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ABSTRACT：Aiming at the problem of large computational complexity when mapping image data to three-

dimensional space during the image-point cloud fusion process, this study proposes a depth estimation method 

using prior semantic information. When estimating the depth information of two-dimensional images, this 

method uses the semantic segmentation coefficients generated by the semantic segmentation network to guide 

the downsampling in depth estimation: dense sampling is conducted for the parts with higher semantic scores in 

the image (including vehicles, pedestrians, and cyclists), and sparse downsampling is carried out for the parts 

with lower semantic scores in the image (including road backgrounds, etc.). This method achieves the efficient 

operation of the depth estimation algorithm while maintaining the accuracy of multi-target recognition. 

Through the algorithm fusion strategy, the average recognition accuracy of vehicle categories has increased by 

4.95%, and the average detection accuracy of pedestrian targets has increased by 5.27%. 
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I. INTRODUCTION 

The image-point cloud BEV fusion method is a technology that jointly expresses and processes camera 

image information and lidar point cloud data on the bird 's-eye view (BEV) perspective. Its core significance lies 

in making full use of the complementary advantages of different sensors to achieve more accurate and robust 

environmental perception and target detection. This method is capable of comprehensively extracting the 

texture, color and semantic information of images, as well as the three-dimensional structure, distance and depth 

information of point clouds in complex scenes. 

The key to BEV space fusion lies in how to conveniently and efficiently convert the features of two-

dimensional images into the BEV space. The initial related algorithm was proposed by LSS (Lift-Splat-

Shoot)[1]. It first predicts the grid-like depth distribution on two-dimensional features, and then "lifts" the two-

dimensional features to the voxel space based on the depth. The core idea of this paradigm lies in achieving the 

mapping from two-dimensional images to three-dimensional space through geometric dimensionality escalation. 

BEVDepth[2] (ECCV 2022) introduces lidar point cloud as the depth supervision signal. By constructing an 

explicit depth loss function, the depth estimation error is reduced to 0.76m (nuScenes verification set), and the 

detection accuracy is improved to 48.1% mAP. In response to the time series modeling requirements of dynamic 

scenes, BEVFormer[3] (CVPR 2022) proposed the spatio-temporal Transformer architecture. Through the 

deformable attention mechanism, it aggregated the BEV features of multiple frames, designed the cross-

attention module between surround-view cameras, and improved the ADE index of motion prediction by 16.2% 

on the Waymo dataset. Furthermore, STS[4](ICCV 2023) constructs a hierarchical temporal fusion network: 

pixel-level motion compensation is carried out at the bottom layer, and target-level trajectory association is 

performed at the top layer. 

Fast-BEV[5] (RAL 2023) adopts a highly compressed depth encoder and replaces ResNet-101 with 

MobileNetV3, reducing the computational load by 78%. CaDDN[6] adopts a similar network to predict the 

classification depth distribution, compresses the voxel space features into the BEV space[7], and conducts three-

dimensional detection at the end; OFT-Ne[8] fills the uniformly distributed 3D voxel feature grid by aggregating 

the image features of the corresponding projection regions, and then obtains the orthophoto BEV feature map 

through vertical summation; BEVFormer utilizes the cross-attention mechanism in the converter to enhance the 

modeling of 3D-2D view transformation. 

http://www.ijerd.com/
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In order to achieve efficient depth estimation in image point cloud fusion, this paper proposes a novel 

depth estimation method. This method uses the semantic segmentation results of image branches to guide the 

downsampling in the depth estimation process, effectively reducing the complexity of depth estimation and 

improving the operational efficiency of the overall system. 

II. MATERIAL AND METHODS 

In this study, the DeepLabV3+ semantic segmentation network is adopted. The Backbone of the 

original network is replaced by the lightweight MobileNetV4. Meanwhile, the attention mechanism and the bar 

pooling layer are added to obtain the lightweight IDV3+ network. After the original camera images pass through 

this network, semantic scores corresponding to different categories are obtained. During the process of depth 

estimation, it is only necessary to conduct dense sampling on the regions with higher semantic scores, namely 

pedestrians, cyclists and vehicles, and sparse sampling on the parts with lower semantic scores. The complete 

workflow diagram of this system is shown in Figure 1. 
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Figure1: System Operation Schematic Diagram 

 

In response to the actual demand for the fusion of image and point cloud data in the BEV space, this 

study further explores how to effectively fuse the improved DeepLabv3+ semantic segmentation results in the 

image branch with the BEV features generated by lidar. To this end, we propose a fusion network design idea 

based on the sparse attention mechanism. This design takes into account the high efficiency of the traditional 

convolutional neural network (CNN) in local feature extraction and the advantages of the Transformer structure 

in capturing global information, thereby significantly improving the detection accuracy while maintaining real-

time performance. 
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Firstly, in the design of the network structure, the initial features of the image and point cloud data are 

obtained respectively through their respective feature extraction networks: The image branch adopts the 

improved DeepLabv3+ network structure and introduces depth-separable convolution in the encoder and 

decoder structures, thereby improving the semantic segmentation accuracy while reducing the computational 

cost. Then, the semantic segmentation results are used to assist in depth estimation and map the two-

dimensional image pixel data to the three-dimensional space. Further project the image features onto the BEV 

space; The point cloud branch utilizes sparse convolution and voxelization methods to map the original liDAR 

point cloud data to the BEV space, and achieves feature enhancement through height information encoding. 

In order to achieve the effective fusion of the two, we have designed a dedicated fusion module in the 

network. After receiving the image and point cloud features in the BEV space, this module adopts a weighted 

fusion method based on the cross-modal attention mechanism to fuse the image features and lidar point cloud 

features in the BEV space. The specific process is as follows: Since both the image features and the point cloud 

features have been projected into the BEV space of the same size and resolution, that is, there are corresponding 

image features and point cloud features in each BEV grid cell, in order to ensure that the number of channels of 

the two different modal features remains consistent, the two features are first mapped to the same number of 

channels through a 1×1 convolution operation. Through experimental tests in this paper, Finally, the features of 

both different modes are mapped to 128 channels. 

 

III. RESULTS AND DISCUSSION 

To evaluate the running speed and detection accuracy of different downsampling strategies, five 

different downsampling strategy comparison experiments are set up in this chapter, as shown in Table 1: sparse 

downsampling with a fixed sampling rate, adaptive downsampling (including saliency guided sampling, multi-

scale pyramid sampling, deformable sparse convolution sampling, etc.), and downsampling guided by semantic 

segmentation results. In terms of experimental configuration, the NVIDIA RTX 4090 24G graphics card is 

adopted, and the depth estimation encoder uniformly uses ResNet-50 for depth estimation. 

Combining the experimental data obtained from Table 1 and conducting qualitative analysis based on 

the theoretical characteristics of each method, it can be known that coefficient subsampling with a fixed 

sampling rate performs the best in computational efficiency, but has deficiencies in the retention of detailed 

information, resulting in the lowest target detection rate and the largest root mean square error in depth 

estimation. Bilinear interpolation or other means need to be adopted to make up for the loss of detailed 

information. The method of adaptive sampling has achieved a good balance in aspects such as depth estimation 

error, detection rate and detection speed, but it requires the introduction of related additional processing 

networks, which indirectly increases the complexity of the model. On the contrary, thanks to the semantic 

segmentation coefficients already generated by the image processing branch in the third chapter, by adopting the 

sampling method guided by the semantic segmentation results, on the basis of the highest target detection rate, 

the smallest mean square error of depth estimation, and meeting the real-time requirements, no redundant 

network structure is added, reducing the complexity of the model. 

 

Table 1: Comparative analysis of the Effects of Different downsampling Strategies for depth estimation 
Sampling strategy Root mean square error per meter Target detection rate (%) FPS 

Sparse subsampling with a fixed sampling rate  3.8~4.5 60~70 55 

Saliency guides multi-scale pyramid deformable 

sparse convolution 

3.2~3.6 75~85 40 
2.9~3.3 80~88 30 

2.7~3.1 85~90 25 

Sampling under the guidance of semantic 
segmentation results 

1.5~1.9 88~92 22 

 

To verify the effectiveness of the detection algorithm, this study conducted experimental evaluations 

under the KITTI dataset. Loss weights were set respectively, and different types of loss functions were 

specified, including binary cross-entropy loss and Smoot-L1 loss; Meanwhile, the Adam optimizer is selected. 

Set Batch_Size to 1, the learning rate to 0.003, and the Epoch to 80. A comparative experiment was conducted 

between the BEV object detection method based on image point cloud fusion and the object detection method 

without BEV fusion. The current object detection fusion algorithms with higher detection accuracy were also 

compared. The results are shown in Tables 5-3 and 5-4, respectively presenting the 3D experimental results of 

the 3D vehicle detection benchmark AP3D and the BEV experimental results of the top-down vehicle detection 

benchmark APBEV. The best results of each target detection are marked in the table in bold. 
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Table 2: Experimental Results of the 3D vehicle detection reference AP3D 

Method Data 
Car（AP3D）/% Pedestrian（AP3D）/% Cyclist（AP3D）/% 

Easy Mid Hard Easy Mid Hard Easy Mid Hard 

VoxelNet L 80.23 65.09 59.88 55.63 53.03 47.62 63.52 48.02 44.86 

SECOND L 81.72 70.56 64.36 50.23 40.66 35.86 68.38 51.47 44.79 

PointPillars L 83.74 73.31 67.11 52.02 47.48 42.87 67.24 50.53 46.73 
CenterPoint L 75.06 62.68 62.39 34.18 30.13 26.25 32.53 22.13 21.37 

ACDet L+C 86.41 75.39 70.92 52.83 43.17 40.33 83.77 64.81 58.37 

F-PointNet L+C 80.98 70.45 61.87 51.13 43.56 40.92 71.83 56.02 51.18 
Fast-CLOCs L+C 88.69 80.07 76.36 51.77 41.83 38.07 81.88 64.96 56.33 

PointPainting L+C 91.24 86.97 85.78 61.83 57.33 53.27 78.65 62.88 59.76 

Ours L+C 91.69 87.86 85.14 65.89 60.57 55.46 78.93 72.36 59.34 

According to the experimental results of the table, in the Table 2, L indicates that the algorithm only 

uses lidar data, and L+C indicates that both lidar and image data are used simultaneously. Ours indicates that the 

algorithm we proposed includes the semantic segmentation module of image branches and BEV fusion 3D 

object detection. The comparison results of the two major categories of automobiles and pedestrians under the 

AP3D evaluation benchmark of the KITTI dataset show significant differences. Firstly, in terms of the detection 

of the automobile category, the average detection accuracies at the simple, medium and difficult levels are 

91.69%, 87.86% and 85.14% respectively, and the overall effect is higher than that of the PointPainting 

algorithm. In terms of the detection of pedestrian categories, the Ours method has improved by 4.06%, 3.24% 

and 2.19% respectively at the simple, medium and difficult levels compared with the widely used PointPainting 

algorithm at present. 

 

IV. CONCLUSION 

In the image point cloud fusion module, this study proposes a two-dimensional depth information 

recovery method that uses the semantic segmentation results to guide the downsampling of depth estimation. 

Only dense depth estimation is performed on the prominent feature regions with high semantic segmentation 

coefficients in the image, and sparse depth estimation is adopted for unimportant regions such as the 

background. On the premise of ensuring feature retention, Reduced the computing resource occupation of the 

model; Finally, the lightweight CNN+Transformer neural network and the fusion strategy based on the cross-

attention mechanism are adopted to fuse the image point cloud features in the BEV space. The experimental 

comparison through the KITTI dataset shows that compared with the method before fusion, The average 

detection accuracy rates for the categories of automobiles and pedestrians have increased by 4.95% and 5.27% 

respectively, verifying the effectiveness and accuracy of the algorithm proposed in this study. 
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