsson, M. (2019). An Identity Privacy Preserving IoT Data Protection Scheme for Cloud Based Analytics.

In Proceedings 2019 IEEE International Conference on Big Data, Big Data pp 5744–5753.

An Efficient Real-time Cryptography Algorithm for IoT Devices

74

[5]. Gope, P. and Hwang, T. (2016). A Realistic Lightweight Anonymous Authentication Protocol for Securing Real-Time Application

Data Access in Wireless Sensor Networks. In IEEE Transactions on Industrial Electronics, Vol 63 No 11 pp 7124–7132.

[6]. Guo, X., Hua, J., Zhang, Y., and Wang, D. (2019). A complexity-reduced block encryption algorithm suitable for internet of things.

In IEEE Access, Vol 7 pp 54760–54769.
[7]. Hijawi, U., Unal, D., Hamila, R., Gastli, A., and Ellabban, O. (2023). Lightweight kpabe architecture enabled in mesh networked

resource-constrained IoT devices. In IEEE Access, Vol 9 pp 5640–5650.

[8]. Islam, M. S., Verma, H., Khan, L., and Kantarcioglu, M. (2019). Secure real-time heterogeneous IoT data management system. In
Proceedings 1st IEEE International Conference on Trust, Privacy and Security in Intelligent Systems and Applications, TPS-ISA

2019,pp 228–235.

[9]. Jalaly Bidgoly, A. and Jalaly Bidgoly, H. (2019). A novel chaining encryption algorithm for LPWAN IoT network. In IEEE Sensors
Journal, Vol 19 No 16 pp 7027–7034.

[10]. Khan, M. N., Rao, A., and Camtepe, S. (2022). Lightweight Cryptographic Protocols for IoT-Constrained Devices: A Survey. In IEEE

Internet of Things Journal, Vol 8 No 6 pp 4132–4156.
[11]. Landman, D. Latif, M. A., Ahmad, M. B., and Khan, M. K. (2022). A Review on Key Management and Lightweight Cryptography

for IoT. 2020 Global Conference on Wireless and Optical Technologies, GCWOT 2020.

[12]. Naru, E. R., Saini, H., and Sharma, M. (2017). A recent review on lightweight cryptography in IoT. In 2017 International Conference
on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), pp 887–890.

[13]. Prakash, V., Singh, A. V., and Kumar Khatri, S. (2019). A New Model of Light Weight Hybrid Cryptography for Internet of Things.

In Proceedings of the 4th International Conference on Electronics and Communication and Aerospace Technology, ICECA 2019, pp
282–285.

[14]. Ramesh, S. and Govindarasu, M. (2020). An efficient framework for privacy-preserving computations on encrypted IoT data. In IEEE

Internet of Things Journal, Vol 7 No 9 pp 8700–8708.

[15]. Rosero-Montalvo, P. D., L´opez-Batista, V. F., Arciniega-Rocha, R., and Peluffo-Ord´o˜nez, D. H. (2021). Air Pollution Monitoring

Using WSN Nodes with Machine Learning Techniques: A Case Study. Logic Journal of the IGPL.

[16]. Serra, L. F. D., Gonc¸alves, P. G. B., Lopes Fraz˜ao, L. A., and Antunes, M. J. G. (2021). Performance analysis of AES encryption
operation modes for IoT devices. In 2021 17th Iberian Conference on Information Systems and Technologies (CISTI), pp 1–6.

[17]. Shah, T. and Venkatesan, S. (2018). Authentication of IoT Device and IoT Server Using Secure Vaults. In Proceedings - 18th IEEE

International Conference on Trust, Security and Privacy in Computing and Communications and 13th IEEE International Conference
on Big Data Science and Engineering, Trustcom/BigDataSE 2018, pp 819–824.

[18]. Sung, B.-Y., Kim, K.-B., and Shin, K.-W. (2022). An AES-GCM authenticated encryption crypto-core for IoT secu-IoTBDS 2022 -

6th International Conference on Internet of Things, Big Data and Security In 2018 International Conference on Electronics,
Information, and Communication (ICEIC), pp 1–3.

[19]. Szymanski, T. H. (2017). Security and Privacy for a Green Internet of Things. IT Professional, Vol 19 No 5) pp 34–41.

[20]. Tsai, K.-L., Huang, Y.-L., Leu, F.-Y., You, I., Huang, Y.- L., and Tsai, C.-H. (2018). AES-128 based secure low power
communication for LORAWAN IoT environments. In IEEE Access, Vol 6 pp 45325–45334.

[21]. Van Heesch, D. (2018). Arduino cryptography library.

