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Abstract:- It can be demonstrated experimentally that interaction between magnetostatic fields for 

which both poles geometrically coincide obeys the inverse cube law of attraction and repulsion with 

distance (far fields interaction law) which proves by similarity that localized (in the sense of behaving 

as if they were point-like) electromagnetic elementary particles must obey the same interaction law 

since both of their own magnetic poles have to coincide with each other by structure, given their point-

like behaviour. 2) As a corollary, and contrary to electric dipoles whose two aspects (opposite sign 

charges) can be separated in space and observed separately, it can also be demonstrated that both 

aspects of magnetic dipoles whose poles coincide can be separated only in time, which characteristic 

highlights the fact that point-like behaving scatterable elementary electromagnetic particles can 

magnetically interact only as if they were physical magnetic monopoles at any given moment. 3) The 

related cyclic polarity reversal of the magnetic aspect of elementary electromagnetic particles such as 

electrons, quarks up and quarks down and of their carrying energy brings a new and very interesting 

explanation to the reason why electrons cannot crash on their own onto nuclei despite electrostatic 

attraction by demonstrating that magnetic interaction between nuclei and electronic escort can only be 

repulsive. 

  

Keywords:- Magnetic monopoles, magnetic interaction, Bohr atom, isolated hydrogen atom, circular 

magnets, 3-spaces model. 

 

I. COINCIDENCE OF THE MAGNETIC POLES OF LOCALIZED ELEMENTARY 

PARTICLES 
By definition, localized elementary particles are those that extensive scattering experimentation have 

been shown to always behave as point-like particles during collisions. They include a very restricted set of 

particles, that is, the five stable electron, positron, up quark, down quark and finally the photon; and the 2 

unstable particles muon and tau and their antiparticles, the latter two converting to electrons at the final stage of 

their decay (positrons for their antiparticles). All of these particles are electromagnetic in nature and by structure, 

both poles of their magnetic field have no choice but to physically coincide given their point-like behavior. 

Many consider the inverse cube law of interaction between magnetic fields to be a postulate or even not 

to apply at all. We will examine here a very simple experiment that demonstrates that the magnetostatic inverse 

cube interaction law is by no means a postulate, but a real physically existing law at play between magnetostatic 

fields for which both poles geometrically coincide, instead of the inverse square law that is so often assumed in 

the community, and even wrongly associated with all types of magnetic interaction in many physics 

introductory textbooks. 

Strangely, although we have had at our disposal for hundreds of years, easy to reproduce experiments 

allowing experimental confirmation of the inverse square law of distance for electrostatic interaction 

(Coulomb’s law), no trace can be found of an experiment experimentally confirming this inverse cube law of 

distance for interaction between magnetic fields whose poles coincide.  

Considering that the invariant inverse cube law of distance of magnetic interaction between point-like 

behaving elementary particles is just as fundamental as the invariant inverse square law of distance of 

electrostatic interaction between these same particles, it seemed appropriate to develop such an experiment to 

irrefutably confirm the physical reality of this fundamental law.  

It is mandated besides by de Broglie’s hypothesis on the possible internal dynamic structure of 

localized photons ([2], Section X), which is at the origin of the development of the expanded Maxwellian 3-

spaces geometry model ([2]) and ([6]). 

 

II. COINCIDENCE OF MAGNETIC POLES OF CIRCULAR LOUDSPEAKER 

MAGNETS 
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Interestingly, there does exist at the macroscopic level a type of magnet that provides the same 

magnetic geometry as that mandated by structure for point-like behaving scatterable elementary particles. They 

are in fact very common and their specific use is the reason why they need to be magnetized in this manner.  

They are thin donut shaped loud-speaker magnets that are always magnetized parallel to thickness for 

the loudspeaker coil to travel easily while permanently seeking to keep perfect axial alignment. This means that 

both north and south poles of their associated bipolar macroscopic magnetic field have to behave precisely as if 

they physically coincides and consequently obey far fields interaction law, which will be borne out by the data 

collected. 

Another interesting feature of such magnets is that their magnetic poles, on top of coinciding with each 

other, also coincide with the geometric center of the magnet. 

The results of the original experiment carried out with this type of magnets were alluded to in 1999 ([15], p.47) 

in a different context, and the detailed procedure was subsequently published in 2000 ([6], Appendix A), and is 

now reproduced here in this separate paper. 

Before describing the experiment however, some particulars of magnetic fields must be put in proper 

perspective. 

III. ANTIPARALLEL AND PARALLEL RELATIVE SPINS 
A relative polarity reversal between two such magnets (placing them so that they attract each other, 

which corresponds to antiparallel spin) amounts to a 180
o
 reversal of the related spherically shaped magnetic 

fields with respect to each other within magnetostatic space, which parallels to a high degree the manner in 

which two electrons meet when one is in the expansion phase of its magnetic aspect while the other is in the 

regression phase of its own magnetic aspect ([16], Section XVII). 

This is not without reminding Heitler and London’s observations in 1927 regarding the state of relative 

parallel and antiparallel spin orientation of electrons to explain covalent bounding ([5], p.264) as well as the 

natural distribution of electrons by pairs on atoms orbitals ([3], p.219), according to which "If the spins of 2 

electrons are of the same orientation, the exchange energy corresponds to a repulsion between the atoms… but if 

contrariwise both spins are of opposite orientation, the exchange energy corresponds to an attraction which for a 

very small distance between the two atoms, cancels out and becomes a repulsion if the atoms get nearer yet to 

each other", as well as the natural distribution of electrons by pairs in atoms’ orbitals according to the Pauli 

exclusion principle ([3], p.219), according to which for two electrons to be able to occupy the same orbital, both 

must have opposite spins. 

Parallel spin on the other hand occurs when the magnetic fields of both electrons are synchroneously in 

the expansion or regression phases.  

To create a mental image of what relative parallel and antiparallel spins involve at the fundamental 

level, two electrons approaching each other while in parallel spin orientation behave metaphorically speaking 

like two birthday balloons being cyclically inflated and deflated both at the same time (we will see why further 

on). They will then occupy twice the volume of only one balloon being fully inflated.  

Alternately, two electrons interacting close to each other while in antiparallel spin orientation behave as 

two birthday balloons being cyclically inflated and deflated in alternance. They can never occupy more than the 

volume of only one fully inflated balloon within magnetostatic space.  

 

IV. INVERSE CUBE INTERACTION VERSUS INVERSE SQUARE INTERACTION 

Interestingly, with regards to Heitler and London’s conclusions on the covalent link, it seems that the 

only possibility for two electrons to so paradoxically attract when they are at a very short distance from each 

other despite their mutual electrostatic repulsion (that obeys the inverse square law), would be that another force 

simultaneously be at play locally that would obey a higher order exponential law than the inverse square law, so 

it could overcome the latter when the particles are very close to each other. We will shortly verify that the 

inverse cube law perfectly matches this criterion. 

 

V. LOCALISATION VERSUS DELOCALISATION 
But since referring to a mutual "relative orientation" of electrons mandates localization, which would 

be in contradiction with the current Copenhagen philosophy view of electrons as being spread out in space as 

they move (ref: wave packets, Uncertainty Principle) or as they vibrate or move in atoms in the only way that 

the wave function can mathematically represent them; little if any information is readily available on the 

correspondence of spin versus magnetic orientation in currently popular physics textbooks, most if not all of 

which were written with the Copenhagen school philosophy in the background.  

This is why so many physicists generally speak of spin as being "only a quantum number" specific to 

Quantum Mechanics, which tends to unduly dissociate it from its direct relation to the magnetic aspect of 

electrons. 
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Although even in QM spin is associated to the magnetic moment of charged particles, even this 

magnetic moment is seen by so many as a simple, and practically mechanical, angular momentum (Sz = ½ħ) 

with no specific reminder that it concerns the magnetic aspect of the particle.  

This is why, to seemingly avoid dealing with this apparent disconnect between the Copenhagen 

interpretation and experimental reality, physical magnetic parallel and antiparallel association of electrons is 

generally treated separately, typically only in texts discussing the properties of magnetic materials, and with 

very little if any reference to Quantum Mechanics. A good example of such a text is the chapter on Properties of 

Magnetic Materials of the CRC Handbook of Chemistry and Physics ([4], p.12-117), that leaves no question 

unanswered regarding the magnetic nature of the physical spin of electrons.  

We will see further on that it is perfectly possible to reconcile the presence of localized magnetostatic 

fields for electrons with Quantum Mechanics when proper restrictions are applied to the normalization range of 

the wave function. 

VI. THE EINSTEIN-DE HAAS AND BARNETT EFFECTS 
Unfortunately, one can also note, except in German speaking countries where very interesting magnetic 

effects are the subject of frequent college level experimentation projects, the almost worldwide absence of 

information in undergraduate as well as in graduate level textbooks on the experimentally verified relation 

between forced parallel spin orientation of unpaired electrons at the particle level and the resulting macroscopic 

angular momentum observed in experiments conducted with ferromagnetic materials, let alone even mention of 

the names of these effects.  

They are the Einstein-de Haas effect and the reciprocal Barnett effect. In view of the fact that no 

mechanical explanation coherent with the Copenhagen interpretation of QM has ever been found to explain 

macroscopic magnetism at the atomic level ([11], p. 655), one can only regret such a widespread neglect of such 

fundamental information. 

The only brief mention of these two important effects that I know of in a popular formal textbook is to 

be found in a series written by Lev Landau et al., Nobel prize winner and member of the former USSR 

Academy of Sciences ([12], p. 129 (p.195 in the original Russian edition)). These two effects are analyzed in a 

separate paper ([13]). 

 

VII. LOCALIZATION OF PARALLEL-ANTIPARALLEL ELECTRONS PAIRS 
The scatterable elementary particles making up nucleons (point-like behaving up and down quarks) as 

well as their powerful carrier-photons also having spin since they also are electromagnetic in nature, it seems 

reasonable to think that the electromagnetic equilibrium established between nuclei particles and electrons of the 

electronic layers would have a role to play in forcing the latter to magnetically orient only in two possible ways 

on their layers. 

Once an isolated electron is captured and electromagnetically stabilized on a layer, whatever magnetic 

orientation the nucleus particles and electrons already in place on other electronic layers in the atom force it to 

maintain, the only way a second electron can now complete this layer is to switch to relative antiparallel 

orientation to associate with it, otherwise it will be repelled as concluded by Heitler and London. This amounts 

to physical quantization of the spin, since only two relative magnetic orientations are physically possible.  

Of course the question comes to mind as to whether two free moving electrons could associate in this 

manner. Experimental reality reveals that the answer is no.  

The reason is that since electrostatic repulsion obeying the inverse square law of distance and magnetic 

interaction obeying a higher order inverse law, electrons have to be so close to each other for the magnetic 

interaction to dominate that this can really happen only when one of the electrons is physically captive in an 

atom in some form of electromagnetic equilibrium and is consequently unable to escape the encounter when 

another electron closes in with enough energy to reach the point where the magnetostatic inverse cube law of the 

distance interaction starts dominating to render capture possible. 
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Fig.1: Intersecting inverse square and inverse cube force curves. 

 

VIII. CONFIGURATION OF THE MAGNETIC POLES IN ELEMENTARY PARTICLE 
The interest in carrying out this experiment with circular magnets lies in the fact that it allows verifying 

at our scale, directly on the lab bench, the behavior of the only possible discrete magnetic field configuration 
that can exist at the physically scatterable point-like elementary particles level! 

We will assume here that we will not be measuring the law of interaction between the physical magnets 
themselves, but rather the law of interaction between the magnetic fields anchored in these magnets, whose 
density of static energy spherically decreases from the center outwards by structure. 

Technically speaking, it is said that the field produced by a permanent magnet is magnetostatic 
because it is stable and as such does not vary in intensity over time. It is stable because it is produced by a 
particularly stable configuration of certain unpaired electrons in some atoms of the material, electrons that are 
immobilized by the local electromagnetic equilibrium in forced mutual parallel spin orientation, which causes 
the individual magnetic fields of each of these electrons to combine by addition in sufficient numbers to become 
detectable at our level as a single larger macroscopic magnetic field.  

This means that macroscopic magnetostatic fields do not come into existence as the magnets are 
approaching each other, but are by nature permanently present to full extent as long as the electrons responsible 
for its existence remain locked in position into the material. 

The electrons of the external electronic layer of atoms, that is, the valence electrons, do not play any 
role here. The outer layer valence electrons are primarily involved in linking atoms into molecules by anti-
parallel spin alignment by pairs (one valence electron being contributed by each atom involved), which results 
in a mutual cancellation by antiparallel alignment of the magnetic fields of the electrons of these pairs. 

The apparently undifferentiated nature of quantized kinetic energy, the “fundamental material” that 
elementary particles are made of is such, that the individual fields of forced parallel spin aligned unpaired 
electrons seem to simply join each other and add to each other as if they became a single larger entity, somehow 
metaphorically like rain drops will join to form pools in which it becomes impossible to distinguish individual 
drops. 

In the case of the magnetic fields of our magnets however, a quantity of the overall field equal to that 
provided by each electron obviously remains intimately rooted in each of the participating electrons, since if a 
magnet is ground into dust and if the grains of this dust are separated, it has been experimentally observed that 
each grain becomes a weaker magnet in proportion to its size, with respect to the size of the original magnet. In 
other words, each electron takes back its marbles, so to speak, and the global field gives way to as many smaller 
fields as there are individual grains of magnet dust.  

When a magnet is heated, the magnetically aligned unpaired electrons of the internal electronic layers 
of atoms become charged with an energy that causes them to locally vibrate, a vibration that will affect the 
alignment of their spins, which will progressively modify their configuration by forcing their spins to stop 
remaining parallel to the point when the associated macroscopic magnetic field ceases to be perceptible. 

When the magnet is cooled, the macroscopic field will reappear inasmuch as the heat did not 
permanently alter the molecular configuration that allowed it, that is if the spins of electrons in the internal 
electronic layers that made up the initial macroscopic field become parallel again in the same manner. In other 
words, when we manipulate a permanent magnet, we directly manipulate, at our scale, an enormous magnetic 
field which is the very material that electrons are made of. 
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IX. EXPERIMENTAL CONFIRMATION OF THE MAGNETOSTATIC INVERSE CUBE 

LAW 
Let us now proceed to the description of the experiment. Given that controlling such an experiment is 

very difficult when magnets attract, all observations were carried out with magnets placed in a position to repel 

each other, meaning in a state of parallel spin of all electrons supporting the fields of both magnets. 

The following physical set up forces the magnets to remain as perfectly aligned and parallel to each 

other as possible, which allows mentally visualizing both magnetic fields as if they were two invisible perfectly 

elastic spherical “objects” that physically occupy volumes in space extending of course beyond the physical 

body of each flat magnet.   

The maximum experimental limit of proximity will be reached when the physical volume of the 

magnets prevents reducing further the center-to-center distance between the fields. 

  

A. Description of the apparatus 

Let us examine the equipment that was used: 

 
Fig.2: Magnetostatic inverse cube experiment apparatus. 

 

A and B: Circular ceramic ferrite loudspeaker magnets with the following dimensions:  Outer diameter 7.1 cm; 

Inner diameter 3.1 cm; thickness 0.84 cm. Magnetized parallel to thickness. Manufactured by Arnold 

Magnetics Ltd, Part Number 29375. 

C and D: Styrofoam floating rafts 22 cm x 15 cm that must be floated on water deep enough to allow masses N 

and O to hang freely without touching the bottom of the container used.  

E and F: Guiding tubes fitted perpendicularly inside the inner hole of each magnet. Tube E is fitted to magnet A 

and tube F is fitted to magnet B. 

G:         A 30 cm guiding rod loosely fitted inside both tubes E and F that insures that both magnets remain as 

perfectly aligned and parallel as possible at all times. 

H and K:  30 cm threads holding masses N and O and that pull the magnets towards each other. One end of 

thread H is securely fastened between tube F and magnet B and made to slide freely between guiding 

rod G and the inside of guiding tube E. The other end hangs freely down over the edge pulley L.  

Similarly, one end of thread K is securely fastened between tube E and magnet A and let to slide freely 

between guiding rod G and the inside of guiding tube F. The other end hangs down freely over the edge 

pulley M. 

N and O: pairs of equal size calibrated masses, the sum of which makes up the total mass noted in column P of 

the following table (Table I). 

As many different size pairs of calibrated equal masses as required can be used to obtain as many 

measurements as the experimentalist wishes. 

 

B. Procedure 

After each pair of masses is put in place, the whole floating assembly is delicately shaken as the 

floating rafts are re-balanced horizontally by means of secondary masses placed in the corners of the rafts to 

remove any stress between the guiding rod and the inside of the guiding tubes.  

Once the assembly is stabilized with the guiding rod sliding as freely as possible inside the guiding 

tubes, a straight edge ruler is used to measure the distances between the magnets at 3 points located at 90
o
 from 

each other on the outside circumference of the magnets: on both sides, and also on the top edge.  

The distance between the lower edges of the magnets, which is located below water, is triangulated 

from the distances already obtained from the first 3 measurements. To take into account that each field is most 

intense at the geometric center of the magnets, the thickness of one magnet is added to all four measurements to 

insure true “center-to-center” measurement between the fields. The distances posted in column r of Table I is 

the mean distance calculated from these 4 measurements. 
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C. Collected experimental data 

Table I: Data collected from the magnetostatic inverse cube experiment 

 
 

The reason for only 8 readings to have been noted during this experiment is linked to the difficulty 
involved in taking readings with masse smaller than 0.05 kg and larger than 0.65 kg with the apparatus being 
used.  

Masses smaller than 0.05 kg were not sufficiently massive relative to the friction inherent to the system 
to allow even the most delicate shaking and re-balancing of the floating rafts to stabilize at a sufficiently 
constant distance for the masses being used as sequences of 10 times retries were performed. A mass of 0.05 kg 
was the smallest mass for which such relatively constant distance was obtained over 10 fold retries. 

All readings noted from 0.05 to 0.65 kg are means taken for 10-fold retries with each set of masses. As 
for masses larger than 0.65 kg, the readings became uncertain on account of warping of the delicate pulley-raft 
junctions that begins to be noticeable with such masses. 

 
D. Analysis of the data 

In this table, the first column gives the amount of mass (the pressure exerted) in kg (P) required to 
maintain the magnets at distance r in meters (center-to-center of the thickness of each magnet) that appears in 
the third column. The following equation, representing a pressure being applied as a function of an inverse cube 
relation with distance was used to interpret the data collected: 
P = 1/r

3
 

This relational formulation however, although traditional, somehow masks the very important fact that 
in an inverse cube relation, the product of a pressure by the third power of a distance is a constant. In the present 
case, this constant will be a number allowing calculating the distance at which the magnetic fields of the 
magnets stabilize to counteract pressure as a function of the inverse cube law of distance, a constant that could 
tentatively be named magnetostatic equilibrium constant.  

The actual relation is then much more clearly represented if the formula is reorganized in the following 
manner 

P x r
3
 = Magnetostatic equilibrium constant 

Column 4 of Table I thus contains the results of applying this last formula to the raw data from the first 
and third columns. Observation will show that despite important fluctuations due to the rudimentary means used 
to conduct the experiment, and even with as few readings as these 8 meaningful readings, one can observe that 
the values obtained clearly hover about an approximately constant level.  

For comparison with the inverse square law, column 5 of Table I contains the values obtained by 
applying formula P x r

2
. We can observe that the values in this column definitely are not hovering about an 

approximately constant level, which would be the case if the relation obeyed the inverse square law. This lack of 
stability definitely rules out an inverse square relation being involved for pressure as a function of distance in 
this experiment. 

If we now consider again the first relational equation derived from the experimental data (P x r
3
 = 

Magnetostatic equilibrium constant), we observe that the dimensions involved are kgm
3
, and ignoring the 

two most extreme values measured (line 1 and line 4), Table I allows establishing a first approximation value of 

this constant for our two magnets at P x d
3 
= 5.4076545E-5 kgm

3
. This constant now allows easily calculating 

in a simplified manner either the pressure to be applied for any separating distance and vice-versa that we care 
to consider between these two magnets. Equation F=Pg of the second column will then allow calculating the 
related force, and finally, equation E=Fd will give the related energy in joules. 

Another telltale that a cubic relation is involved comes from examining lines 1 and 5. We observe that 
while the distance noted line 5 is half that of line 1, the mass being used needed to be 8 times that of line 1 
(instead of 4 times that would have been mandated by an inverse square law), which is consistent with a force 
increasing with the inverse cube of the distance and not with the inverse square law.  
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Consequently, the following first draft generic equation, involving a spherical relation between the 2 
"magnetic spheres", that were axiomatically assumed to be real about the circular magnets, seems appropriate to 
represent the interaction that we just verified between these magnets.  

3

2

m
?

d4π

3M
GE                                                                              (0) 

where Mm symbolically represents the magnetic intensity of each magnet, that is, the magnetic moment 

of each magnet, usually symbolized by .  
G? on its part, represents a magnetic constant that should obviously be the known constant of magnetic 

permittivity of vacuum (0), and finally 4d
3
/3, which is the standard equation used to establish the volume of a 

sphere and represents the spherical interaction over distance d, that is, the interaction as a function of the inverse 
cube of the distance.  

 
E. Comparing loudspeaker magnets to bar magnets 

A dimensional analysis of this generic equation reveals that as it stands, it provides only an energy in 
Joules, which confirms that on top of the inverse cube relation, we need to divide the equation by the center-to-
center distance between the two magnetic spheres to really obtain a "force" in Joules per meter (J/m), that is, in 
Newtons. From these considerations, we can now write the final equation giving the intensity of the force 
between our two circular magnets at any given distance d from each other. 

4

2

0

d4π

μ3μ
F                                                                             (1) 

Let us now compare this final equation (1) stemming from the analysis of the data collected during this 
experiment to the standard equation (1a) used for calculating the force between equal force bar magnets being 
approached parallel to each other and whose poles within each magnet are evidently at some distance l (small 
letter l) from each other and whose distance between the bars (d) must be larger than l for the formula to remain 
valid ([11],p 93), which is always the case with our circular magnets since the north and south poles within each 
magnet geometrically coincide and that distance l in their case is equals zero by structure in their case:  

4

2

0

d2π

μ3μ
F       which is of course the same as    

4

2

0

4

2

0

d4π

μ3μ

d4π

μ3μ
F                         (1a) 

We immediately observe that the force obtainable for bar magnets is double the force measured during 
the circular magnets experiment. 

A note of highly particular interest in the case of this recognized “standard equation” (1a) for bar 
magnets interaction is that nowhere is there explained how it can be derived from any classical theory 
whatsoever, contrary to the Coulomb equation for electrostatic interaction that can easily be derived from 
Maxwell’s first equation.  

This leads to believe that equation (1a), available in standard textbooks on electrodynamics, for 
example ([11],p 93), was simply extrapolated from experiments such as this one, and was quoted on account of 
its undisputed conformity with experimental observation even though it turned out to be impossible to derive 
from Maxwell’s electromagnetic theory. 

So, despite the fact that it is mentioned in the Halliday & Resnick textbook, for example, as a standard 
equation, it turns out to still be totally empirical and be supported by no classical theory whatsoever! 

 

F. Proof of cyclic reversal of magnetic polarity for geometrically coinciding north and south poles 
Let us now recall that two bar magnets involve 2 separate pairs of poles, each pair being physically 

separated within each bar magnet by distance l, in constant separate interaction with the 2 poles of the other bar, 
while the two circular magnets of our experiment also involve 2 pairs of poles, but having distance l equal to 
zero within each magnet.  

This difference highlights a very important fact, because even if we found a way to progressively 
reduce to zero this distance l between the poles inside each bar magnet, it could logically be expected that the 
force calculated in an experiment involving two such bars would remain double even when length l reaches zero 
inside each bar since the 4 poles would still be deemed to be statically present and permanently active at the 
same time according to classical electromagnetism, whereas our experiment confirms that this is not the case 
with the circular magnets used during the experiment, whose poles do coincide (length l = 0 within each 
magnet).  

This behaviour effectively confirms out of any doubt that in the case of circular loudspeaker magnets, 
where the “opposite poles” within each magnet geometrically coincide by structure, both north and south 

poles within such magnets behave as if they were not simultaneously present at the same moment but 
were acting in alternance and not simultaneously.  

This can be explained only by a cyclic oscillation of the "magnetic" energy involved between a 
spherical expansion phase to some maximum followed by a spherical regression to zero (mandatory if only one 
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of the two poles of each magnet is to be physically present at any given moment) at a frequency that obviously 
depends on the energy of the particles that produces it, presumably the carrying energy induced at the orbital on 
which the unpaired contributing electrons reside. 

If we transpose this alternating time-wise dipolar behaviour to the elementary electromagnetic particles 
level, that obey the same rule by similarity due to their point-like behavior, it also confirms that the magnetic 
aspect of elementary electromagnetic particles is monopolar by structure at any given instant and that it 
can only be the high frequency alternating rate of expansion-regression in magnets where the poles do not 
coincide that causes the magnetic aspect of the associated macroscopic magnetic fields to appear as being 
statically bipolar, and behave at the macroscopic level in accordance with near fields rules.  

Now where can the energy supporting the magnetic field go as it falls to zero at the end of the spherical 
regression phase if this sustaining energy is assumed to be incompressible as shown in ([7])?  

In the expanded space geometry model ([2]), the answer is simple. It simply momentarily transfers to 
electrostatic space for photons ([2], Section XXII), and to normal space for massive particles ([16], Section 
XVII) as dual quantities moving in opposite directions in these spaces until all of the magnetic energy has been 
transferred to then start back moving into magnetostatic space, thus initiating the next cycle. 

In other words, contrary to electric elementary monopoles (opposite sign elementary charges) that can 
be observed separately in space, elementary magnetic monopoles can be separated only in time. Paradoxically, 
this means that at any given instant, circular loudspeaker magnets interact as if they were separate magnetic 
monopoles just like elementary electromagnetic particles. 

 
G. The relative magnetic fields of the circular magnets 

It is well established ([13]) that a pressure of 1 kg has been defined as corresponding to a force of 
9.80665 Newtons being applied at mean sea level on the Earth, which is the force required to offset the 1 g 
gravitational acceleration at mean sea level. This is what allowed calculating the force corresponding to each 
mass used during our experiment (Column 2 of Table 1).  

The magnetic moment of a magnet () being defined in Joules per Tesla (J/T), just as for the Bohr 
magneton, and starting from equation (1), we can now calculate the magnetic moment of each of our circular 

magnets, that we assume to be identical. Isolating   in (1) and using the values from columns F and r of line 1 
in Table I, we obtain the following approximate value : 

J/T112.7845284
3μ

0.4903325.1)(4π

3μ

Fr4π
μ

0

4

0

4

  

Assuming that the magnetic material of the magnets is made of atoms all having the same local dipole 
moment, the dipole moment of each magnet would then be made up of the sum of these local dipole moments. 

Further assuming that only one electron per atom contributes to the field, then  would be the sum of the 
magnetic dipole moments of the carrying energy of each of these electrons that in turn depends on the energy 
level of the orbital to which they belong. 

A few calculations with arbitrary distances and magnetic intensities of equal "magnetic masses" will 
show that the increase in force effectively numerically obeys the inverse cube law and that for each halving of a 
distance, the force will be multiplied by 8 as our experiment reveals. Let's remember that we postulated that 
these magnets are the physical anchoring sites of two spherical magnetic fields that extend beyond the magnets. 

And now that we know the magnetic moment of our magnets, we finally are in a position to calculate 
the intensity of the magnetic fields of our experimental magnets at any distance from their geometric center 
along the axis normal to their surface. We established in a prior paper ([7],  equation (35)) a neat relation 
involving only magnetic moment (µ), corresponding energy (E) and corresponding magnetic field (B) 

B2

E
μ         in which we can isolate    

μ2

E
B                                               (2) 

From equation (1) we can now easily establish the equation for the energy corresponding to this dipole 

moment 

3

2

0

4

2

0

d4π

μ3μ

d4π

μ3μ
dFdE   

If we now substitute this definition of E in equation (2): 

3

0

3

2

0

dπ8

μ3μ

dπ4μ2

μ3μ

μ2

E
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Making use again of the value of r from line 1 in Table I, we obtain the intensity of the magnetic field 

in Tesla when the magnets are 10 cm from each other    
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With the value of r from line 5 of Table I, that is 5 cm from each other: 
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Which is exactly 8 times the field intensity that we just calculated for a distance of 10 cm. We finally 

are in a position to establish the maximum magnetic field intensity of our magnets when both magnets are in 

physical contact. The thickness of one magnet being 0,84 cm, the distance center to center of both associate 

fields is then 0,84 cm, that is 8,4 E-3 m.  
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X. PERMANENT ELECTRON-NUCLEON MAGNETIC REPULSION 
 Equilibrium between two opposing forces 
Localized scatterable elementary electromagnetic particles, such as the electron and up and down 

quarks, having both an electric aspect (obeying the inverse square interaction law) and a magnetic aspect 
(obeying the inverse cube interaction law), it can forcefully be asserted that the states of equilibrium of 
electronic layers in atoms mandatorily involve both types of interaction.  

It can then be hypothesized that to explain rest orbital stability in a hydrogen atom for example, as the 
electron comes closer to the proton than its rest orbital, the magnetic interaction between proton and electron 
could, for reasons to be identified, become repulsive to the point of overcoming the electric attraction between 
electron and proton and repel the electron, whereas if it got farther away than the rest orbital, the electrostatic 
attraction could dominate again, bringing it back so that the motion of the electron generally stabilizes about a 
mean equilibrium distance, that would of course be the well known mean rest orbital at the Bohr radius, to 
which the statistical spread predicted by Quantum Mechanics averages out.  

It goes without saying that such an electromagnetic equilibrium distance specific to each electrons-
nuclei configuration could exist only if the magnetic interaction between nuclei and electronic escorts could 
only be exclusively repulsive (never attractive) whenever electrons come closer to the nucleus than the local 
electromagnetic equilibrium would allow. 

In this regard, the spherical expansion-regression dynamic structure of elementary particles magnetic 
behavior predicted by the 3-spaces model, strongly supported by the previous circular magnets experiment, does 
offer a wonderful surprise! We will now see that in this model, the magnetic interaction between nucleons 

and electrons can effectively only be exclusively repulsive!   
Two different approaches can be considered in context, depending on the manner in which we chose to 

consider the extent of magnetic interaction in space as a function of the inverse cube of the distance. In both 
cases however, the same reason explains why electrons can only be magnetically repelled by atomic nuclei.  
The first is the traditional purely mathematical approach based on the premise that this interaction would act to 
infinity like electrostatic interaction.  

The second, more natural at the physical level in the present model, is based on the premise that this 
interaction would not extend beyond the maximal physical extent of the energy sphere of a particle in 
magnetostatic space,  an energy sphere whose extent in magnetostatic space depends on transverse amplitude as 
a function of the frequency of the particle, as analyzed in ([2], Section K), implying that no magnetic interaction 
would occur between two particles unless their constantly expanding-contracting magnetic energy spheres enter 
in physical contact with each other.  

But given that both approaches explain the permanent repulsion between nuclei and electronic escorts 
by the same reason, we will develop the demonstration from the first possibility, which is simpler to elaborate.  
 
H. The elementary particles making up the hydrogen atom 

Let us first put in perspective a few points previously analyzed regarding the Bohr hydrogen atom. For 
the electron, we are dealing with two distinct electromagnetic quantities, the electron proper with its 0.5109989 
MeV rest mass energy and its 27.2 eV carrier-photon.  

Given that a first approximation will quite sufficient to explain the mechanics of the phenomenon, we 
will take into account only the magnetic field of the electron since that of its carrier-photon is relatively 
negligible.  

As for the proton, the situation is much more interesting, and somewhat unexpected. While the energies 
of the two up and one down quarks are respectively 1.1497475 MeV and 4.5989902 MeV ([6], Section 17.10) 
their three carrier-photons each have an energy of 310.457837 MeV as determined in ([6], Section 17.12), which 
represents approximately 300 times more energy than that of the particles that they carry. This means that it 
would be the invariant rest mass energy of the quarks themselves that is negligible!  

The minor contribution of the valence quarks (up and down) to the proton spin has in fact been 
demonstrate in 1995 at the SLAC facility, which is coherent with the conclusion of the present model that the 
valence quarks are much less energetic than their carrier-photons.  

In light again of the fact that a first approximation is sufficient for the demonstration, we will use the 
well known Bohr model parameters to study the behavior of the electron in an isolated hydrogen atom in which 
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the motion of the electron is not inhibited by the local electromagnetic equilibrium; where the electron can 
effectively move at the velocity that the energy of its carrier-photon allows, that is, 2,187,691.252 m/s (classical), 
which would cause it to cover a distance of r0 x 2π = 3.32491846E-10 m at each orbit (r0 being the Bohr radius). 

  
I. Correlating the frequencies of the particles involved 

With the absolute wavelength of the electron rest energy 2.426310215E-12 m (the electron Compton 
wavelength), it is easy to calculate that the oscillating half of the electron rest energy will cycle very precisely 
137.0359998 times between magnetostatic space and normal space at each orbit. Isn't it interesting to observe 
here that this value is exactly equal to the inverse of the fine structure constant (α)? 

Actually, this value shows that at each turn, the 138
th

 cycle of the electron rest energy will begin 
8.734668247E-14 m before an orbit is completed compared to the point where it began in the previous orbit. 
This means also that we would be in a position to calculate very precisely at which point of an electron's 
electromagnetic phase and at which point of the orbit an electron would be at any moment in the future, if we 
were to define as a starting point any specific arbitrary point of the orbit. This will be discussed later on. 

Let us now consider the absolute wavelength of the carrier-photons of the up and down quarks, whose 
energy, in this model, is 310.457837 MeV each, that is 4.974082389 E-11 Joules ([17], Section 17.12), 
corresponding to a frequency of 7.506837869E22 Hz, and to a wavelength of 3.993591753E-15 m. This means 
that during each electromagnetic cycle of the electron, the energy of the carrier-photons of the nucleus will cycle 
607.5508879 times. 

Let us now examine Fig.3 representing an arbitrary segment corresponding to 6 of the ~137 cycles that 
the rest mass energy of the electron will complete during one orbit, with an isolated segment representing one of 
these electronic energy cycles: 

 
Fig.3: Representation of the conflicting magnetic fields frequencies in the hydrogen atom. 

 

J. Permanent magnetic repulsion due to frequencies difference 
The upper sequence in Fig.3 represents the axial travel of the electron about its average distance from 

the nucleus (the Bohr orbit) corresponding to the corrected limited statistical spread of the wave function (see 
Section L below). The central sequence represents the variation in intensity of the magnetic presence of the 
electron rest energy during each of its cycles. The lower sequence represents the 607.5508879 intensity 
variations of the magnetic presence of the nucleus carrier-photons that occur during each magnetic cycle of the 
electron. Obviously, the intensities (and number of cycles per second for the proton) are not represented to scale 
here, since the energy of each quark carrier-photon is about 600 times that of the electron, and that 2 of the 
carrier-photons of the proton are always in parallel spin by structure with respect to the third, and that their 
energies consequently add up to about 1200 times the energy of the electron. 

Let us also remember that in the 3-spaces model, the presence of the energy of elementary 
electromagnetic particles in magnetostatic space varies during each cycle from zero to a maximum (a period 
during which it is repulsive) to then diminishes to zero (a period during which it is attractive). For simplicity's 
sake, we will ignore here the magnetic drift inherent to the fact that the elementary particles involved are 
moving on closed orbits (see Section T below for the proton components magnetic drift and paper ([14]) for the 
orbiting electron magnetic drift). 

Looking at the isolated segment, one can easily visualize that at the beginning of the electron magnetic 
cycle, the electron being very light with respect to the nucleus, will be repelled a certain distance with respect to 
the nucleus, due to the intensity of the magnetic presence of the nucleus increasing in the first part of the first of 
its 607 cycles, thus coming in opposition to the presence of the electron magnetic energy which also is in its 
increasing phase. 

One can also easily understand that when the magnetic intensity of this first cycle of the nucleus will 
start diminishing towards zero thus becoming attractive, that is, in anti-parallel relation with respect to the 
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electron magnetic presence, which is still in its increasing phase, and that there will be magnetic attraction 
between the electron and the nucleus in addition to the electrostatic attraction. 

And it is here that the mystery unravels, because, given that attractive and repulsive magnetic force 
obeys an exponential inverse interaction law with distance, the attractive force between proton and electron, 
which are now located further away from each other than when the repulsive force was applied during the first 
part of the cycle of the nucleus, will mandatorily be weaker starting at this farther distance.  

Consequently, there will be a physical impossibility for the electron to be brought all the way back 
to the distance it was at, at the beginning of the rising magnetostatic phase of the energy of the proton, 
since the duration of the attractive phase is the same as that of the repulsive phase while the force being applied 
at the start of the attractive phase is less than that applied at the start of the repulsive phase! 

The same situation will be reproduced for each of the following 606 cycles of the nucleus carrier-
photons magnetic presence. The result can only be a progressive motion of the electron away from the nucleus, 
made up of very precise to and fro motions until the intensity of the magnetic presence of the electron energy 
becomes too small to finally momentarily fall to zero, moment during which all magnetic interaction having 
disappeared, the electron will fall freely towards the proton as it now obeys the only force still active, the 
electrostatic force, until the intensity of the magnetic presence of the energy of the electron becomes sufficient 
again at the beginning of the following magnetic cycle of the electron energy for the progressive repulsive 
interaction to start dominating again. 

 
K. Limiting the statistical spread of the wave function 

So this process of cyclically varying magnetic equilibrium forces the electron to move continuously in 
order to progressively occupy all of the physically possible locations of the statistical distribution defined by the 
Quantum Mechanics wave equation, but with the restriction that the spread is mandatorily restricted only to the 
set of locations allowed by the inertia of the electron as it sustains transverse accelerations and decelerations, 
while being maintained in a stable manner at an average distance from the nucleus corresponding to the Bohr 
radius by the opposing electrostatic attraction and magnetic repulsion that we just analyzed.  

When considering a permanently localized electron, such an axially zigzagging motion of the trajectory 
seems to be the only mechanical possibility regarding the ground state of hydrogen atom and other light atoms 
ionized to the point of having only one remaining accompanying electron. This motion is apparently made more 
erratic yet in this bound state by continued action of the Zitterbewegung motion described in ([6], Section 
25.11), caused by the interaction between the electron magnetic field and the magnetic field of its own carrier-
photon. 

To summarize, the probabilistic spread of possible locations of the electron in motion in the isolated 
hydrogen atom is traditionally represented by this form of the wave equation: 

1dxdydzψ
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which allows the statistical spread to reach infinity. To account for the limits imposed by the inertia of 

the electron during transverse accelerations and decelerations it must be modified to the following form: 

1dxdydzψ
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where d represents the farthest transverse distance about the mean Bohr radius that this limiting factor 

impose on the localized electron in motion.  

 
Fig.4: Maximum extension of the possible statistical electronic spread of the hydrogen atom. 

 
In the case of the electron in the hydrogen atom ground state for example, when no outside forces are 

applied, this statistical spread will be limited to a circular axial two-dimensional band circling the nucleus, the 
inner limit of which would be the closest distance (r) that this limiting factor will allow toward the atom's center 
of mass, while its outer limit will be the farthest distance (R) that this limiting factor will allow, and the set of 
most probable locations averaging out to the Bohr radius.  
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A recent experiment making use of a photo-ionization microscope definitely validates this restriction of 
the traditional theoretical statistical spread of the wave function by directly recording the orbital structure of an 
excited hydrogen atom immobilized in a static electric field ([17]). The ring structure predicted by the 3-spaces 
theory (Fig.4) is clearly recognizable in the projections recorded during the experiment, that show clearly 
defined and separated rings corresponding to the rest orbital and the further away metastable orbitals to which 
the electron repeatedly jumped during the experiment. 

Of course, due to interactions with surrounding matter, this band is likely in reality to spread at the 
limit to a 3D volume circumscribed by the surfaces of two concentric spheres whose inner and outer radii will 
respectively be r and R. So it is to this volume exclusively that the normalization condition must apply, any 
other localization in space becoming physically impossible. 

 
L. End of the reign of the Heisenberg Uncertainty Principle? 

It must be noted here that the projection recorded during the Aneta Stodolna et al. experiment ([17]) 
involved tens of thousands of orbits of the electron about the immobilized nucleus, and that it is then logical that 
an apparent "probabilistic cloud " would appear on the recording within the r and R limits of the "probability 
ring", due to the 8.734668247E-14 m displacement of the beginning of the 138

th
 electron magnetic cycle of each 

successive orbit, as analyzed in Section J. 
But despite this apparent complexity, it does not seem unrealistic to think that based on the 

electromagnetic equilibrium revealed by the 3-spaces model it would become eventually possible to calculate 
with great precision all future physically possible locations of a localized electron in the QM statistical 
distribution in an isolated hydrogen atom, with as a starting point any point arbitrarily chosen on the orbital 
within the boundaries set by its inertia and transverse accelerations and decelerations for a single orbit, thus 
putting an end to the unconditional reign of the Heisenberg Uncertainty Principle. 
 

XI. GENERAL ELECTRONS-NUCLEI ELECTROMAGNETIC EQUILIBRIUM 
The remaining question now is: How do the various pulsating magnetic spheres involved in a stable 

hydrogen atom interact, as each of them cyclically reverses its spin at its own frequency? And how could the 
sum of these interactions possibly explain all naturally occurring electronic and nuclear stable and metastable 
states as involving an electrostatic attraction against a magnetostatic repulsion equilibrium as we just analyzed? 

Much more research, experimentation and calculation is required to completely clarify the issue. But 
we can definitely put in perspective the complete list of elements that must be taken into account. 

The first such element regarding the hydrogen atom is that the ratio of the mean rest orbital distance of 
the electron to the central proton versus the proton diameter being about ten thousand to one. For comparison, if 
the proton was enlarged to reach the size of the Sun, all dimensions of the hydrogen atom being enlarged in 
relation, then the electron would orbit it 30 times further away that the Earth, that is, as far as Neptune! Seen 
from Neptune, the Sun would appear point-like with no obvious diameter; just the brightest star in the Universe. 
For all practical purposes, such an atom would be as large as the entire Solar System! 

The magnetic interaction between electron and proton then obeys by structure the far fields interaction 
law, which means that their magnetic relation will obey far fields equation (1) that was established previously: 

4

2

0

d4π

μ3μ
F   

We also clearly established the fact that the resultant of the magnetic interaction between the electron 

and the various components making up the proton can only be repulsive to various degrees, irrespective of 

relative spin orientation, and if this mean repulsive force exactly counteracts the electrostatic attractive force at 

the mean Bohr radius¸ then we can equate equation (1) to the Coulomb equation as applied to the Bohr radius:  
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Since we know from experimental verification that the magnetic moment of the orbiting electron and 

that of the hydrogen nucleus are not equal, then the term µ
2
 from equation (4) needs to be replaced by a 

representation reflecting this difference. So equation (4) will be rewritten as:  
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And if we then isolate this product, since we know the values of the other terms in equation (4) because 

d now equals r0 by definition, we can now obtain a numerical value for this product 
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What remains to be done now is to clarify from theory the respective values of µ1 and µ2 for them to 

match the experimentally obtained values. 
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M. Composite orbiting electron magnetic moment (µ1) 

In a previous paper ([14]) it was analyzed how the experimentally measured value of the electron 

magnetic moment (µe) can be calculated from theory.  

Summarily, its theoretical classical value is calculated from the gyromagnetic moment equation 

previously mentioned in Section V: 
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Paper ([14]) also clarifies why this value, known as the “Bohr magneton”, can only apply in physical 
reality to an electron moving in straight line with the same energy as that of an electron on the hydrogen atom 
rest orbital. 

Actual measurements have conclusively shown that the real value of the so called electron magnetic 
moment on a hydrogen atom rest orbital is noticeably higher in value than the theoretical Bohr magneton. This 
measured value has been established to be 9.28476362E-24 J/T within a relative standard uncertainty of ± 4.0E-
10.  

The reason for this difference, unexplained by current classical theories, becomes obvious in the 3-
spaces model due to the simple fact that the electron on the hydrogen rest orbital can only move, if at all, in a 
closed orbit about the nucleus, an orbit that can be approximated to an ellipse and ultimately to a circle for 
calculation purposes, a closed orbital motion that can be sustained only if the electron carrying-photon's 
magnetic field become higher in energy density than for straight line motion with the same energy, by a factor 
that can be theoretically established at 1.00161386535E-3 ([14]).  

Paper ([14]) allowed clearly identifying the phenomenon of magnetic drift as the natural cause of this 
difference, a phenomenon that must be associated to all closed circular translation motion of elementary 
electromagnetic particles, and that is very well understood in high energy circular accelerators. The magnetic 
drift is an increase of a particle's carrier-photon's magnetic field density associated to a corresponding decrease 
of the particle's carrier-photon's electric field density proportional to the gyroradius of the closed orbit involved. 

The manner in which the measured value is traditionally reconciled with the Bohr magneton has been 
to multiply the latter by an ad hoc factor named the g factor of the electron, theoretically set at 2 for other 
purposes, is further ad hoc adjusted fit the measured magnetic moment, to g/2 =1.001159653 from the ratio of 
the actual measured value on the Bohr value. So  
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But while the measured electron carrying energy magnetic moment (µe) has been shown to be 
sufficient to account for the circular translation motion of the electron at the rest orbital gyroradius, there is need 
to also take into account the intrinsic magnetic field of the electron rest mass proper to fully account for the 
intensity of the repulsive relation between the orbiting electron and the central nucleus, particularly since the 
electromagnetic energy making up the electron rest mass is much larger than the added amount of carrying 
energy induced at the Bohr orbit, the latter being fully accounted for by the measured so-called electron 
magnetic moment (µe).   

But before we can calculate the actual electron rest mass magnetic field, which is the other component 
of the composite orbiting electron magnetic moment µ1, we need to first establish the value of the proton 
magnetic moment which will be equal by definition to µ2 in equation (4), because in the far fields perspective, 
the hydrogen atom nucleus will be dealt with as if it was behaving as a point-like particle. 

 
N. Hydrogen nucleon magnetic moment (µ2) 

Historically, the value of the hydrogen proton magnetic moment is theoretically approximated in a 
manner similar to that of the Bohr magneton (equation (7)), by replacing the mass of the electron by the mass of 
the proton, so 
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This value is named the nuclear magnetic moment (µN). But, just like the measured electron magnetic 
moment, the proton magnetic moment proves to be higher than this calculated value, and quite considerably this 
time, by a so-called ad hoc proton g factor of 2.792775597.  

The first measurements of the proton magnetic moment were conducted by Estermann, Frish and Stern 
in 1932. A confirming experiment, also involving Estermann and Stern, was conducted in 1937 and is put in 
reference ([1]) for readers interested in further exploring this experiment. 

So, we traditionally obtain the actual measured value of the proton magnetic moment (µp) by 
multiplying the nuclear magnetic moment (µN) by this ad hoc proton g factor, and since µ2  is equal to µp by 
definition in equation (4), we can pose 

µ2 = µp = µN x 2.792775597 = 1.410606633E-26 J/T                                        (10) 
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which is the actual measured hydrogen atom nucleus magnetic moment. This magnetic moment of the 
proton however can only be the resultant of the combined magnetic interaction between the 2 up quarks, the 
single down quark, and their 3 powerful carrying-photons which together make up the scatterable structure of 
the proton. We will discuss this issue later. 

 
O. Orbiting electron rest mass magnetic moment (µE) 

Let us now rewrite equation (6) to account for the fact that µ1  is a composite value made up of the so-
called electron magnetic moment (µe), that we now know is the electron carrying energy magnetic moment, plus 
the actual electron rest mass magnetic moment that we will symbolize by (µE) 
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Isolating µE, we obtain the real electron rest magnetic moment, since the other two magnetic 

moments involved are the real measured values of the only other two magnetic components involved, that is, 

that of the carrying energy of the orbiting electron, and that of the central proton, which makes up the nucleus of 

the hydrogen atom:    
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P. Orbiting electron magnetic field (Be) 

From paper ([7]), we know that the magnetic field of an elementary particle can be calculated by 

dividing half of its rest energy by its magnetic moment, so  
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We can now obtain the corresponding energy density from  
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Since this density is a measure of energy over the corresponding volume, we can now determine the 

actual real volume within which the electron rest mass magnetic energy will oscillate at its rated frequency 
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Since this volume is spherical by structure, let us calculate the radius of this volume 
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which is totally consistent with the idea that the orbiting electron rest mass magnetic field clearly 
interacts with that of the hydrogen nucleus, which is located at the slightly shorter mean distance of 
5.291772083E-11 m (The Bohr radius). 

A further point of major interest is that the radius of the electron rest mass magnetic field that we just 
calculated (equation (16)) turns out to be practically equal to the absolute amplitude of the accompanying 
carrying energy of 4.359743805E-18 Joules induced at the Bohr ground state: 
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Now this concludes the overview of the factors required to eventually mathematically completely 
address the issue of the magnetic repulsion between the nucleus and the electron of the hydrogen atom that 
exactly counteracts their electrostatic attraction at a mean distance corresponding to the Bohr ground orbit. 
 

XII. PROTON COMPOSITE MAGNETIC MOMENT 
As previously mentioned, the measured magnetic moment of the proton (equation (10)), that is:  

µp =  1.410606633E-26 J/T, 
can only be the resultant of the combined magnetic interactions between the 2 up quarks, the single 

down quark and the 3 carrying-photons making up the scatterable structure of the proton.  
We just saw how to correctly calculate all aspects of the hydrogen atom magnetic repulsion between 

electron and proton that explains why it is impossible for the electron to crash on its own on the nucleus despite 
electrostatic attraction. There now remains to analyse the corresponding electrostatic versus magnetic 
equilibrium relation between the internal components of the proton proper. 

 
Q. Effective energy density of proton's components 



On The Magnetostatic Inverse Cube Law And Magnetic Monopoles 

64 

The hurdle in clarifying this issue relates to the difficulty in determining the specific energy density to 
be applied to the magnetic fields of each of the six electromagnetic components of the proton. From the analysis 
carried out in paper ([7]), it would be quite easy to calculate the absolute limit energy densities of the various 
elementary particles making up the proton. This absolute density however would apply only if each particle’s 
energy was statically regrouped in the smallest spheres possible, which cannot possibly be the case for the 
constantly oscillating energy making up each particle and their carrier-photons.  

For the electron rest mass magnetic field for example, we just saw (equation (13)) that the relative 
magnetic field of the electron rest mass turns out to be 268.1079208 T at the rest orbital mean distance from the 
nucleus, corresponding to an energy density (equation (14)) of 2.860088223E10 J/m

3
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respective absolute limit values would be   
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Again, let us emphasize that these absolute limits correspond to the maximum density of a theoretical 
static sphere within which all of the electron’s energy would be isotropically and statically concentrated.  

Obviously, the pulsating magnetic energy of the real electron does not distribute in space in this 
manner, but would rather visit a much larger spherical volume within which the mean energy density would be 
maximum at the center of the volume occupied by the electron and would decrease as a function of distance 
from the center up to a maximum radial distance that remains to be ascertained and that would be the radius of 
the volume really visited by the energy in oscillating motion of the electron.  

The density obtained with equation (14) would thus simply be the density of the magnetic energy of the 
electron at the point of equilibrium between nucleus and electron, point that would of course be located between 
the nucleus and the mean electron rest orbital. 

 
R. Magnetic moments of the proton components 

Now, what can be done as a first approximation of specific magnetic momenta of the proton inner 
components is to take as a reference the mean energy density in relation with the measured proton magnetic 
moment (µp =  1.410606633E-26 J/T). For this purpose, we must calculate the total magnetic energy that needs 
to be related to this magnetic moment.  

Since all components of the proton are translating on closed orbits, their individual magnetic moments 
will by definition be more intense than if the same particles were travelling in a straight line due to the 
mandatory magnetic drift of the oscillating half of their carrying energy towards magnetostatic space as a 
function of their respective gyroradii, as clarified in ([14]).  

Let us first lay out a table of the energy of the various elementary scatterable particles making up the 
proton and their associated carrier-photons that need be considered as analyzed in ([6], Chapter 17).  

Knowing that frequency f = E/h and wavelength   = c/f; since amplitude A= /2, we can thus write: 
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Table II: Absolute amplitudes of the proton constituting scatterable particles 

 
  

Eventually, the various integrated absolute amplitudes of the particles making up the proton and their 
gyroradii should allow calculating the physical extent of the magnetic energy spheres of the nucleon 
components within magnetostatic space.  

 
S. Calculation of the magnetic drift of the proton components 

Account must be taken however of the fact that the extent of the spatial volume occupied by each of 
these magnetic spheres is directly influenced by a magnetic drift factor. We know already from experimental 
evidence ([6], Chapter 17) that this magnetic drift factor is 4/3 for the up quark and 5/3 for the down quark.  
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The three quarks’ magnetic drifts at their respective gyroradii imply that their magnetic fields involve a 
quantity of energy corresponding to that of particles with higher energy than these quarks but that would be 
moving in a straight line. So let’s first calculate the increased total energy that these quarks would have if they 
became these  hypothetical higher energy particles moving in straight line.  

J13E12.45613124
3

4E=quark) (upenergy  Increased u                                    (18)  

J12E41.22806563
3

5E=quark)(down energy  Increased d                                    (19)  

As for the three quarks carrier-photons, which are moving in circle in normal space, the method 
defined in ([14]) makes it relatively easy to calculate this magnetic drift factor in relation with their gyroradius, 
the latter being 1.252776701E-15 m, that is the known radius of the proton in normal space. 

Considering that the three quarks form a rigid structure rotating about the normal space axis at a 
velocity determined by the energy of three carrier photons, we can add together the rest energies of the 3 quarks 
noted in Table II and treat this total quantity as a single particle being accelerated by the energy of the three 
photons: 

E = 2Eu + Ed = 1.105259067E-12 J                                                            (20) 

Likewise, we can add the energy of the quarks three carrier-photons (from Table II) and treat it as a 

single quantity  

K = 3Ec-p = 1.492224717 E-10 J                                                             (21) 

Making use now of equation (12) from separate paper ([14]), let’s calculate the magnetic drift factor of 

the three carrier-photons energy, using the values obtained with equation (20) and (21) for E and K: 

 
50.15913798

K2E2π

K4EK

μ

δμ
riftmagnetic_d

2

B





                                           (22) 

Which means that the total energy of 3 photons having the same magnetic field as these carrier-photons 

(moving in circle) but that would be moving in straight line would correspond to the total energy of the 3 

carrier-photons multiplied by 1.159137985, so: 

J10E21.7296943551.15913798K=photons)(carrier energy  Increased            (23)  

which makes the total increased energy corresponding to the increased drifted magnetic energy of the 6 

components of the proton to the sum of the figures obtained from equations (18), (19) and (23), so 

E = 1.74443114E-10 J                                                                     (24) 
which is a figure 16% higher than the actual energy of the proton rest mass. But let us recall that this 

apparent increase is only hypothetical. Let’s remember that it only represents the total energy that a hypothetical 
particle moving in straight line, while having the same magnetic moment as that of the magnetically drifted 
magnetic moments of the 6 particles making up the proton as they move on closed orbits.  

In physical reality, this only implies that while the magnetic energy of the scatterable components of 
the proton is increased by 16%, its related electric energy is diminished by the same amount, which leaves the 
proton with the same well known energy associated with its rest mass. But for calculation purposes, it simply is 
more convenient to work with the increased total energy since exactly half this energy corresponds very 
precisely with the real energy making up the real magnetically drifted moment of the proton.  

Now from the figure obtained with equation (23) and the known measured magnetic moment of the 
proton (µp =  1.410606633E-26 J/T) we can calculate the actual magnetic field of the proton: 

T 4E156.18326576
263E1.410606632

10E1.74443114

2μ

E
B

p

p 



                                   (25) 

which in turn allows calculating the corresponding mean magnetic energy density of the proton  

  3

0

2

0

2

p

p J/mE3731.52123380
2μ

4E156.18326576

2μ

B
U                                 (26) 

Of course, this figure is a first level approximation of the proton energy density, which by definition 
can only be an average of the actual individual densities of its 6 scatterable components (3 quarks plus 3 carrier-
photons). 
 

XIII. CONCLUSIONS 
1) The easily reproducible experiment described in Section IX grounded on the considerations 

previously exposed proves out of any doubt the inverse cube relation with distance between the magnetic fields 
of magnets whose both north and south poles physically coincide, proving by similarity that the same inverse 
cube interaction law applies to point-like behaving scatterable elementary electromagnetic particles such as 
electron, positron, and quarks up and down.  

2) This experiments also proves, by comparing equation (1) obtained from the data gathered during the 
experiment, with the standard equation (1a) used to calculate the interaction between bar magnets whose poles 
are at some distance from each other within each magnet, that the magnets used in the experiment behave as 
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monopoles since the comparison reveals that the strength of their interaction is only half that of bar magnets, 
revealing that with these circular magnets only 2 poles are simultaneously interacting in relation with l=0 
compared to 4 simultaneously interacting poles when l > 0 within bar magnets.  

The fact that only two poles are simultaneously interacting during the experiment, coupled with the fact 
that the same magnets can also be physically placed in parallel (repulsion) and antiparallel (attraction) 
orientation also proves that all 4 poles do exist in these magnets, which can be explained only by their being 
present in alternance by pairs (one pole at a time in each magnet), which is coherent with the 3-spaces model de 
Broglie internal dynamic structure of elementary electromagnetic particles described in papers ([2]) and ([16]).  

By similarity, it can be concluded that the magnetic fields of point-like behaving scatterable elementary 
particles are magnetic monopoles at any given instant, in expansion from zero to maximum during half of each 
cycle and then from maximum to zero during the other half. 

3) Finally, the reason why electrons do not crash on nucleons in atoms in spite of their permanent 
electric attraction is explained by the permanent and unavoidable magnetic repulsion between nucleon and 
electronic escort as described, revealing the existence of an electromagnetic equilibrium distance between 
electric attraction and magnetic repulsion corresponding to the mean Bohr orbit in the isolated hydrogen atom. 
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