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Abstract––In this paper, we consider velocity estimation and detection for non-stationary target using MIMO radar in 

non-homogeneous clutter. In the case of non-homogeneous clutter due to the azimuth-selective backscattering the clutter 

power will vary from one test cell to another and also from one transmit-receive pair to another. In this work, the non-

homogeneous clutter is modeled using a subspace approach, whereby the subspace is spanned by a few Fourier bases and 

the non-homogeneity of the clutter is captured by coefficients that vary with different transmit-receive pairs and/or 

different resolution cells. We develop a maximum likelihood estimator (MLE) for velocity estimation and general 

likelihood ratio test (GLRT) for detection of target in non-homogeneous clutter. We also studied the Cramer Rao bound 

to show the asymptotic efficiency property of the maximum likelihood estimator. Numerical results show that the 

proposed estimator outperforms the covariance matrix estimator and reduces the Signal to noise ratio (SNR) threshold as 

number of antennas increases. Numerical results for GLRT detector shows improved detection performance as SNR 

increases. 

 

I. INTRODUCTION 
MIMO radar has received significant interest in recent years. There are two types of MIMO radar configuration 

one with colocated antenna and the other one is the widely separated antenna[1-3].  MIMO radar with widely separated 

antennas transmits multiple orthogonal waveforms which are separated at each receive antenna by matched filter processing 

[4]. Widely separated MIMO radar allows one to exploit the so-called spatial or geometric diversity to enhance target 

detection. In particular, radar targets often exhibit significant azimuth selective backscattering with tens of dB of fluctuation 

in their radar cross section (RCS). The spatial diversity of distributed MIMO radar was first discussed in [5] and later 

extended in [4] for moving target detection. The effect of clutter was included in [4], [6] for moving target detection and 

velocity estimation. The result of [4], [6] shows that the widely separated MIMO radar provides significant performance gain 

over the traditional phased array radar.  

Our study is motivated by the fact that radar analysis and system design are usually performed under the 

assumptions that radar clutter is stationary and homogeneous that is the probability density of clutter power are assumed to 

be constant in time for a single resolution cell and constant in space from resolution cell to resolution cell. In practical there 

are many situations which do not satisfy these conditions like clouds, grass, tree and many other clutters which are non 

stationary. So non-homogeneous clutter is modeled to characterize the non-stationary and non-homogeneity of radar 

clutters[7,8]. Using this non-homogeneous clutter model, we derive the maximum likelihood estimator of target velocity. 

The main reason for using MLE is that under certain regularity conditions, it is asymptotically efficient. Asymptotically 

efficient means that the estimator achieves the Cramer- Rao Bound (CRB) when the amount of data is large or the signal-to-

noise ratio is high[11] 

 

II. SIGNAL MODEL 
Considering the distributed MIMO radar with M transmitting antennas and N receiving antennas which are 

stationary and their locations are assumed known. The M transmit antennas send orthogonal waveforms Sm(i),i=1,….,J, 

where J=number of samples. By orthogonal the waveforms are mutually orthogonal and they maintain orthogonality with 

respect to Doppler shifts and delays 

 Sm i Sm ′
∗

i  i =  
1 if m = m′

0 if m ≠ m′
            (1) 

As waveforms are orthogonal the signals sent from different transmitting antennas can be separated at any receiving antenna 

by matched filtering. 

Assume the target does not leave the given cell under test for some K consecutive pulses of transmission from each 

transmitting antenna. By considering two hypothesis test problem H1 target is present in the test cell and H0 target is not 

present in test cell the received signal is given by 

H0 :Xm,n=Cm,n+Wm,n       m=1,…,M  and n=1,…..,N                         (2) 

H1 :Xm,n=αm,na(fm,n)+Cm,n+Wm,n(3) 

whereCm,n is clutter ,Wm,n is noise , αm,n is amplitude of target and a(fm,n) is steering vector due to Doppler frequency fm,n. 
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Fig 1: Geometry of MIMO Radar 

 . 

As shown in figure 3.1 target is moving with velocity V with horizontal and vertical component of velocity vx and vy 

respectively. From figure 3.1 the normalized Doppler frequency for different transmit receive pairs fm,n is given by[1,4,7] 

fm.n =
vx T

λ
 cos θtm + cos θtn  +

vy T

λ
 sin θtm + sin θtn                              (4) 

Where λ is wavelength of carrier signal, T is pulse repetition interval,θtm  and θtm  are the  angles of transmit and receiving 

antennas respectively, respectively, when viewed from an origin located at the target .As target is moving with some radial 

velocity V there exists a horizontal and vertical velocity component. Horizontal and vertical velocity vx and vy respectively 

are given by 

vx=Vcos(θ)                                                                                                                            (5) 

vy=Vsin(θ)                                                                                                                            (6) 

Where V is the radial velocity of target and  θ is the direction of the target moving. The signal steering vector, which is 

formed over the reception of K  pulses is given by 

a(fm,n)=[1 e−i2пfm ,n       …..           e−i2пfm ,n (k−1)]T≜  am,n(v)                                                                               (7) 

Where i= −1 and am,n(v) is steering vector for different transmit receive pairs. 

From equations (3.2) and (3.3) noise Wm,n is  spatially and temporally white noise with zero mean and covariance matrix 

given by  

E[Wm,nW
H

n’m’]  =  σ²Iδ(n-n’)δ(m-m’)                                            (8) 

Where σ² denotes the unknown variance of the noise, and δ(・) the discrete impulse function. 

From equation  clutter components Cm,n contain reflections from stationary objects like ground, buildings and slow moving 

objects like grass wind within the considered test cell.  By assuming that the clutter from any transmit-receive pair falls 

within a subspace which is expanded by the columns of a matrix H€ CK×L  given by 

H=[h(f1),h(f2),…….,h(fL)]                                                  (9) 

Where h (f) = [1,e−j2пf ,……..,e−j2пf(k−1)]T and { fl}l=1
L  are selected Doppler frequencies of clutter in low frequency region.  

Any given transmit receive pair can be expressed as a linear combination of the columns of matrix H given by 

                       H=Cm,nβm,n(10) 

 where βm,n denotes the L × 1 complex amplitude vector associated with the clutter vectors viewed from the aspect of the 

(m,n)th transmit-receive antenna pair. As clutter is non-homogeneous βm,nclutter amplitude is different for one transmit 

receive pair to other and vary from one test cell to other 

βm,n≠ βm’,n’                                                                                                                                                                             (11) 

The clutter model of (3.15) is motivated by the widely known observation that the clutter in many practical scenarios has a 

low-rank structure, that is, Cm,n∈ S, where S denotes a subspace of CK×1 with a rank lower than K [9]. 

 

III. MAXIMUM LIKELIHOOD ESTIMATOR OF TARGET VELOCITY 
The Maximum Likelihood (ML) method is a standard technique that is often used in parameter estimation 

problems. The main reason for its widespread use is that it, under certain regularity conditions, is asymptotically efficient. 

To apply the ML method thelikelihood function of the observed data is needed. The estimates are then obtained as the 

parameter values that maximize this function. An interpretation of this method is that the estimates are the parameter values 

that make the observed data most probable. Since we have assumed spatio-temporally white Gaussian noise, the likelihood 

function for the model in (3.1) is given by 

 P(X;v,α,β,σ²) =
1

(пσ2)KMN exp⁡(−
1

σ2
  xm ,n − αm,n am,n v 

. − Hβ
m ,n

 
2

)m ,n                     (12) 

Where    .   denotes the vector 2-norm. Taking derivative of log-likelihood function given bylnP(X;v,α,β,σ²) with respect to 

σ² and setting it to zero ML estimate of σ² denoted by σ²  given by 

σ² =
1

KMN
  xm ,n − αm ,nam,n v − Hβ

m ,n
 

2

m,n                             (13) 

Substituting the equation in equation, ML estimate of remaining parameter can be determined by minimizing the function 

given by 

  xm ,n − αm,nam ,n v − Hβ
m,n

 
2

m,n                             (14) 
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For simplicity let ym,n= xm,n − αm ,nam,n v .Substituting ym,nin equation ML estimate of remaining parameter can be 

determined by minimizing the function given by 

  ym,n − Hβ
m,n

 
2

m,n                             (15) 

By expanding equation and taking derivative with respect to β
m,n

 and setting it to zero,the ML estimate of β
m,n

 denoted 

byβ
m,n
  given by 

βm,n
 = (𝐻𝐻H)−1𝐻𝐻𝑦𝑚 ,𝑛               (16) 

Substituting equation back into equation and expanding reduces to 

 ym,n
T

m,n PH
⫠ym,n= [xm,n − αm ,nam,n v ]

H
m,n PH

⫠[xm ,n − αm ,n am,n v ]                             (17) 

Where PH
⫠ is projection matrix given by 

PH
⫠ = I − H(HHH)-1HH                            (18) 

By substituting the equation with equation and taking derivative with respect to αm,n  and setting it to zero the ML estimate 

of αm ,n  denoted byαm,n  given by  

αm,n =
am ,n

H (v)PH
⫠ xm ,n

am ,n
H  v PH

⫠ am ,n (v)
                 (19) 

Finally by substituting equation into equation, ML estimate of the velocity v is given by 

V  = arg maxv  
 am ,n

H (v)PH
⫠ xm ,n  ²

am ,n
H  v PH

⫠ am ,n (v)m,n                             (20) 

A. Comparison with Covariance Matrix Estimator 

The ML estimator of target velocity is notably different from thecovariance-matrix-based estimator in [4], [6]: 

V  = arg maxv  
 am ,n

H (v)cm ,n
−1 xm ,n  ²

am ,n
H  v cm ,n

−1 am ,n (v)m,n                            (21) 

By comparing (20) and (21) covariance matrix based estimation of velocity is more complex than maximum likelihood 

estimation. In maximum likelihood estimation it is sufficient to calculate  PH
⫠ once and for transmit receive pair, but in 

covariance matrix based estimation there is a need to calculate covariance matrix for every transmit receive pair and have to 

inverse it. 

IV. CRAMER RAO BOUND 
The ML estimator of target velocity was obtained in (20). In the following, the achievable accuracy of the ML 

estimator of Vxand Vyin the presence of non-homogeneous clutter is studied by means of the CRB. 

In this paper as in the case of distributed MIMO radar the unknown parameters€ are given by  

€ = [Vx , Vy , ƞ 11 , ƞ 12 …………… . ƞ MN , σ²]T                                                              (22) 

Where ƞ mn  = [αmn
r , αmn

i , (β
mn
r )T , (β

mn
i )T]Tɛ C(2L+2)˟ 1subscript r and i indicates the real and imaginary parts of target 

amplitude αmnand clutter amplitude βmn of the mnth transmit receive pairs respectively. It is tedious to compute the CRBs of 

the estimates of vxand vydirectly. So first by determining the Fisher information matrix (FIM) of the estimates of the Doppler 

frequencies and then, using the transformation rule, to get the FIM of the estimated vxand vyit becomes easy to calculate CRB 

estimate  of vxand vy. To estimate the FIM the equation is expanded to [(2L+3)MN+1]×1 vector θ given by 

θ= [ f11, f12,……… fMN,ƞ 11 , ƞ 12 …………… . ƞ MN , σ²]T                                                                               (23) 

and by linking these two vectors from equation vector θ is given by 

θ= G€   (24) 

G = 
𝐴𝑀𝑁×2 0(2𝐿+2)

0(2𝐿+2) I(2L+2)
 (25) 

 AMNX2=  [c11,c12,……cMN;s11,s12,………sMN]T                                                                        (26) 

cmn  =

 T

λ
(cosθtm + cosθrn )(27) 

smn  =

 T

λ
(sinθtm + sinθrn )(28) 

The FIM estimation of θ is given by 

[I(θ)]ij=  - E[
∂²ln⁡p(x;θ)

∂θi ∂θj
]                                                                          (29) 

The FIM between the doppler frequencies fmn and flk are given by 

[I(θ)]ij=  - E[
∂²ln⁡p(x;θ)

∂fmn ∂flk
] 

             =     (2п)²|αmn|²
 2K−1 K K−1 

3σ2 δ m − l δ(n − k)(30) 

Where 1≤{i,j}≤MN and 𝛿(. ) is the kronecker delta function. 

The FIM between the Doppler frequencies fmn and (lk)th target and clutter parameters ƞ lk   are given by 

[I(θ)]ij=  - E[
∂²ln⁡p(x;θ)

∂fmn ∂αlk
r ]   =  2пσ-²i{αmn}K(K-1)𝛿 𝑚 − 𝑙 𝛿(𝑛 − 𝑘)    (31) 

[I(θ)]ij=  - E[
∂²ln⁡p(x;θ)

∂fmn ∂αlk
i ]   =  -2пσ-²r{αmn}K(K-1)𝛿 𝑚 − 𝑙 𝛿(𝑛 − 𝑘)(32) 

[I(θ)]ij=  - E[
∂²ln⁡p(x;θ)

∂fmn ∂βlkL
r ]   =  2σ-²r{αmnh

H(fL)
∂a(fmn )

∂fmn
}K(K-1)δ m − l δ(n − k)   (33) 

[I(θ)]ij=  - E[
∂²ln⁡p(x;θ)

∂fmn ∂βlkL
i ]   =  -2пσ-²i{αmn}K(K-1)𝛿 𝑚 − 𝑙 𝛿(𝑛 − 𝑘)   (34) 

Where 1≤i≤MN and MN+1≤j≤(2L+3)MN 
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The FIM between the ƞ mn   and ƞ lk   are given by 

[I(θ)]ij=  - E[
∂²ln⁡p(x;θ)

∂αmn
r ∂αlk

r ]   =  - E[
∂²ln⁡p(x;θ)

∂αmn
i ∂αlk

i ]   =  2σ-²𝛿 𝑚 − 𝑙 𝛿(𝑛 − 𝑘)(35) 

 

[I(θ)]ij=  - E[
∂²ln⁡p(x;θ)

∂αmn
r ∂αlk

i ] =0                                                                   (36) 

 

[I(θ)]ij=  - E[
∂²ln⁡p(x;θ)

∂αmn
r ∂β

lkL
i ]   =2σ-²r{aH(fmn)h(fL)}𝛿 𝑚 − 𝑙 𝛿(𝑛 − 𝑘)(37) 

   [I(θ)]ij= - E[
∂²ln⁡p(x;θ)

∂αmn
i ∂β

lkL
r ] = -{- E[

∂²ln⁡p(x;θ)

∂αmn
r ∂β

lk
i ]} 

            =2σ-²i{aH(fmn)h(fL)}𝛿 𝑚 − 𝑙 𝛿(𝑛 − 𝑘)(38) 

 

[I(θ)]ij= - E[
∂²ln⁡p(x;θ)

∂β
mnL
r ∂β

lkj
r ] = - E[

∂²ln⁡p(x;θ)

∂αmn
i ∂βlk

i ] = 2σ-²r{hH(fL)h(fj)}𝛿 𝑚 − 𝑙 𝛿(𝑛 − 𝑘)(39) 

 

[I(θ)]ij= - E[
∂²ln⁡p(x;θ)

∂β
mnL
i ∂β

lkj
r ]  = 2σ-²i{hH(fL)h(fj)}𝛿 𝑚 − 𝑙 𝛿(𝑛 − 𝑘)(40) 

 

Where MN+1≤ {𝑖,j} ≤(2L+3) MN 

The FIM between the noise variance and other parameters is given by 

[I(θ)]i,(2L+3)MN+1 = 0                                                                                      (41) 

 

Where 1≤ 𝑖 ≤(2L+3)MN 

The FIM between the noise variance by itself is given by 

[I(θ)] (2L+3)MN+1,(2L+3)MN+1 =  σ – 4K                                                                     (42) 

 

The FIM estimate of € is given by 

I(€)=GTI(θ)G                                                                                            (43) 

From equation CRB estimate of (€) is calculated by inversing the I(€). CRB estimate of horizontal and vertical component 

of velocity is given by 

Var(vx)≥[I-1(€)]11=[(GTI(θ)G)-1]11(44) 

 

Var(vy)≥[I-1(€)]22=[(GTI(θ)G)-1]22                                                                                                                              (45) 

 

V. GLRT DETECTOR 

 
GLRT detector is based on the two hypothesis test one with the presence of the target and one with the absence of 

the target. By considering two hypothesis H0 and H1  as shown in equation GLRT is given by 

 

GLRT  =
max v ,α,β,σ² p1(X;v,α,β,σ2)

max β,σ² p0(X;β,σ2)
(46) 

 

Where p1(X; v, α, β, σ2) and p0(X; β, σ2) are the likelihood functions of H0 and H1 respectively. The ML estimate of unknown 

parameters under H1 in the presence of target is shown in equation. The ML estimate of unknown parameters under H0 in the 

absence of target is obtained by eliminating the equation and is given by 

σ² =
1

KMN
 xm ,n

H
m,n PH

⫠xm,n(47) 

 

β
m,n
 = (HHH)-1HHxm,n(48) 

 

GLRT detector is given by 

GLRT=
max v  

 am ,n
H (v )P H

⫠ x m ,n  ²

am ,n
H  v P H

⫠ am ,n (v )
m ,n    

 xm ,n
H PH

⫠ xm,n𝑚 ,𝑛

𝐻1

≶
𝐻0

ɽ                                              (49) 

 

where ɽ  is a threshold selected to meet a given probability of false alarm. 

 

 

VI. SIMULATION RESULTS 
A.  Estimation 

Computer simulations are carried out to assess the performance of maximum likelihood estimator and compared 

with covariance matrix estimator and Cramer Rao bound. The mean square error of target velocity for various SNR is 

simulated in non-homogeneous clutter. 
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(a)                                                                       (b) 

Fig 2: (a) MSE  vs SNR for Vx ;      (b) MSE vs SNR for Vy 

 

Fig.2 shows that the simulated mean-squared error (MSE) curves of the maximum likelihood estimator and the 

covariance matrix estimator for horizontaland vertical target velocity. The performance of the MLE is obtained by a two-step 

approach: an initial coarse grid search followed by a refined search. The results show that, on one hand, the MSE curves of 

the MLE for horizontal and vertical velocityreach their respective CRB at high SNR, On the other hand, the ML estimator 

outperforms the covariance matrix estimator at almost all SNR and has a lower SNR threshold than the covariance matrix 

estimator. Rms velocity of clutter is chosen as 1.5m/s 

 

Table 1 System Parameter 

Number of transmitters 2 

Number of receivers 2 

Carrier frequency 1GHz 

Transmitters angle 0  and 65 degree 

Receiver angle -30 and 40 degree 

Pulse repetition frequency 500Hz 

Target velocity 108km/hr 

Target direction 30 degree 

Number of pulses 16 

 

Simulations carried out in fig.2 are done for 200 Monte Carlo runs. In each Monte Carlo run the target amplitude 

and clutter amplitude are randomly generated as a zero mean Gaussian distributed random variable. For the simulation signal 

to noise ratio is taken as 

SNR=  
αm ,n

2

σ2m,n                             (49) 

Where SNR is varied from 0 to 40db.Mean square error of target velocity is given by 

MSE=
1

T
  (v t − v 2T

t=1                             (50) 

v is the true velocity of the target, T is the number of Monte Carlo runs and v tis the estimated velocity for different runs. 
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(a)                                                                       (b) 

Fig 3: (a) MSE  vs SNR for Vx ;      (b) MSE vs SNR for Vy 

 

Table 2 Number of Transmitters and Receivers 

Cases Transmitters receivers Transmitting angles 

in degree 

Receiving angles in degree 

1 M=2 N=2 0 and 65  -30 and 40 

2 M=4 M=4 0,15,25,65 -30,40,-67,-47 

3 M=6 N=6 0,15,25,65,45,78 -30,40,-67,-47,-87,20 

 

Fig.3 shows the MSE vs SNR of Maximum likelihood estimation for different transmit receive pairs. SNR 

threshold is the point at which there is a large change in slope of the MSE vs SNR graph. From the fig.3 we can see that as 

we increase the number of transmit receive pair MSE and SNR threshold slightly reduces. System parameters are same as in 

table 1 except for number of antennas. 

 

Table 3 SNR Threshold for different Transmit Receive pairs 

Cases SNR threshold 

1(M=2,N=2) 

 

20db 

2(M=4,N=4) 15db 

3(M=6,N=6) 10db 

 

B. Detection   

Simulations for fig.4 are carried out at different SNR to detect the target in the presence of Non-homogeneous 

clutter by using the General likelihood ratio test detector. In this simulation probability of false alarm is varied from 10-2 to 

100. Threshold is set to meet a given probability of false alarm. The amplitude of target is generated as a zero mean Gaussian 

random variable. Simulations are carried out for 4 cases SNR=10db, SNR=15db, SNR=20db and SNR=25db.System 

parameters are same as in table 1 
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Fig .4pd versus Pfa of GLRT detector 

Fig.4 shows the simulation of probability of detection (pd) versus Pfa of GLRT for different SNR. Simulation shows that as 

SNR increases the probability of detection is more that is target is detected easily at high SNR. At low SNR simulation 

results shows that as Pfa decrease that is false detection of target decreases it is difficult to detect the target. Increase of 

detection of target at low Pfa at low SNR is due to the fake detection of target even if the target is absent due to the noise and 

clutters. At high SNR the probability of detection is constant at all Pfa. 

 

VII. CONCLUSION 
In this paper the velocity estimation and detection of a moving target usingdistributed MIMO radar in non-

homogeneous clutter environments is considered. The clutter was modeled to have a low-rank subspace structure with 

spatially non-homogeneous clutter power.  The CRB of the velocity estimates is obtained via the reverse transformation of 

parameters. Numerical results show that the MSE of the ML estimator of the velocity matches the CRB at high SNR. 

Comparison with the covariance matrix estimator also shows that the proposed ML estimator has better performance in 

clutter with non-homogeneous power. Numerical results shows that as we increase the number of antennas MLE shows 

better performance and SNR threshold also reduces. 

 Detection of moving target in distributed MIMO radar by using GLRT in non-homogeneous environment is 

considered. Numerical results shows that as SNR increases the probability of detection will be more and also probability of 

detection will be same for any Pfa at high SNR 
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