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Abstract—This paper presents a technique for designing state controller for dynamic systems with uncertain parameters. 

The designed compensator ensures that the resulting closed-loop system will remain stable while the system matrices 

values vary throughout their respective intervals 
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I. INTRODUCTION 
Stability analysis for the systems considering the real parametric uncertainties has been carried out and various 

results and techniques have been developed [1-3]. The important task of feedback design is to provide robustness of closed-

loop control systems when a plant includes parametrical uncertainties and/or is affected by disturbances. If the uncertainties 

can be described by intervals with known lower and upper bounds then the plant can be presented as interval dynamical 

system.  

There has been considerable progress towards developing robust design methods for multiple-input multiple-

output systems [4,5,6,7,8]. In terms of the classical control concepts, Kalman’s inequality (9] implies that single-input 

single-output LQ regulators possess 60 degree phase margin, infinite gain margin and 50% gain reduction tolerance.In [8], it 

has been  shown that the multiple loop linear quadratic state-feedback (LQSF) regulators also have excellent robustness 

properties when measured by the classical criteria of gain and phase margin and can undergo simultaneous phase 

perturbations of up to +60 in each input channel, or simultaneous gain perturbations from 50% of nominal to infinite in each 

input channel.  In practice, however, the LQSF regulator is merely an ideal case because not all states are available. When 

combined with an observer or state estimator the robustness of the whole system may considerably degrade. The LQ 

technique offers a good base for robust MIMO control system design. In this paper a procedure for designing robust 

controller is presented.  This is based on the work of Bialas [10], concerning the stability of interval polynomials and on the 

work of Pearson [11] on dynamic compensator design.  

Bialas [10] presented necessary and sufficient conditions for the stability of interval matrices and  has given a 

theorem concerning the stability of interval polynomials.  Based upon this result an algorithmic technique for determining a 

feedback compensator which will stabilize the interval dynamic system is presented in this paper. The algorithm essentially 

determines a feedback which ensures positivity of all the closed-loop Hurwitz determinants. Example has been presented 

which illustrate the substantially improved robustness which results from the algorithm.  

 

Theorem 

min max[ , ] nS A A G iff
min max[ , ] nT A A G  

The set  min max[ , ]T A A  contains 2n  polynomial and   nG is the set of all stable polynomials of degree n . 

Proof of this theorem is given in [10]. 

 

II. COMPENSATOR DESIGN WITH  STATE FEEDBACK 
Given the plant to be controlled  
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and given [ , ]A N P Q , [ , ], [ , ]B N R V C N W Z   where P and Q are n x n real matrices, R and V are n x m real matrices 

and W and Z are q x n matrices.  Let the most likely values of A, B and C as 0 0,A B and 0C  respectively.  

The proposed design procedure is as follows: 

(i) Using 0 0 0, ,A B C  apply the LQ technique to determine the optimal feedback gain 0K  

(ii) Adjust the feedback gain K  so that the closed-loop system will remain stable while the parameters vary in the 

given intervals. Specifically, search for K  to minimize 0K K such that the feedback interval dynamical system A+BK is 

stable when [ , ]A N P Q , [ , ], [ , ]B N R V C N W Z  . 

(iii) Check the performance of the feedback system with the selected K  when the parameters take on their most likely 

values i.e 0 0 0, ,A A B B C C   .  

Remark 1 
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The parameters are random variables and are not time-varying stochastic processes. That is, A, B and C are treated as time 

invariant matrices which take their values in known intervals. 

Remark 2 

Minimization of 0K K is done in order to keep the feedback gains as close as possible to optimal so as not to alter the 

performance too much when the parameters take on their most likely values.  

Remark 3 

In order to solve step (i), assume that the plant is controllable and the weighting matrix 
1Q  in the performance index is such 

that 1/2

0 1[ , ]A Q is observable when the parameters are at their most likely values. Further, assume that the plant is controllable 

when the parameters are in their intervals.  

 

III. COMPENSATOR DESIGN WHEN ALL THE STATES ARE NOT AVAILABLE 
It is often the case that not all the states are available. Since we do not know the parameters precisely we cannot 

design an observer to reconstruct the states, and a general dynamic compensator, as described by [12,13,14] can be used. 

[13] have shown that for a controllable and observable plant a dynamic compensator can be designed which is sufficient to 

achieve arbitrary pole placement in the system consisting of the plant and the compensator in cascade.  

For simplicity the procedure is presented for SISO regulator design. We assume that the plant to be controlled is both 

controllable and observable when its parameters vary in the given intervals.  

 

Step 1 

For the plant with its most likely values of parameters, apply the technique presented by [12] to design an (n-1)th order 

compensator with transfer function  
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Step 2 

Search for ( 0,1,... 2), ( 0,1,... 1)i ji n j n      so that the minimization of  
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is achieved, subject to the constraint that the closed-loop interval system consisting of the plant and the compensator with 

coefficients ,i j   is stable.  

Check the performance of the closed-loop system designed. 

 

IV. EXAMPLE 
Given the plant to be controlled 
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         (4) 

where 
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with  [0.5,1.5]a , [ 1.7,0.5]c   and their most likely values being 0 1a  and 20 1c   . We want to design a compensator 

so that the closed-loop system is stable for all possible values of a and 2c .  It is easy to check that the plant is both 

controllable and observable if 0a  . 

 

Step 1 

Using the technique given by [11], first determine a dynamic compensator for a  and 2c  at their most likely values. Since n 

= 2, this dynamic compensator should be first order i.e.   
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Introducing 2u , the derivative of input u (t) and writing the state equation of the plant for 0 1a  and 20 1c   .  
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and considering the performance index  
2 2

1 1( )J x u dt             (8) 

we can apply the optimal control design technique of Kalman to obtain the optimal state feedback 
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2 1 2( , , )T Tu K x x u            (9) 

with  1 2 3TK   

Now choose the coefficients 
00 , 

00  and 
10  in (7) so that the same 

2u is obtained. 

From (7) 

00 10 0 0 00 0 00 00 0( ) ( )T T Tsu u C A C x C b u                 (10) 

Comparing (11) with (10) ,we get  

00 =3.25,  
00 0.5   and  

10 1.25   

With this compensator, the closed-loop system will have very good performance when 
0 1a   and 

2 20 1c c  

.However, with this compensator the closed-loop system will not be stable when 0.5  and 
2 1.7c   . If the intervals of 

 and 
2c are [0.5,1.5]a , [ 1.7,0.5]c   then the above controller will not work well.  So the next step is to modify the 

compensator parameters such that the system is stable for all possible  and 
2c  . 

 

Step 2 

Search for the parameters of dynamic compensator 
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such that minimization of 2 2 2

1 10 0 00 0 00( ) ( ) ( )           is achieved subject to the interval closed-loop system being 

stable. 

For the compensator (12) the minimal realization is  
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Where ( )cx t  is the internal state of the compensator. Thus the state description of the closed-loop system is  
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The characteristic polynomial of (14) is  
3 2d e f                (14) 

Where 2 1 0 2 0 1 0, 2 , 2d c e c f          

When [0.5,1.5]a , [ 1.7,0.5]c   is an interval polynomial. The intervals of its coefficient are  

min max min max min max[ , ], [ , ], [ , ]d d d e e e f f f    
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and min max 2min 2max0.5, 1.5, 1.7, 0.5c c       

With reference to the Theorem, the interval polynomial (14) will be stable if all the   polynomials are stable.  

The parameters of the compensator, 0 0 1, ,   are not known so without loss of generality we can constrain 

0 0 10, 0, 0      then construct the Hurwitz determinants for all the polynomials  and search for  0 0 1, ,    to 

Minimize 2 2 2
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The small positive scalar 1  is used in order to make the feasible set 0 0 1( , , )    closed and can, to some extent, represent a 

stability margin to accommodate unconsidered uncertainties.  Problem cited is a standard optimization problem with non-

linear constraints and several methods are available for its solution [14].  

In this example, set 1 min max 2min 2max0, 0.5, 1.5, 2.5, 0.5c c          and the solution is

0 0 13.31778, 0.13357, 1.12405      
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Now check whether the new compensator will make the closed-loop system stable while still having satisfactory 

performance over the range of   and 
2c .For this example, Fig. 1 show the performance of the closed-loop system with 

thedesigned compensator. 

 

 

Figure 1.Impulse responses of the closed-loop systems with compensator
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V. CONCLUSION 

A technique for designing robust feedback compensator has been presented. A simple example illustrates the 

method; however, the method is directly applicable to multivariable systems.  The approach taken here is to allow the system 

parameters to vary within prescribed intervals then design a controller which guarantees closed-loop system stability for the 

known range of parameter variation.  
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