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Abstract:- In this paper, we make a brief review of smoothed particle hydrodynamic method and 
develop a new infinity differentiable weight function in the three-dimensional space. The function 

satisfies the demanded properties. Furthermore, we investigate the consistency and analyze the 

estimation errors of the SPH interpolation with the weight function. 
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Ⅰ.    INTRODUCTION 
In the past thirty years, meshless methods have been developed excellently. In these methods, the 

central and most important issue is how to create shape functions using only nodes scattered arbitrarily in a 

domain without any predefined mesh. Development of more effective methods for constructing shape functions 

is thus one of the hottest area of research in the area of meshless methods. A number of ways to construct shape 

functions have been proposed and these methods can be classified into three major categories [1]: (1) Finite 

integral representation methods; (2) Finite series representation methods; (3) Finite differential representation 

methods. Among these methods, the finite integral representation methods are relatively young, but have found 

a special place in Meshless methods with the development of smoothed particle hydrodynamics  

The term smoothed particle hydrodynamics (SPH) was coined by Gin-gold and Monaghan in 1977 [2]. 

By using a kernel estimation technique to estimate probability densities from sample values, Gingold and 

Monaghan[2] and Lucy [3] independently proposed a way to reproduce the equations of fluid dynamics or 

continuum mechanics. Because of its close relation to the statistical ideas, Gingold and Monaghan [2] described 

the method as a Monte Carlo method, as did Lucy [3] who had, in effect, rediscovered the statistical technique. 
The basic SPH algorithm was improved to conserve linear and angular momentum exactly using the particle 

equivalent of the Lagrangian for a compressible nondissipative fluid [4]. 

In SPH, the function u(x) is represented using its information in a local domain via an integral form, i.e., 

u 𝐱 =  u ξ δ 𝐱 − ξ dξ
+∞

−∞
                                                 (1) 

where 𝐱 ∈ Rν (ν is the spatial dimension) and δ(𝐱) is the Dirac delta function 

The representation (1) is difficult to use for numerical analysis, though it is exact. So u(x) is approximated by 

the finite integral form of representation as follows [2, 3]. 

uh 𝐱 =  u ξ W 𝐱− ξ, h dξ
Ω

                                             (2) 

where W(x-ξ,h) is called weight function or kernel or smoothing function, his the smoothing length, which 

controls the size of the compact support domain Ω whose name is the influence domain. A finite integral 

representation (2) is valid and converges when the weight function satisfied these properties as follows [1, 5]. 

 

W 𝐱, h > 0 for x ∈ Ω (Positivity)                                         (3a) 

W 𝐱, h = 0 for ∀x ∈ Rν/Ω (Compact)                                      (3b) 

 u ξ W 𝐱 − ξ, h dξ
Ω

=1 (Unity)                                           (3c) 

W 𝐱, h → δ 𝐱  as h → 0 (Dalta function behavior)                          (3d) 

W(x, h)∈ Cp Ω , p ≥ 1 (Smooth)                                          (3e) 

It is noted that the property (3a) is not necessary mathematically but are important to ensure meaningful 

presentation of some physical phenomena.However, properties (3b) and (3c) are the minimum requirements. 

The fourth property ensures the method is converging to its exact form (1). 

The last requirement comes from the essential point that we should construct a differentiable 

interpolation of a function from its values at the particles (interpolation points) by using a differentiable weight 

function. Then the derivatives of this interpolation can be obtained by ordinary differentiation and there is no 
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need to use finite differences and no need for a grid. The continuous of the derivative of the weight function can 

prevent a large fluctuation in the force felt. This also gives rise to the name smoothed particle hydrodynamics. 

For details, we recommend [1, 5, 6] and the references therein. 
It’s important to chose weight functions in meshless methods. They should be constructed according to 

the demanded properties (3a)-(3e). After normalized for one dimension, we denote W(x-ξ,h)  as W(r)  where 

r=⌈x-ξ⌉/d_W,|.| denotes the Euclidean norm, positive numbers d_W  are related to h and it can be different from 

point to point in general. It proves convenient to choose W(r) to be an even function [2]. Some commonly used 

weight functions include the Gaussian weight function[2], the cubic spline weight function [9], the quartic spline 

weight function [7] and so on. In practice, when choosing an appropriate weight function for one’s SPH code, 

the main considerations are the order of interpolation, the number of nearest neighbours, the symmetry and 

stability properties. The readers interested in it are referred to find more references in [1]. In this paper, we 

propose a new weight function that satisfies the conditions (3a)-(3e). Furthermore, we investigate its consistency 

and analyze the estimation errors of the SPH codes with the weight function. 

1. The cubic spline weight function（W1）[10]： 

 

W1 d =

 
 
 

 
 

2

3
− 4d2 + 4d3   for d ≤

1

2
4

3
− 4d + 4d2 −

4

3
d3   for 

1

2
< 𝑑 ≤ 1 

0                               for d > 1

  

 

2. The quartic spline weight function (W2)[10]: 

W2 d =  1 − 6d2 + 8d3 − 3d4   for d ≤ 1
0                                           for d > 1

   

3. The exponential weight function (W3) [10]: 

.W3 d =  e−(
d

α
)2

  for d ≤ 1
0          for d > 1

  

where α is a parameter. 

 

II.      A NEW INFINITY DIFFERENTIABLE WEIGHT FUNCTION 
Inspired by the idea of the smeared-out Heaviside function in the level set method [8], we propose a new 

weight function which is infinity differentiable and satisfies the demanded properties (3a)-(3e). 

For Heaviside function H(x) defined as 

H x =  
1;  if x > 0,
0 ;  if x ≤ 0

  

we can define a smeared-out Heaviside function 

Hε x =
1

π
arctan

x

ε
+

1

2
 

Where ε is a positive infinitely small parameter. The approximation concerning the different parameters ϵ are 

showed in Fig.1. We can see that the parameter ϵ influence the degree of smeared-out. 

Denotes δε x  the derivative of Hε x  on x, then we obtain 

δε x =
1

π

ε

1 + x2
 

After normalized for one dimension, a new weight function Wε(r) is defined as  

Wε r =  

1

4πdw
3 δε r   , if 0 ≤ r ≤ 1;

0,          else.

       (4) 

 
Fig.1  (a) ε = 0.01;  (b)  ε= 0.1 



An Infinity Differentiable Weight Function for Smoothed Article… 

95 

It is obvious that the weight function Wϵ r  has compact support, that is, the interactions are exactly zero for 
 𝐱 − ξ >dW  This is a great computational advantage, since a potentially small number of neighbouring particles 
are the only contributors in the sums over the particles. 

The function Wϵ r  is infinity differentiable. So Wϵ r  is not sensitive to the disorder of the particles. 

That is, the errors in approximating the integral interpolation by summation interpolation are small provided the 

particle disorder is not too large [6, 9]. 

The continuous consistency conditions result in a generalized approach to construct analytical smoothing 

functions that play a key role in the SPH formulation. The numerical solution obtained by the meshless method 

must converge to the true one when the nodal spacing approaches zero. So the shape functions have to satisfy a 

certain degree of consistency, which is achieved by properly choosing the weight function [1]. The term of 

consistency is used to measure the degree of approximation. In general, if the approximation can produce a 

polynomial of up to k-th order exactly, the approximation is said to have k-th order consistency, or 

Ck  consistency. 

 

 
Fig. 2  weight functions: W1:ubic spline weight function; W2: quartic spline weight function; W3: 

exponential weight function; Wε: the new weight function. 

 
Fig. 3  The first derivatives of weight functions: W1:cubic spline weight function; W2:quartic spline weight 

function; W3:exponential weight function; Wε: the new weight function.. 

Before proceeding to the consistency of Wε(r), we first investigate the unity of Wε(r) Since there is a 

parameter ε involving in function Wε(r), so we introduce the definition of asymptotic unity. 
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Fig. 4  The second derivatives of weight functions: W1: cubic spline weight function; W2: quartic 

spline weight function; W3: exponential weight function; Wε:: the new weight function. 

Definition 1. We call a weight function W(x, h) is asymptotic unity if the equation as follows holds.  

lim
h→0

  u ξ W 𝐱 − ξ, h dξ
Ω

= 1 

By tedious but simple integral operation, we find that functionWε(r) is asymptotic unity when ε =
O h .  It is clear that the property of unity mean the lowest C0  consistency. So we can see that the SPH 

approximation with weight function Wε(r) possess C0 consistency in asymptotic sense. 

In general, SPH does not possess C1 consistency if the weight function satisfies only the properties (3a)-

(3e). Furthermore, the condition that the weight function has to satisfy C1 consistency is given in the following 

equation[1]. 

𝐱 =   ξW 𝐱 − ξ, h dξ
Ω

 

As for the weight functionWε(r) , we can now prove the following Theorem. 

Theorem 1. when the parameter ε and dw  is proportional to h, the new weight function Wε r  possesses C1  

consistency in the asymptotic sense, that is, the equation as follows holds. 

𝐱 = lim
h→0

  ξW 𝐱− ξ, h dξ
Ω

 

Proof Denoting Iε the first moment of the function and supposing 𝐱 − ξ ∈ (ax , bx ), where ax  and bx  are two 

variables which related to the point 𝐱, then 

Iε =
1

π
 

ε x − ξ 

ε2 +
 x − ξ 2

dW
2

dξ

bx

ax

 

= −
εdW

2

2π
 

1

ε2 +
 x − ξ 2

dW
2

bx

ax

d
 x − ξ 2

dW
2  

= −
εdW

2

2π
ln⁡ 

ε2dW
2 + bx

2

ε2dW
2 + ax

2
  

= −c1

h4

2π
ln  

h4 + c2
2

h4 + c3
2 → 0  (h → 0) 

where c1 is a constant related to ε = O(h2) and dW = O(h),c2 , c3 ∈ (−1,1)and expresses the distance between 

points ξ and 𝐱.  

Last, we analyzes the estimation errors of the SPH interpolation with the weight function Wε r  . In [6], 

the author stated that the errors are proportional to h2 when the weight function is an even function of 𝐱 − ξ 

since all odd moments are eliminated. Simply on account of its symmetry of Wε r , so the function can 

interpolate to order h2 accuracy. Moreover, a weight function is accurate to O(h4) when it satisfies the equation  

 𝐱2W(x, h)dx=0 

Following the evaluation of integral in asymptotic unity and C1  consistency, we can find that the 

interpolation with function Wε(r) is accurate to O(h4). 
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III.      CONCLUSIONS 
An infinity differentiable weight function, which satisfies the demanded properties, is developed in this paper. 

The C1 consistency and the O(h4) order estimation errors are also illustrated in the paper. 
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