Synthesis of Aurone Dibromide from Aurone

Dr. Shamal K. Doifode HOD Chemistry G.C.O.E., AMRAVATI

Bromination of olefinic = bond or α , β unsaturated ketone can be carried out by molecular bromine in solvent like acetic acid, CS₂, CCl₄, 1,2-dioxane, DMSO, ether etc. Chalcone (IUPAC Name- 1,3- diaryl pro-2-en-one) is usually brominated by bromine in acetic acid to obtain chalcone diabromide (2,3-dibromo-1, 3-diphenyl propane-1-one)¹. There are number of brominating reagent for addition of bromine^{3,4,5}.

Dioxane dibromide has also been reported as a versatile brominating reagent. Bromination with this reagent gives good yield⁶. Buffer bromination using sodium acetate, acetic acid & bromine has been used⁷.

Aurone has the exo C=C(bond length 1.33 Å) & therefore it is expected to undergo addition reaction. No such work is referred in literature for the preparation aurone dibromide from aurone. So we can prepared aurone dibromide from aurone.

For Ex: Preparation of Aurone dibromide from Aurone. The Aurone (0.01 Mol) was dissolved in Glacial acetic acid then Bromine in acetic acid solution, (25% W/V, 6.4 ml) was added with stirring. After 15 minutes, solid separated was filtered and washed with petroleum ether.

Using the same procedure, the other Aurone dibromide were prepared.

Table 1

Sr.no.	Aurone (4a-h)	M.P.	Aurone dibromide	M.P.
1	2-(4'-methoxy	154	2,α-dibromo-2-(4'-	136
	benzilidine)-5-		methoxy	
	methyl coumaran-3-		benzyl)coumaran-	
	one		3-one	
2	2-(4'-methoxy	140	2,α-dibromo-2-(4'-	158
	benzilidine)-		methoxy benzyl)-	
	coumaran-3-one		5-methyl	
			coumaran-3-one	
3	2-(benzilidine)-5-	112	2,α-dibromo-2-	107
	methyl coumaran-3-		(benzyl)-5-methyl	
	one		coumaran-3-one	
4	2-(4'-methoxy	230	2,α-dibromo-2-(4'-	228
	benzilidine)3-nitro-		methoxy benzyl)-	
	5-methylcoumaran-		3-nitro-5-methyl	
	3-one		coumaran-3-one	
5	2-(benzilidine)3-	226	2,α-dibromo-2-	217
	nitro-5-methyl		(benzyl)-3-nitro-5-	
	coumaran-3-one		methyl coumaran-	
			3-one	
6	2-(4'-methoxy	176	2,α-dibromo-2-(4'-	182
	benzilidine)3-		methoxy benzyl)-	
	bromo-5-methyl		3-bromo-5-methyl	

Synthesis of Aurone Dibromide from Aurone

	coumaran-3-one		coumaran-3-one	
7	2-(4'-methoxy benzilidine)3- bromo-5- methylcoumaran-3- one	160	2,α-dibromo-2- (benzyl)-3-bromo- 5-methyl coumaran-3-one	145
8	2-(4'-methoxy benzilidine)-4- methoxy coumaran- 3-one	180	2,α-dibromo-2-(4'- methoxy benzyl)- 4-methoxy coumaran-3-one	138

PROPERTIES OF PRODUCT

It is white powdery solid compound having melting point 158° C. It does not give any colouration with neutral ferric chloride solution. From the analytical data, the molecular formula was found to be C₁₇H₁₄Br₂O₃. The molecular wt =426.

TLC. RF value was found to be 0.36 for Benzene as a solvent on silica gel G plate1 with a layer thickness of 0.3 mm.

Elemental analysis:

C: found 47.62%	C: calculated 47.88%
H: found 3.10%	H: calculated 3.28%
Br: found 38.15%	Br: calculated 37.55%

UV SPECTRUM

UV spectrum was recorded in methanol & is reproduced on plate no.2 λ max value are recorded 203.8 nm, 254.2 nm, 343.2nm & 395.4 nm corresponding. π - π * and n- π *in Aurone dibromide.

IR SPECTRUM

IR spectrum was recorded in nujol and reproduced on plate no.3.				
Region	frequency	Co-relation		
1750-1725	1730(s)	C=O stretching in 5 member ring		
1300-1200	1280(s)	Ar-O stretching in Aromatic ether		
1350-1100	1180(s)	C-O stretching		
1050-1010	1010(s)	-OCH3 stretching in aromatic ether		
750-500	750(s)	C-Br stretching		

NMR SPECTRUM

PMR spectrum was recorded in CDCl₃ with TMS as an internal standard and is reproduced on plate no4. The observed chemical shift can be CO- related as follows

1.6δ s	1H	C-H
2.44 δ s	3Н	ArCH3
3.94 δ s	3Н	-OCH3
6.92-8.1 δ m	7H	Ar-H

The spectra are in harmony with the proposed structure for Aurone dibromide.

REFERENCES

- [1] Ghiya, B.J. and Marathey, M.G., J. Sci. Industrial research, 20B(1961) 41.
- [2] Ghiya, B.J. and Marathey, M.G., J. Sci. Industrial research, 218(1962) 28.
- [3] Kohr and mulley monatsch, 30 (1909) 407
- [4] E. Schulrk and k. brger, Acla, China, Acad. Sci.Hung., 17(1958) 211 (chem.. Abst.m 55 (1960) 5391)
- [5] Varlkrs Migradischian 'organic synthesis' Vol. II, Reinhold publication Corp. New York, USA 1951.
- [6] Tarent ev. A.P., chem. Abstr., 47(1953) 8032h
- [7] Doifode K.B., "Chemistry of diketones", Ph.D. thesis, Nagpur university, 1965.