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Abstract:- In this paper, a novel multiplier architecture based on ROM approach using Vedic Mathematics is 

proposed. This multiplier's architecture is similar to that of a Constant Coefficient Multiplier (KCM). However, 

for KCM one input is to be fixed, while the proposed multiplier can multiply two variables. The proposed 

multiplier is implemented on a Cyclone III FPGA, compared with Array Multiplier and Urdhava Multiplier for 

both 8 bit and 16 bit cases and the results are presented. The proposed multiplier is 1.5 times faster than the 

other multipliers for 16x16 case and consumes only 76% area for 8x8 multiplier and 42% area for 16x16 

multiplier. 
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I.     INTRODUCTION 
     Multiplication is one of the more silicon-intensive functions, especially when implemented in 

Programmable Logic. Multipliers are key components of many high performance systems such as FIR filters, 

Microprocessors, Digital Signal Processors, etc. A system's performance is generally determined by the 

performance of the multiplier, because the multiplier is generally the slowest element in the system. 

Furthermore, it is generally the most area consuming. Hence, optimizing the speed and area of the multiplier is a 

major design issue.  

     Vedic mathematics [I] is the ancient Indian system of mathematics which mainly deals with Vedic 

mathematical formulae and their application to various branches of mathematics. The word 'Vedic' is derived 

from the word 'Veda' which means the store-house of all knowledge. Vedic mathematics was reconstructed from 

the ancient Indian scriptures (Vedas) by Sri Bharati Krshna Tirthaji (1884-1960), after his eight years of 

research on Vedas [1]. According to his research, Vedic mathematics is mainly based on sixteen principles or 

word-formulae which are termed as Sutras. This is a very interesting field and presents some effective 

algorithms which can be applied to various branches of Engineering such as Computing and Digital Signal 

Processing. 

 

II.     ARRAY MULTIPLIER 
In Array multiplier [2], AND gates are used for generation of the bit-products and adders for 

accumulation of generated bit products. All bit-products are generated in parallel and collected through an array 

of full adders or any other type of adders. Since the array multiplier is having a regular structure, wiring and the 

layout are done in a much simplified manner. Therefore, among other multiplier structures, array multiplier 

takes up the least amount of area. But it is also the slowest with the latency proportional to O (Wct), where Wd 

is the word length of the operand. Example I describes the multiplication process using array multiplier and Fig.l 

depicts the structure of the same. Instead of Ripple Carry Adder (RCA), here Carry Save Adder (CSA) is used 

for adding each group of partial product terms, because RCA is the slowest adder among all other types of 

adders available. In case of multiplier with CSA [5], partial product addition is carried out in Carry save form 

and RCA is used only in final addition. 

 

Example 1: (1101 x 1110) = 1 0 1 1 0 1 1 0  

1 1 0 1 

1 1 1 0 X  

-----------------------------------                   

               0 0 0 0    

            1 1 0 1 --- Left Shift by I bit  

         1 1 0 1 --- Left Shift by 2 bit 

      1 1 0 1            --- Left Shift by 3 bit 

----------------------------------------- 

    1 0 1 1 0 1 1 0  
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Here from the above example it is inferred that partial products are generated sequentially, which 

reduces the speed of the multiplier. However the structure of the multiplier is regular.  

 
Fig. 1: Array Multiplier using CSA Hardware Architecture 

 

III.    URDHAVA MULTIPLIER 
Urdhava Tiryakbhyam [1] [3] (Vertically and Crosswise), is one of Sixteen Vedic Sutras and deals with 

the multiplication of numbers. The sutra is illustrated in Example 2 and the hardware architecture is depicted in 

Fig.3. In this example two decimal numbers (31 x 35) are multiplied. Line diagram for the multiplication of two, 

three and four digit numbers is shown in Fig. 2 using Urdhava Method. The digits on the two ends of the line are 

multiplied and the result is added with the previous carry. When three or more lines are present, all the results 

are added to the previous carry. The least significant digit of the number thus obtained acts as one of the result 

digit and the rest act as the carry for the next step. Initially the carry is taken to be zero. 

Example 2: 40x45 =1800 

4   0     0        4    0                 4 

     

4   5X    5 X 4    5                 4X 

                --------   ----------------   ----------- 

                   0          20 + 0 = 20     16+2=18 

               --------   ----------------    ----------- 

                                               Carry to next stage 

Answer: 40x45 =1800 

 
Fig. 2: Line Diagram for Urdhava Multiplication of 2, 3 and 4 digits 

 

     From the Example 2, it is observed that all the partial products are generated in parallel. So the speed of 

the multiplier is higher compared to array multiplier.  

     The above discussions can now be extended to multiplication of binary number system with the 

preliminary knowledge that the multiplication of two bits a0 and b0 is just an AND operation and can be 

implemented using simple AND gate. To illustrate this multiplication scheme in binary number system, consider 

the multiplication of two binary numbers a3a2ala0 and b3b2blb0. As the result of this multiplication would be more 

than 4 bits, the product is expressed as r7r6r5r4r3r2rlr0. Least significant bit r0 is obtained by multiplying the 
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least significant bits of the multiplicand and the multiplier as shown in the Fig.2. The digits on both sides of the 

line are multiplied and added with the carry from the previous step. This generates one of the bits of the result 

(r0) and a carry (Cn). This carry is added in the next step and thus the process goes on. If more than one line are 

there in one step, all the results are added to the previous carry. In each step, least significant bit acts as the 

result bit and the other entire bits act as carry.  

     For example, if in some intermediate step, we get 110, then 0 will act as result bit and 11 as the carry 

(referred to as Cn in this text). It should be clearly noted that C n may be a multi-bit number. Thus the following 

expressions (1) to (7) are derived: 

r0  = a0b0    ... (1) 

clrl  = alb0 + aobl                         ... (2) 

c2r2 = cl + a2b0 + alb1 + aob2  ... (3) 

c3r3 = c2 + a3b0 + a2bl + alb2 + a0b3             ... (4) 

c4r4 = c3 + a3bl + a2b2 + alb3  ... (5) 

c5r5 = c4 + a3b2 + a2b3   ... (6) 

c6r6 = c5 + a3b3    ... (7) 

 

with c6r6r5r4r3r2r1rO being the final product. Partial products are calculated in parallel and hence the 

delay involved is just the time it takes for the signal to propagate through the gates. 

 

 
Fig.3 Urdhava Multiplier Hardware Architecture 

 

    The main advantage of the Vedic Multiplication algorithm (Urdhava Tiryakbhyam Sutra) stems from 

the fact that it can be easily implemented in FPGA due to its simplicity and regularity [3]. The digital hardware 

realization of a 4-bit multiplier using this Sutra is shown in Fig. 3. This hardware design is very similar to that of 

the array multiplier where an array of adders is required to arrive at the final product. Here in Urdhava, all the 

partial products are calculated in parallel and the delay associated is mainly the time taken by the carry to 

propagate through the adders.  

                                  

IV.       PROPOSED METHOD 
The proposed method is based on ROM approach however both the inputs for the multiplier can be 

variables. In this proposed method a ROM is used for storing the squares of numbers as compared to KCM 

where the multiples are stored. Method: To find (a x b), first we have to find whether the difference between 'a' 

and 'b' is odd or even. Based on the difference, the product is calculated using (8) and (9). 

 

I. In case of Even Difference 

Result of Multiplication= [Average]
2
- [Deviation]

2
... (8) 

 

II. In case of Odd Difference 

Result of Multiplication = [Average x (Average + 1)]-[Deviation x (Deviation+ I)] ... (9) 

Where, Average = [(a+b)/2] and Deviation = [Average - smallest (a, b)] 

 

Example 3 (Even difference) and Example 4 (Odd difference) depict the multiplication process. Thus 

the two variable multiplication is performed by averaging, squaring and subtraction. To find the average 
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[(a+b)/2], which involves division by 2 is performed by right shifting the sum by one bit. If the squares of the 

numbers are stored in a ROM, the result can be instantaneously calculated. However, in case of Odd difference, 

the process is different as the average is a floating point number. In order to handle floating point arithmetic, 

Ekadikena Purvena - the Vedic Sutra which is used to find the square of numbers end with 5 is applied. Example 

5 illustrates this. In this case, instead of squaring the average and deviation, [Average x (Average + 1)] - 

[Deviation x (Deviation+ I)] is used. However, 

instead of performing the multiplications, the same ROM is used and using equation (10) the result of 

multiplication is obtained. n(n+l) = (n
 2
 +n) ... (10) 

Here n 2 is obtained from the ROM and is added with the address which is equal to n(n+l). The sample 

ROM contents are given in Table 1. TABLE 1: ROM CONTENTS Address Memory Content (Square) 

 
Thus, division and multiplication operations are effectively converted to subtraction and addition 

operations using Vedic Maths. Square of both Average and Deviation is read out simultaneously by using a two 

port memory to reduce memory access time. 

 

Example 3: 18 x 14=252 

I. Find the difference between (18-14) = 4 → Even Number 

II. For Even Difference, Product = [Average]
2 
-  [Deviation]

2
 

       i. Average = [(a+b)/2] = [(18+14)/2] = [32/2] = 16 

       ii. smallest(a, b) = smallest(l8,14) =14 

       iii. Deviation = Average - Smallest (a,b) = 16 -14 =2 

III. Product = 16
2
-2

2
   = 256 - 4 = 252  

 

Example 4: 16 x 13 = 208 

I. Find the difference between (16-13) =3 →Odd Number 

II. For Odd Number Difference find the Average and  Deviation. 

    i. Average = [(a+b)/2] = [(16+13)/2] = 14.5 

   ii. Deviation=[Average - smallest(a,b)]= [14.5 - smallest(l6,13)]                           = [14.5 - 13] = 1.5 

III. Product = (l4xI5) - (lx2) = 210 - 2 =208 

 

Example 5: 25
2
=625 

I. To find the square of 25, first find the square of 5 which is 25 and put 2  in the tens place and 5 in the ones 

place of the answer respectively.  

II. To find the number in the hundreds place, multiply 2 by its immediate next number, 3, which is equal to 

(2x3) = 6  

III. Answer 25
2
=625 

       Fig.4 depicts the RTL view of the proposed multiplier for 4x4 as a sample case, implemented on a 

Cyclone II device. 8x8 multiplier is implemented using ROM approach, by storing the squares of the numbers in 

the memory starting from 0000 0000 to 1111 1111. The memory requirement for an 8x8 multiplication will be 

8KB. But in the case of 16xl6 multiplier the memory requirement will be huge, 2
16

x32=2MB. So, in order to 

reduce the memory requirements for higher order bit multiplication, (l6x16, 32x32, etc.) lower order (8x8) 

multiplier can be instantiated[1 7]. By this process the constraint of larger memory requirements can be 

overcome. 

 
Fig. 4: RTL View of Proposed Multiplier (4x4) 
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V.     EXPERIMENTAL RESULTS 
From the Table 2 and Table 3, it is inferred that the proposed multiplier is best suited for the 

applications where the less area requires and speed is major considerations. This is achieved due to the feature 

of multiplier that will consume only fewer logic elements for its implementation.  

 

              

 Array Multiplier Urdhava Multiplier Proposed Multiplier 

16x16 Multiplier 510 810 145 

8x8 Multiplier 126 180 311 

                                   

                         Table: 2  Requirements of  combinational logic functions  

 

 

Array Multiplier Urdhava Multiplier Proposed Multiplier 

61.277 50.952 23.87 

 

                        Table: 3 Time delay in nanoseconds  for 16x16 Multipliers 

 

 

 

 
Fig:5 For 16x16 Multipliers it will shows the time delay comparison 

 

 
                                                  Fig:6 For 16x16 Multipliers Area comparison 

 

 

From the observation of simulation results for 8x8 and 16x16 multipliers in the case of proposed 

multipliers it is clear that it is more efficient and comfortable for higher order multipliers i.e, greater than 8x8 

multipliers 

 

VI.    CONCLUSION 
Thus the proposed multiplier provides higher performance for higher order bit multiplication. In the 

proposed multiplier for higher order bit multiplication i.e. for 16x16 and more, the multiplier is realized by 

instantiating the lower order bit multipliers like 8x8. This is mainly due to memory constraints. Effective 

memory implementation and deployment of memory compression algorithms can yield even better results. 

 

REFERENCES 
[1]. Swami Bharati Krishna Tirthaji, Vedic Mathematics. Delhi: Motilal Banarsidass Publishers, 1965. 

[2]. K.K.Parhi "VLSI Digital Signal Processing Systems -Design and Implementation" John Wiley & Sons, 

1999. 



Design and Implementation of Vedic Multiplier 

www.ijerd.com                                                                                       28 | Page 

[3]. Harpreet Singh Dhillon and Abhijit Mitra "A Digital Multiplier Architecture using Urdhava 

Tiryakbhyam Sutra oj Vedic Mathematics" IEEE conference Proceedings, 2008. 

[4]. Asmita Haveliya "A Novel Design for High Speed Multiplier .for Digital Signal Processing 

Applications (Ancient Indian Vedic mathematics approach)" International Journal of Technology And 

Engineering System(IJTES):Jan - March 2011- Vo12 .Nol 

[5]. Raminder Preet Pal Singh, Parveen Kumar, Balwinder Singh "Perfimnance Analysis of'32-Bit Array 

Multiplier with a Carry Save Adder and with a Carry-Look-Ahead Adder" International Journal of 

Recent Trends in Engineering, Vol 2, No. 6, November 2009 

[6]. Parth Mehta, Dhanashri Gawali "Conventional versus Vedic mathematical method for Hardware 

implementation of a multiplier"2009 International Conference on Advances in  Computing, Control, 

and Telecommunication Technologies 

[7]. Prabir Saha, Arindam Banerjee, Partha Bhattacharyya, Anup Dandapat ""High Speed ASIC Design of 

Complex Multiplier Using Vedic Mathematics" Proceeding of the 2011 IEEE Students' Technology 

Symposium 14-16 January, 20 II, lIT Kharagpur 

[8]. H. D. Tiwari, G. Gankhuyag, C. M. Kim, and Y. B. Cho, "Multiplier design based on ancient Indian 

Vedic Mathematics," in Proceedings IEEE International SoC Design Conference, Busan, Nov. 24-25, 

200S,pp.65-6S 

[9]. H. Thapliyal, M. B. Srinivas and H. R. Arabnia , "Design And Analysis oj a VLSI Based High 

PerJormance Low Power Parallel quare Architecture", in Proc. Int. Conf. Algo. Math. Compo Sc., Las 

Vegas, June 2005, pp. 72-76. 

[10]. P. D. Chidgupkar and M. T. Karad, "The Implementation oj Vedic Algorithms in Digital Signal 

Processing", Global J. oj /c'ngg. /c’Du., vol. 8, no.2, pp. 153-158, 2004. 

[11]. H. Thapliyal and M. B. Srinivas, "High Speed Efficient N x N Bit Parallel Hierarchical Overlay 

Multiplier Architecture Based on Ancient Indian Vedic Mathematics", EnJormatika Trans., vol. 2, pp. 

225-22S, Dec. 2004. 

[12]. Wakerly, J.F. "Digital Design-Principles and Practices", 2006, 4
th

 Edition. Pearson Prentice Hall. 

[13]. J.Bhasker, "Verilog HDL Primer" BS P Publishers, 2003.  

[14]. Himanshu Thapliyal, S. Kotiyal and M.B. Srinivas, "Design and Analysis of a Novel Parallel Square 

and Cube Architecture Based on Ancient Indian Vedic Mathematics", Proceedings on 48th II/c'/c'/c' 

International Midwest Symposium on Circuits and Systems (MWSCAS 2005), 


