
International Journal of Engineering Research and Development 

e-ISSN: 2278-067X, p-ISSN: 2278-800X, www.ijerd.com 

Volume 6, Issue 6 (March 2013), PP. 61-66 

61 

{2, 2}-Extendability of Planar Graphs 

Dharmaiah Gurram
1
, N.Vedavathi

1
,  

1
Asst.Professor in Mathematics,K L University,Guntur (dist)A.P,India-522502 

 

 

Abstract:- In this paper, the idea of assigning lists of varying sizes to vertices of a planar graph will be 

explored. Thomassen’s 5-list-coloring theorem  states that plane graphs are list-colorable when two 

adjacent vertices on the boundary of the unbounded face are precolored, other vertices on the boundary 

of the unbounded face are assigned lists of size 3, and all other vertices of the graph are assigned lists of 

size 5. This can be thought of as being 2-extendable. Thomassen also defined an analogous property of 

3-extendability,  and  later Definition  , which corresponds to having the vertices of a 3-path along the 

boundary of the unbounded face precolored. While every planar graph is 2-extendable, it is not the case 

that every planar graph is 3-extendable. 
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I. INTRODUCTION 
The following section will describe this notion in more detail.  

Hutchinson defines the following notion of {i, j}-extendability. 

Definition 4.1. Let G = (V, E) be a plane graph and let C be the cycle that corresponds to the boundary 

of the unbounded face of G. Let x, y V (C ) be two nonadjacent vertices of C. Let L : V →  2
N
 be an arbitrary 

assignment of lists of colors to the vertices of G such that |L(x)| = i, |L(y)| = j, |L(v)| = 3 for all v   V (C) - {x, 

y}, and |L(w )| = 5 for all w   V - V (C). If G is L-colorable for all such list assignments L, then G is said to be 

(i, j )-extendable with respect to (x, y). If G is (i,j )-extendable with respect to (x, y) for every pair of vertices x, y 
  V (C ), then G is said to be {i, j}-extendable. 

  Hutchinson characterized all {1, 1}- and {1, 2}-extendable outerplanar graphs and showed that every 

outerplanar graph is {2,2}-extendable. Here an alternate proof of the {2, 2}- extendability of outerplanar graphs 

will be presented and the following conjecture, posed by Hutchinson, will be explored. 

Conjecture . Plane graphs are {2, 2}-extendable. 

This chapter contains results that provide some types of planar graphs that are {2, 2}-extendable. 

Let x, y be vertices on the boundary of the unbounded face of a plane graph G, where C is the cycle that 

corresponds to the boundary of the unbounded face of G. Let T be the set of endpoints of all chords in G. The 

induced subgraph G[T   {x, y}] is said to be an {x, y}-skeleton if it is a tree; in this case it is said that G 

contains an {x, y}-skeleton. See Figure 4.1 for an example, where the {x, y}-skeleton is shown in bold. 

 
Theorem . Let G be a plane graph, let C = x1 x2 ..... xkx1  be the cycle that corresponds to the boundary of the 

unbounded face of G. Let x = x1 and y = xj  for some j{2, . . . , k}. Let 
~

G  be a Type II reduced graph of G and 

let 
~

C  be the cycle that corresponds to the boundary of the unbounded face of ˜ G. If one of the following holds: 

1. the distance between x and y in 
~

G  [V (
~

C  )] is at most 3, or 

2. 
~

G  contains an {x, y}-skeleton,  

then G is (2, 2)-extendable with respect to (x, y). 

Note that Theorem  4.3  (1) implies the following corollary. This follows because if the unbounded face of G has 

at most six vertices, then the distance between x and y in G[V (C)] is at most 3. 

Corollary . Let G be a plane graph and let 
~

G  be a Type II reduced graph of G. Let 
~

C be the cycle that 
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corresponds to the boundary of the unbounded face of
~

G . If |V (
~

C )| = 6, then G is {2,2}-extendable. 

Theorem . Outer plane graphs and wheels are {2, 2}-extendable. 

Let {2, 2, 2}-extendable be defined analogously to {2, 2}-extendable, except three vertices instead of 

two vertices on the boundary of the unbounded face are assigned lists of size 2. Note that if Conjecture 4.2 is true, 

the result cannot be strengthened without additional restrictions. This is because not all planar graphs are {1,2}-

extendable, see Figures 4.2a  and  4.2c , and not all planar graphs are {2, 2, 2}-extendable, see Figures        4.2b  

and  4.2d , even if the vertices with lists of size 2 are arbitrarily far apart. Note also that the graphs in Figures 4.2a  

and  4.2c and Figures  4.2b  and  4.2d  belong to infinite families of planar graphs which are not {1, 2}-extendable 

or {2,2, 2}-extendable, respectively. These graphs must be such that the lengths of the paths along the boundary 

of the unbounded face between the vertices with lists of size smaller than 3 must be congruent to 2 mod 3 to get a 

graph that is not {1, 2}-extendable, and the lengths of the paths along the boundary of the unbounded face 

between the vertices with lists of size 2 and the inner triangle must be congruent to 1 mod 3 to get a graph that is 

not {2, 2, 2}-extendable when assigning lists of these types. Recall from earlier that Hutchinson [38] classified all 

{1, 2}-extendable outer planar graphs, so it was already known that not all planar graphs are {1, 2}-extendable. 

 

II. PRELIMINARIES 
This section contains some previously known results and Section  contains some new results that will be 

used in proving the main theorems of this chapter.  It is a known result proven by Erdos et al.  and Borodin  that a 

graph G is list-colorable if the size of the list assigned to a vertex is at least the degree of that vertex for each 

vertex in G, unless G is a Gallai tree and the lists have special properties. 

 
 

The following is a result of Bohme, Mohar and Stiebitz which gives a weaker version of {2, 2}-

extendability for planar graphs, where the lists are of size 4 along a path of the unbounded face. See Figure             

4.3b  for a reference to the list sizes in this theorem. 

Theorem  (Bohme et al. ). Let G = (V, E) be a plane graph, let C be cycle that corresponds to the 

boundary of the unbounded face of G, and let P = v1v2 ……. vk-1 vk  be a subpath of C. Let L : V→ 2
N
 be an 

assignment of lists of colors to the vertices of G such that N |L(vi)| = 2 for i = 1, k; |L(vi)| = 4 for all i   {2, . .. , k 

-1}; |L(v)| = 3 for all v   V (C)-V (P ); and |L(w)| = 5 for al l w   V (G) - V (C). Then G is L-colorable. 

It is also known that if all of the vertices on a small face of a plane graph are precolored, then it is extendable to a 

5-list-coloring of the graph. This result is stated more precisely in the following theorem. 



{2, 2}-Extendability of Planar Graphs 

63 

 
Theorem (Thomassen ). Let G = (V, E) be a plane graph and let C = v1v2…. vkv11 be the cycle that 

corresponds to the boundary of the unbounded face of G. Assume k ≤ 5. Let L : V → 2
N
 be an assignment of lists 

of colors to the vertices of G such that |L(vi)| = 1 for all i = 1,....., k and |L(v)| = 5 for al l v V - V (C). If G[V(C 

)] is L-colorable, then G is L-colorable unless k=5, L(vi) is distinct for each i =1,...,5 and there is a vertex uV- 

V (C)  such that u ~ vi  for i = 1, …. , 5 and L(u) = L(v1)  ….   L(v5). 

Definition . Let G = (V, E) be a planar graph and C = v1v2  …. vk v1  be the cycle corresponding to one 

face of G. It is said that G is 3-extendable with respect to the path vk v1 v2 if G is L-colorable for any assignment 

L of lists of colors to the vertices of G in which |L(vi)| = 1 for i = 1, 2, k; |L(vi)| = 3 for i = 3, .. . , k - 1; |L(v)| = 5 

for v   V - V (C), and G[vk, v1, v2 ] is L-colorable. 

As described in the following theorem, Thomassen showed that a planar graph G is 3- extendable provided it does 

not have a subgraph that is a generalized wheel for which the boundary of its unbounded face is made up of 

vertices that lie on the boundary of the unbounded face of G. See Figure  4.3c  for a reference to the list sizes in 

the following theorem. 

Theorem  (Thomassen ). Let G be a near-triangulation and C = v1 v2  ….. vk v1  be the cycle that 

corresponds to the boundary of the unbounded face of G. Then G is 3-extendable with respect to vk v1 v2  unless 

there is a subgraph G’ of G that is a generalized wheel with principal path v1 v2 vk  and all other vertices that lie 

on the boundary of the unbounded face of G are elements of V (C). Furthermore, if such a subgraph G exists and 

G is not a broken wheel, then for each list assignment L, there is at most one proper coloring of G[v1, v2, vk  ] for 

which G is not 3-extendable with respect to vk v1 v2. 

Assume (ck, c1, c2 ) is the unique proper precoloring of vk v1 v2 that is not 3-extendable, given that the obstruction 

is not a broken wheel. Call the triple (ck, c1, c2 ) the bad coloring of vk v1 v2  with respect to (G, L) and call ci the 

bad color of vi, for i = 1, 2, k, with respect to the corresponding bad coloring of vk v1 v2  , G, and L. For 

convenience, given a path P = vk v1 v2 , let CP  = 
1 2 1 2k kv v v v v vC C  (G, L) denote the ordered triple that is the bad 

coloring of vk v1 v2  with respect to (G, L). 

Definition . It is said that a coloring c of P avoids CP if, given P = vk v1 v2  and CP  = 

(c , c , c ), then c(v  ) ≠ ci  for some i   {1,2, k}. Additionally, it is said that, for some i    {1, 2, k}, a color c of 

vi avoids CP  if c(vi) ≠ c . 

If G is an odd wheel, then Figure 4.4  illustrates the list assignment that corresponds to the bad coloring of vk v1 v2 

that is not 3-extendable for W5. This list assignment may be generalized for any odd wheel by assigning the list 

{a, d, e} to any additional vertices. 

 
4.3 New results 

Lemma . Consider a triangle (x1, x2, x3) with lists L of sizes 2, 3, 3 assigned to x1, x2, x3 respectively. 

Then there are at least three L-colorings of this triangle such that the ordered pairs of colors assigned to x2, x3  are 

distinct. 

Proof. Let G be the triangle (x1, x2, x3 ) and assume L(x1 ) = {α, β}. Let 

S = {(c(x1), c(x2), c(x3)) : c is a proper L-coloring of G}. 

Let { γ, γ}    L(x2) - {β}, then S = {(β, γ, q) : q    L(x3) - {β, γ }}   {(β, γ, q) : q   L(x ) - {β, γ}}   S. Note 

here that γ  or  γ can be a. If |S | ≥ 3, the lemma follows. Otherwise, |L(x3) - {β, γ }| = 1 and |L(x3) - {β, γ’}| = 1 

implying that L(x3) = {ß, γ , γ’  }. Without loss of generality, assume γ {γ ,γ’ } - {α}. Then S   {(β, γ , γ’  ), (β,  γ , 

γ’ ), (α, γ , β)} and the lemma follows. 

Lemma . Let (u, v,w) be a triangle. Assume there are three distinct ordered pairs of 

colors (ai, bi ) for i = 1, 2, 3 that can be assigned to the vertices w, u. If v is assigned a list L(v) of three 

colors, then there are at least three distinct ordered pairs of colors (bi,ci), i = 1,2, 3, that can be assigned to the 
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vertices u,v for which ci L(v) - {ai, bi } for i = 1,2, 3. 

Proof. It is not hard to see that there exists ci L(v) - {ai, bi } for i = 1, 2, 3. Consider the pairs (b1, c1), 

(b2, c2 ), (b3, c3). It remains to show that these three pairs are distinct. Assume |L(v) - {ai,bi }| = 1 for all i = 1, 2, 3. 

Otherwise, there are more than three pairs and the result follows more easily. Without loss of generality, assume 

b1= b2  and c1  = c2. This implies two of the pairs for w, u are actually (a1, b1), (a2, b1 ). It then follows that L(v) - 

{a2, b1 } = c1  = L(v) - {a2, b1 }, hence a1  = a2. This is a contradiction, as it was assumed that (a1, b1) and (a2, b2) 

are distinct pairs. Thus, the pairs (b1, c1), (b2, c2), (b3, c3) are distinct and the lemma follows. 

The following lemma will be used to show that outerplane graphs are {2, 2}-extendable. 

Lemma. Let G be an outerplane near-triangulation with vertex x of degree 2. Let L be an assignment of 

lists of colors to the vertices of G such that |L(x)| = 2 and |L(w)| = 3 for all w V (G) - {x}. For any edge uv on 

the unbounded face of G, there are at least three L-colorings of G such that the ordered pairs of colors assigned to 

u, v are distinct. 

Proof. If x {u, v}, then there are at least three distinct proper colorings of G[{u, v}] that are each 

extendable to L-colorings of G by Theorem 1.13 . Thus, assume x {u, v}. 

The proof is by induction on |V (G)|. If G has three vertices, the result follows from Lemma 4.11. 

Before proceeding, it can be assumed that G does not contain any non-{x, u, v}-separating 

chords, otherwise the lemma follows by induction and Theorem 1.13. 

Assume the result holds for all outerplane near-triangulations on less than n vertices with list assignments as 

described in the hypotheses of the lemma. Now consider an outerplane graph G such that |V (G)| = n and choose 

an arbitrary edge uv on the unbounded face of G for which x {u,v}. Since G is a near-triangulation and there is 

no non-{x,u,v}-separating chord in G, there is a w   V (G) such that (u, v, w) is a triangle in G and either vw is 

an edge on the unbounded face of G or uw is an edge on the unbounded face of G. Without loss of generality, 

assume vw is an edge on the unbounded face of G. Consider the graph G - v with lists L. Since |V (G - v)| = n - 1 

and uw is an edge on the unbounded face of G - v, there are at least three L-colorings of G - v for which the 

ordered pairs of colors assigned to w, u are distinct by induction. Let these pairs be (a1, b1 ), (a2, b2), (a3, b3) where 

ai is the color from L(w) assigned to w and bi is the color from L(u) assigned to u for i = 1, 2, 3.i 

The result then follows by Lemma 4.12 . 

In Theorem 4.3, the idea of a reduced graph is used. The following lemma illustrates why this notion is helpful. 

Lemma . Let G be a plane graph, x, y   V (G) be vertices on the unbounded face C of G, and L an 

assignment of lists of colors to the vertices of G such that |L(x)| = |L(y)| = 2, |L(v)| = 3 for all v   V (C) - {x,y}, 

and |L(w)| = 5 for all w V (G) - V (C). Let ˜                   G = R(G) be a Type II reduction of G with respect to x, 

y. If 
~

G  is L-colorable, then G is L-colorable. 

Proof. If 
~

G  was obtained from G by removing a separating 3-cycle with vertex set X for which X’ is 

the vertex set of the connected component of G - X which contains neither x nor y and c is an L-coloring of G”, 

then c may be extended to an L-coloring of G. Let L’(w) = L(w ) for all w   X and L (z) = {c(z)} for all z   X, 

then G[X   X’ ] is L’ -colorable by Theorem 4.7. Thus G is L-colorable. If 
~

G  was obtained from G by letting 

~

G  = R(G) = GA where uv is a non-{x, y}-separating chord that splits G into two graphs GA         and GB  such 

that G = GA   GB, 

V (GA) n   V (GB) = {u, v}, and x, y   V (GA), and c is an L-coloring of 
~

G , then c may be extended to an L-

coloring of G. Let L (w) = L(w) for all w V (GB) - {u, v}, L (u) = {c(u)} and L (v) = {c(v)}, then GB is L -

colorable by Theorem  1.13 . Thus, G is L-colorable. 

Theorem . Let G = (V,E) be a plane graph and let C be the cycle that corresponds to the boundary of the 

unbounded face of G. Let x,y V (C ) be two nonadjacent vertices of C. Let L : V → 2
N 

be an arbitrary 

assignment of lists of colors to the vertices of G such that |L(x)| = |L(y)| = 2, |L(v)| = 3 for all v V (C) - {x, y}, 

and |L(w)| = 5 for al l w V - V (C ). Let 
~

G  be the Type II reduced graph of G with respect to x, y. If 
~

G  is L-

colorable, then G is L-colorable. 

This theorem follows from Lemma  4.14  because the Type II reduced graph of G is obtained from G via a series 

of Type II reductions. 

 

III. THEOREM      
One of the main tools used in the following proof will be Theorem 4.9 and the notion of 3-extendability. 

A caterpillar is a tree in which all vertices of the graph are on or incident to a path which contains every vertex of 

degree at least two. 
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Proof of Theorem . Observe first that by Corollary , if the Type I I reduced graph of G is L-colorable, 

then G is L-colorable. Thus, assume that G is a Type II reduced graph with respect to x, y for the remainder of the 

proof. 

1. Without loss of generality, assume G is a near-triangulation. 

a. If j {2,k}, then the result follows from Theorem 1.13. 

b. If j {3, k - 1}, assume j = 3. Add two adjacent vertices s and t with s ~ {x, x2} and t ~ {x2, y} so that s 

and t now lie on the cycle that corresponds to the unbounded face. Call this new graph G’. Let a and b be two 

colors not in any of the lists L. Assign to the vertices of G” the lists L’ where L’(s) = {a}, L(t) = {b}, L’ (x) = 

L(x)   {a}, L (x2) = L(x2)  {a, b}, L (y) = L(y)   {b}, and L’(w) = L(w)  for all w   V (G) - {x, x2, y}. By 

Theorem 1.13, G’ is L-colorable and it follows that G is L-colorable. 

c. If j   {4, k - 2}, assume j = 4. Add a 3-path stu with s ~ {x, x2}, t ~ {x2, x3} and u ~ {x3, y} so that stu 

now lies on the cycle that corresponds to the unbounded face, see Figure 4.5. Call this new graph G” and let C” 

be the cycle that corresponds to the unbounded face. Let a,b and c be three colors not in any of the lists L. Assign 

to the vertices of G the lists L , where L(s) = {a}, L(t) = {b}, L(u) = {c}, L (x) = L(x)  {a}, L (x2) = L(x2)   

{a, b}, L(x3) = L(x)   {b, c}, L (y) = L(y)  {c}, and L (w) = L(w) for all wV(G)- {x,x2,x3,y}. If G is 3-

extendable with respect to stu, then that L -coloring of G provides an L-coloring of G. Thus, it remains to verify 

that G does not contain a subgraph H that is a generalized wheel with principal path stu and vertices of outercycle 

on C . Assume such a subgraph H exists in G . Observe that H cannot be a broken wheel because t does not have 

any neighbors with lists of size 3. Additionally, H cannot be a wheel because there is no vertex z in G such that z 

~ {s, t,u}. Thus, H must be a generalized wheel formed by identifying principal edges of two wheels as seen in 

Figure 2.1c . However, this would require t to have degree 5 in H, a contradiction because t is of degree 4 in G . 

So by Theorem  4.9, G is 3-extendable with respect to stu. 

 
2. Let GT  be the {x, y}-skeleton of G. Besides the fact that GT  is a tree, some additional  observations may be 

made. First, GT is indeed a caterpillar. There is also an underlying linear ordering of the chords of G. Consider the 

weak dual of G[C ]. This graph is a path w1 w .…. wm  whose endpoints correspond to the bounded faces of G 

that contain x and y, respectively. Let G    , i = 1, . . ., m be the subgraph of G whose unbounded face has 

boundary that is the cycle corresponding to the vertex w i in the weak dual of G[C]. Additionally, each wi in the 

vertex set of the weak dual of G[C] corresponds to P1 with                                                vertices ui-1, ui, ui+1 in GT. 

Let 
iPC   be the coloring of ui-1ui ui+1 with respect to (Gi, L). As noted earlier, for each Pi, there is a 

iPC  for which 

the precoloring of Pi does not extend to a proper L-coloring of Gi. Note that x   P1 and y   Pm  uniquely. Say an 

{x, y}-skeleton has a “good” L-coloring if for all Gi, i = 1,. . . , m, the corresponding Pi can all be simultaneously 

L-colored so that Pi avoids 
iPC . 

Claim . If GT  has a “good” L-coloring, then G is L-colorable. 

The claim holds because the “good” L-coloring of GT may be extended to an L-coloring 

of G by Theorem 4.9  applied to each Gi. 

Claim . GT  has a “good” L-coloring. 

Proof of Claim  . By induction on m. If m = 1, then there are no chords and x ~ y, 

so the results follows by Theorem 1.13 . 

So assume the result holds for m - 1 and consider GT. Without loss of generality,  assume Pm  = wm-1 wm 

y and 
mpC = (cm-1, cm, cy ). Let GT  = GT - {y}. Let L (wm ) =  L(wm) - {cm} and L (w) = L(w) for all w V (GT) - 

{w }. By induction, there is a “good” L -coloring c of GT. This can be extended to a “good” L-coloring of GT by 

assigning to y a color from L(y) - {c(wm)}. 

By the above two claims, G is L-colorable. 

 

IV. CONCLUSION 
We proved some theorems on {2, 2}-EXTENDABILITY OF PLANAR GRAPHS. 

 While every planar graph is 2-extendable, it is not the case that every planar graph is 3-extendable 

 

 



{2, 2}-Extendability of Planar Graphs 

66 

REFERENCES 
[1]. Dimitris Achlioptas and Cristopher Moore. Almost all graphs with average degree 4 are 3-colorable. J. 

Comput. System Sci., 67(2):441{471, 2003. Special issue on STOC2002 (Montreal, QC). 

[2]. Michael O. Albertson. You can't paint yourself into a corner. J. Combin. Theory Ser. B, 73(2):189{194, 

1998. 

[3]. Michael O. Albertson, Alexandr V. Kostochka, and Douglas B. West. Precoloring extensions of 

Brooks' theorem. SIAM J. Discrete Math., 18(3):542{553, 2004/05. 

[4]. Noga Alon. Restricted colorings of graphs. In Surveys in combinatorics, 1993 (Keele), volume 187 of 

London Math. Soc. Lecture Note Ser., pages 1{33. Cambridge Univ. Press, Cambridge, 1993. 

[5]. Noga Alon. Degrees and choice numbers. Random Structures Algorithms, 16(4):364{368, 2000. 

[6]. Kenneth Appel and Wolfgang Haken. Every planar map is four colorable. Bull. Amer. Math. Soc., 

82(5):711{712, 1976. 

 

 

 

 


