
International Journal of Engineering Research and Development

e-ISSN: 2278-067X, p-ISSN : 2278-800X, www.ijerd.com

Volume 5, Issue 6 (December 2012), PP. 39-47

39

Using Factory Design Pattern for Database Connection

and Daos (Data Access Objects) With Struts Framework

Mukesh D. Parsana
1
, Jayesh N. Rathod

2
, Jaladhi D. Joshi

3

1
M.E. (C.E., Pursuing), Atmiya Institute of Technology & Science (Gujarat Technological University), INDIA.

2
HOD (Department of Computer Engineering), Atmiya Institute of Technology & Science, Gujarat, INDIA.

3
M.S. (CE), Florida Atlantic University, Boca Raton, FL, USA.

3
 Research Assistant, Motorola Inc., Sunrise, FL, USA.

Abstract: - The Jakarta Struts is one of the most widely being used J2EE frameworks. It incorporates

programming and design expertise from some important design patterns like MVC, Command, Front

Controller, Adaptor and Template Method design patterns. The Struts framework provides utility

classes to handle many of the most common tasks in Web application development i.e. classes for

security, encryption, cryptography etc. This paper discusses how design and programming expertise of

factory design pattern can be used with Struts to manage data objects and database connections

efficiently. The Factory Pattern promotes loose coupling by eliminating the need to bind application-

specific classes into the code.

Keywords: - MVC, Factory Method Pattern, Abstract Factory, Framework, Struts

I. INTRODUCTION TO ARCHITECTURE FRAMEWORKS
A framework is a set of prefabricated software building blocks that programmers can use, extend, or

customize to suit their application. It is an object oriented reuse mechanism that allows the developer to

decompose an application into a set of interacting objects. It describes the interfaces implemented by the

framework components, the flow of control between these components, and the contracts between the

components and the system. In this way the framework is a reusable design. The standard interfaces and

interactions make it possible to mix and match existing components and create a wide variety of systems from a

core set of components.

A framework can make it very easy to quickly build sophisticated web applications. Rather than simple

Java Servlets that merely enable access to a database, a framework allows you to build entire systems, with

secure, high-performance database access via an object-to -relational mapping (no need to embed SQL in your

code), background job queuing and handling with dynamic invocation of custom server-side objects, and

sophisticated event notifications and logging to facilitate management of your completed application.

Developers can focus on creating the business logic and layout of the UI. All the tedious infrastructure work is

already there to build upon, so that creating applications is easy and fast. New technologies can be easily

incorporated into the framework's structure and work seamlessly with existing components and services. As

Java technology evolves, any solution that incorporates the framework can evolve with it.

The result of using a framework for n-tier applications is that the quality of the application increases

dramatically while decreasing total cost of ownership and speeding time-to-market. Frameworks capture the

programming expertise and best practices necessary to solve a particular class of problems without to reinvent

the wheel.

There are numerous types of frameworks - some of which work at presentation layer, some work at

business layer while some work at all layers. Some of the most popular J2EE frameworks are: Tapestry

(presentation framework), Struts (reference implementation of the MVC-II specification) Jetspeed and Liferay

(portal frameworks integrated with Struts), Expresso (an architectural framework integrated with Struts), Spring

MVC. [1]

II. STRUTS FRAMEWORK
The Jakarta Struts provides a unified framework for developing servlet and JSP based web applications

that use the Model-View-Controller (MVC) design pattern. The Struts was designed with the intention of

providing an open−source framework for creating Web applications that easily separate the presentation layer

and allow it to be abstracted from the transaction/data layers. The Model represents the business or database

code, the View represents the page design code, and the Controller represents the navigational code.

Using Factory Design Pattern for Database Connection and...

40

The Struts framework provides utility classes to handle many of the most common tasks in Web

application development. The Struts framework also provides custom tag libraries for outputting bean properties,

generating HTML forms, iterating over various types of data structures, and conditionally outputting HTML.

The Struts framework uses many design patterns. Design patterns capture the experience of expert

software developers and present common recurring problems, their solutions, and the consequences of those

solutions in methodical way. The main design pattern behind the struts framework is MVC which separates

business logic from controller and view/display logic. Controller is based on command and Front Controller

design pattern. Action classes use Adapter Design Pattern and process() method of the RequestProcessor uses

the Template Method Design Pattern. Struts uses ValueObject pattern also as all the data are encapsulated in an

object before passing to JSPs. [6][7][8]

Fig. 1: Architecture of Struts based Web Application

Struts based web application works as per the steps given below.

(1) When user submits JSP form, form parameters will be sent to the web server along with the HttpRequest

by post or get method.

(2) HttpRequest with *.do extension will be mapped to the appropriate Action Servlet / Request Processor

according to configuration mentioned in web.xml file.

(3) Action Servlet/Request Processor lookups for appropriate Action and Action Form Bean classes from

struts-config.xml file.

NOTE: Web server loads all configuration files like web.xml and struts-config.xml when it starts.

Web.xml files contains configuration details to map *.do request to appropriate Action Servlet while the

struts-config.xml configuration file is a link between the View and Model components in the Web Client.

It plays an important role in building both Controller components and Application-specific

configurations.[6]

(4) Action Servlet/Request Processor creates class for Form Bean and fills it with request data.

(5) Action Servlet/Request Processor instantiates Action class and calls its execute() method by passing

ActionMapping, ActionForm, HttpServletRequest and HttpServletResponse as parameters.

(6) Action Servlet/Request Processor can use Form Bean class and fills it with business data.

Using Factory Design Pattern for Database Connection and...

41

(7) Action Servlet/Request Processor accesses Model component and invoke business logic. Model

component can be Java Bean class or Enterprise Java Bean (EJB).

(8) EJB/Java Bean can communicate with database through Hibernate framework by using JDBC APIs.

(9) Result/Data retrieved from database will be set in the Request or Session scope variables.

(10) Action class returns name of the next view to Action Servlet/Request Processor according to the business

logic.

(11) Action Servlet/Request Processor dispatches request to the next JSP.

(12) User can view next JSP page on browser window. JSP page will be transformed to servlet which in turn

transformed to HTML page so browser can parse and display it to the user.

Table 1: Main Elements of struts-config.xml Configuration File [15]

Element Name Description

<form-beans> Contains form bean definitions. The Form beans create

ActionForm instances at runtime. The details of each form bean

are provided in the <form-bean> element.

<global-forwards> Contains the global forward definitions. The forward name is the

logical name used to map to a specific JSP. The <forward>

element contains the logical name and the name of the

corresponding resource which it maps to.

<action-mappings> Contains the action definitions. Each action mapping is defined

in an <action> element. The <forward> definition within

<action>, maps the result of the action to the jsp page invoked.

III. FACTORY DESIGN PATTERN
One of the goals of object-oriented design is to delegate responsibility among different objects. This

kind of partitioning is good since it encourages Encapsulation and Delegation. [3]

A class may need it's subclasses to specify the objects to be created or delegate responsibility to one of

several helper subclasses so that knowledge can be localized to specific helper subclasses. Even Sometimes, an

Application (or framework) at runtime, is not able to judge properly the class of an object that it must create.

The Application (or framework) may know that it has to instantiate classes, but it may only know about abstract

classes (or interfaces), which it cannot instantiate. Thus the Application class may only know when it has to

instantiate a new Object of a class, not what kind of subclass to create.

Creational design pattern, more specifically the Factory Pattern tries to resolve out such issues. This

pattern helps to model an interface for creating an object which at creation time can let its subclasses to decide

which class to instantiate. We call this a Factory Pattern since it is responsible for "Manufacturing" an Object. It

helps to instantiate the appropriate subclass by creating the right object from a group of related classes. The

Factory Pattern promotes loose coupling by eliminating the need to bind application-specific classes into the

code. It is an object oriented design pattern that returns an instance of one of the several possible classes based

on the data passed to it. Generally all the classes that it returns have common methods and also have a common

parent class. It should be noted that all the subclasses performs the different task and is optimized for different

kind of data. [4][5]

A factory is not needed to make an object. A simple call to new will do it for you. However, the use of

factories gives the programmer the opportunity to abstract the specific attributes of an object into specific

subclasses which create them.

A. Factory Method Design Pattern

The factory method pattern defines an interface for creating an object, but let’s subclasses decide which

class to instantiate. Factory method lets a class defer instantiation to subclasses. As with every factory, the

Factory Method Pattern gives a way to encapsulate the instantiations of concrete types. As shown in the figure

below, the abstract creator gives an interface with a method for creating objects, also known as the “factory

method”. Any other methods implemented in the abstract creator are written to operate on products produced by

the factory method. Only subclasses actually implemented the factory method and create products.

As mentioned above, the factory method lets subclasses decide which class to instantiate. Developers

say “decides” not because the pattern allows subclasses themselves to decide at runtime, but because the creator

class is written without knowledge of the actual products that will be created, which is decided purely by the

choice of the subclass that is used.

The implementation is really simple as given below.

Using Factory Design Pattern for Database Connection and...

42

 The client needs a product, but instead of creating it directly using the new operator, it asks the factory

object for a new product, providing the information about the type of object it needs.

 The factory instantiates a new concrete product and then returns to the client the newly created product

(casted to abstract product class).

 The client uses the products as abstract products without being aware about their concrete

implementation.

When you design an application just think if you really need it a factory to create objects. Maybe using

it will bring unnecessary complexity in your application. Anyway if you have many object of the same base type

and you manipulate them mostly as abstract objects, then you need a factory. [9]

[1] Applicability: Classes that are parallel in hierarchies usually require objects of one hierarchy for creating

appropriate objects from another. Factory methods are mostly used in frameworks and toolkits where library

codes required creating the objects of specific types that may be sub classed by applications with the help of

framework. The Factory patterns can be used in following cases:

1) When a class does not know which class of objects it must create.

2) A class specifies its sub-classes to specify which objects to create.

3) In programming language (very raw form), you can use factory pattern where you have to create an

object of any one of sub-classes depending on the data provided.

Fig. 2: Architecture of Factory Method Design Pattern

[2] Examples: Some examples in which factory method pattern is being used are sited below.

A graphical application works with shapes. In our implementation the drawing framework is the client and the

shapes are the products. All the shapes are derived from an abstract shape class (or interface). The Shape class

defines the draw and move operations which must be implemented by the concrete shapes. Let's assume a

command is selected from the menu to create a new Circle. The framework receives the shape type as a string

parameter; it asks the factory to create a new shape sending the parameter received from menu. The factory

creates a new circle and returns it to the framework, casted to an abstract shape. Then the framework uses the

object as casted to the abstract class without being aware of the concrete object type.The advantage is obvious:

New shapes can be added without changing a single line of code in the framework (the client code that uses the

shapes from the factory).

Using Factory Design Pattern for Database Connection and...

43

[3] Drawbacks and Benefits: Here are the benefits and drawbacks of factory method pattern:

 The main reason for which the factory pattern is used is that it introduces a separation between the

application and a family of classes (it introduces weak coupling instead of tight coupling hiding concrete

classes from the application). It provides a simple way of extending the family of products with minor

changes in application code.

 It provides customization hooks. When the objects are created directly inside the class it's hard to replace

them by objects which extend their functionality. If a factory is used instead to create a family of objects

the customized objects can easily replace the original objects, configuring the factory to create them.

 The factory has to be used for a family of objects. If the classes doesn't extend common base class or

interface they cannot be used in a factory design template.

B. Abstract Factory Pattern
Abstract factory pattern provides an interface for creating families of related or dependent objects

without specifying their concrete classes. Modularization is a big issue in today's programming. Programmers

all over the world are trying to avoid the idea of adding code to existing classes in order to make them support

encapsulating more general information. Take the case of a information manager which manages phone number.

Phone numbers have a particular rule on which they get generated depending on areas and countries. If at some

point the application should be changed in order to support adding numbers form a new country, the code of the

application would have to be changed and it would become more and more complicated.

In order to prevent it, the Abstract Factory design pattern is used. Using this pattern a framework is

defined, which produces objects that follow a general pattern and at runtime this factory is paired with any

concrete factory to produce objects that follow the pattern of a certain country. In other words, the Abstract

Factory is a super-factory which creates other factories (Factory of factories).

Fig. 3: Architecture of Abstract Factory Design Pattern

The AbstractFactory class is the one that determines the actual type of the concrete object and creates it,

but it returns an abstract pointer to the concrete object just created. This determines the behaviour of the client

Using Factory Design Pattern for Database Connection and...

44

that asks the factory to create an object of a certain abstract type and to return the abstract pointer to it, keeping

the client from knowing anything about the actual creation of the object. [10]

The fact that the factory returns an abstract pointer to the created object means that the client doesn't

have knowledge of the object's type. This implies that there is no need for including any class declarations

relating to the concrete type, the client dealing at all times with the abstract type. The objects of the concrete

type, created by the factory, are accessed by the client only through the abstract interface.

The second implication of this way of creating objects is that when the adding new concrete types is

needed, all we have to do is modify the client code and make it use a different factory, which is far easier than

instantiating a new type, which requires changing the code wherever a new object is created.

AbstractFactory class declares only an interface for creating the products. The actual creation is the

task of the ConcreteProduct classes, where a good approach is applying the Factory Method design pattern for

each product of the family.

Extending factories can be done by using one Create method for all products and attaching information

about the type of product needed. All factory patterns promote loose coupling by reducing the dependency of

your application on concrete classes. Factories are powerful technique for coding to abstractions, not concrete

classes. [2]

[1] Applicability: We should use the Abstract Factory design pattern when:

 The system needs to be independent from the way the products it works with are created.

 The system is or should be configured to work with multiple families of products.

 A family of products is designed to work only all together.

 The creation of a library of products is needed, for which only the interface is relevant, not the

implementation.

[2] Examples: Some examples in which abstract factory pattern is being used are sited below.

Example-1: The purpose of the Abstract Factory is to provide an interface for creating families of related objects,

without specifying concrete classes. This pattern is found in the sheet metal stamping equipment used in the

manufacture of Japanese automobiles. The stamping equipment is an Abstract Factory which creates auto body

parts. The same machinery is used to stamp right hand doors, left hand doors, right front fenders, left front

fenders, hoods, etc. for different models of cars. Through the use of rollers to change the stamping dies, the

concrete classes produced by the machinery can be changed within three minutes.

Fig. 4: Using Abstract Factory for Automobile

Using Factory Design Pattern for Database Connection and...

45

Example-2: Take the case of a information manager which manages phone number. Phone numbers have a

particular rule on which they get generated depending on areas and countries. If at some point the application

should be changed in order to support adding numbers form a new country, the code of the application would

have to be changed and it would become more and more complicated. The AbstractFactory class will contain

methods for creating a new entry in the information manager for a phone number and for an address, methods

that produce the abstract products Address and PhoneNumber, which belong to AbstractProduct classes. The

AbstractProduct classes will define methods that these products support: for the address get and set methods for

the street, city, region and postal code members and for the phone number get and set methods for the number.

The ConcreteFactory and ConcreteProduct classes will implement the interfaces defined above and will appear

in our example in the form of the USAddressFactory class and the USAddress and USPhoneNumber classes.

For each new country that needs to be added to the application, a new set of concrete-type classes will be added.

This way we can have the EnglandAddressFactory and the EnglandAddress and EnglandPhoneNumber that are

files for English address information.

C. Difference Between Factory Method Pattern and Abstract Factory Pattern

Abstract factory pattern provides an interface for creating families of related or dependent objects without

specifying their concrete classes.

Table 2: Difference between Factory Method and Abstract Factory[4]

Factory Method Pattern Abstract Factory Pattern

The factory method pattern defines an

interface for creating an object, but let’s

subclasses decide which class to instantiate.

Factory method lets a class defer

instantiation to subclasses.

Abstract factory pattern provides an interface for creating

families of related or dependent objects without specifying

their concrete classes.

Factory method relies on inheritance: object

creation is delegated to subclasses which

implement the factory method to create

objects.

Abstract factory relies on object composition: object creation

is implemented in methods exposed in the factory interface.

The intent of factory method is to allow a

class to defer instantiation to its subclasses.

The intent of abstract factory is to create families of related

objects without having to depend on their concrete classes.

IV. INCORPORATING FACTORY DESIGN PATTERN FOR DATABASE

CONNECTION INTO STRUTS FRAMEWORK
Factory pattern can be used within struts framework as shown in the below diagram to manage

database connection objects.[11] Database connection management and exception handing is important concern

for web application developer. Different modules and functionalities of web application use different DAO to

connect with the database. Factories can be created so that appropriate DAO object can be created or retrieved

as and when required by passing name of the appropriate DAO.

Sequence to work with the database connection and to retrieve the desirable result is given below.

(1) When user submits JSP form, form parameters will be sent to the web server along with the HttpRequest

by post or get method.

(2) HttpRequest with *.do extension will be mapped to the appropriate Action Servlet / Request Processor.

(3) Action Servlet/Request Processor lookups for appropriate Action and Action Form Bean classes from

struts-config.xml file.

(4) Action Servlet/Request Processor instantiates Action class and calls its execute() method by passing

ActionMapping, ActionForm, HttpServletRequest and HttpServletResponse as parameters.

(5) Action Servlet/Request Processor can use Form Bean class and fills it with business data.

(6) Appropriate DAO object can be retrieved within execute() method using

IUserDAO dao=(IUserDAO)DAOFactory.getDAO(“UserDAOImpl”);

(7) Required method can be called on this DAO object i.e. to create new user, to edit user edit

userrole=dao.checkLogin(username, password);

(8) Inside this checkLogin method, connection object can be retrieved by calling methods of DBUtil class. i.e.

C=DBUtil.getConnection();

(9) Appropriate queries can be fired by using queries defined within Queries class. i.e.

PreparedStatement ps=c.prepareStatement(Queries.CHECK_LOGIN);

Using Factory Design Pattern for Database Connection and...

46

Fig. 5: Using Factory Pattern to manage DAO within Struts Framework

V. CONCLUSIONS
By using factory pattern for database connection, we can achieve weak coupling instead of tight

coupling hiding concrete classes from the application. The main reason for which the factory pattern is used is

that it introduces a separation between the application and a family of classes. It provides a simple way of

extending the family of products with minor changes in application code. When the objects are created directly

inside the class it's hard to replace them by objects which extend their functionality. If a factory is used instead

to create a family of objects the customized objects can easily replace the original objects, configuring the

factory to create them. As shown in the above figure, new DAO and new DAOImpl can be easily added to the

existing architecture with minor changes in the application time. Using design pattern saves maintenance and

development time and cost significantly.

ACKNOWLEDGMENT

The author would like to express his earnest gratitude to his guide Jayesh N. Rathod, Head of

Computer Engineering department at Atmiya Institute of Technology & Science, Gujarat, INDIA for his

constant guidance, encouragement and moral support which helped the author to accomplish this research work.

The author would also like to extend his sincere gratitude to Mr. Jaladhi D. Joshi (M.S. (CE), Florida Atlantic

University, Boca Raton, FL, USA) Who is working as Research Assistant at Motorola Inc., Sunrise, FL, USA

for helping him in all possible ways.

REFERENCES
[1] MU Huaxin & JIANG Shuai, Design Patterns in Software Development, Beijing, IEEE 2011 (ISBN:

978-1-4244-9699-0)

Using Factory Design Pattern for Database Connection and...

47

[2] Fernando Barros, Increasing Software Quality through Design Reuse, 2010 Seventh International

Conference on the Quality of Information and Communications Technology, 2010 (ISBN: 978-1-4244-

8539-0)

[3] Chuanjun Li & Qing Wang & Wenwen Cai & Jun He, An Efficacious Software Design Method Based

on Pattern and Its Application, National Key Technology R&D Program Project Grant, 2010 (ISBN:

978-1-4244-7324-3)

[4] Head First Design Patterns by Eric Freeman, Elisabeth Robson, Bert Bates, Kathy Sierra, O'Reilly

Media inc.

[5] Head First Object-Oriented Analysis and Design by Brett D. McLaughlin, Gary Pollice, Dave West,

O'Reilly Media inc.

[6] Professional Struts Applications: Building Web Sites with Struts, Object Relational Bridge, Lucene,

and Velocity by John Carnell, Jeff Linwood, Wrox Publication

[7] Liu Chao, He Keqing, Liu Jie and Ying Shi, Some Domain Patterns in Web Application Framework,

Proceedings of the 27th Annual International Computer Software and Applications Conference

(COMPSAC’03), IEEE 2003 (ISBN: 0-7695-2020-0)

[8] Shu-qiang Huang & Huan-ming Zhang, Research on Improved MVC Design Pattern Based on Struts

and XSL, Shanghai, IEEE, 2008 (ISBN: 978-1-4244-2727-4)

[9] Web Reference (http://en.wikipedia.org/wiki/Factory_method_pattern)

[10] Web Reference (http://en.wikipedia.org/wiki/Abstract_factory_pattern)

[11] Xia Sun & Chang Yao, Research and Implementation of Data Access Framework Base on Design

Patterns, Hangzhou, IEEE 2011 (978-1-4577-1085-8)

ABOUT THE AUTHOR

Mr. Mukesh Parsana completed his graduation in Information Technology discipline from

one of the most reputed engineering colleges in India, Nirma Institute of Technology

Ahmedabad. Currently he is pusuing his master degree in Computer Engineering form Atmiya

Institute of Technology and Science Gujarat. He has worked with India’s top multinational

software firm, Infosys Technologies, for four years as senior software developer. Sun

Microsystems/Oracle awarded him with 3 international certificates (SCJP, SCWCD and

SCBCD) for his expertise in different J2EE technologies. Due to his expertise on j2EE

technologies, he has received offer of employment from multinational companies like Wipro Technologies, TCS,

IBM and Persistent Technologies.

SCJP: Sun Certified Java Programmer for Java 2 Platform 1.4 (CX-310-035)

SCWCD: Sun Certified Web Component Developer for J2EE V1.4 (CX-310-081)

SCBCD: Sun Certified Business Component Developer for J2EE V1.3 (CX-310-090)

