
International Journal of Engineering Research and Development 

e-ISSN: 2278-067X, p-ISSN: 2278-800X, www.ijerd.com 

Volume 9, Issue 5 (December 2013), PP. 33-37 

33 

A VLIW Vector Media Coprocessor with Cascaded SIMD 

ALUs 
 

Prof.T.Chandrasekhar
1
, J.S.Chakravarthi

asst. Professor2
, Y.V.Sai Roja

3
 

1,2,3
GIET Engg. College, Rajahmundry 

 

Abstract:- High-definition video applications, such as digital TV and digital video cameras, require high 

processing performance for high-quality visual images in addition to a complex video CODEC. Pre-/post 

processing to improve video quality is becoming much more important because requirements for Pre/post 

processing vary among applications and processing algorithms have not been stabilized. Therefore, a new 

processor architecture that has a highly parallel data path is needed. In this Paper, we introduce a VLIW vector 

media coprocessor, “vector coprocessor (VCP),” that includes three asymmetric execution pipelines with 

cascaded SIMD ALUs. To improve performance efficiency, we reduce the area ratio of the control circuit while 

increasing the ratio of the arithmetic circuit. The total gate count of VCP is 1268 kgates and its maximum 

operating frequency is 300 MHz at 90-nm CMOS process. Some of the processing kernels in an adaptive 

prefilter that is applied to preprocessing for video encoding are evaluated. In the case of the edgeness and the 

sum of absolute differences, the performance is 183 giga operations per second. VCP offers enough 

performance for HD video processing and good cost-performance while all processing pipeline units operate 

effectively. 

 

Index Terms:- Single instruction stream, multiple data stream (SIMD), vector coprocessor (VCP), very long 

instruction word (VLIW). 

 

I.     INTRODUCTION 
Now a days, high-definition video applications, such as digital TV and digital video cameras require 

high   pro cessing performance for high-quality visual images in addition to a complex video CODEC. Pre/post 

processing to improve video quality is becoming much more important because re- quirements for pre-/post 

processing vary among applications and processing algorithms have not been stabilized. In this paper, we introduce 

a very long instruction word (VLIW) vector coprocessor, "vector coprocessor (VCP)," that has been customized 

to the computation requirements of image processing. The coprocessor architecture includes three asymmetric 

execution pipelines with cascaded SIMD ALUs to exploit the loop-level parallelism. The new architecture of VCP 

is a combination of cascaded SIMD ALUs and asymmetric parallel pipelines, which provide good cost-

performance to enhance specialized data paths for lower-level image processing, such as preprocessing and post 

processing, at the expense of generality compared with conventional processors with SIMD instructions. VCP is 

designed to be a coprocessor for image processing of video CODECs and the width of SIMD ALUs is limited to 

that of macro blocks of CODECs. Therefore, we introduce a cascaded structure of SIMD ALUs to exploit high 

parallelism. To achieve high performance with small hardware size, we reduce the area ratio of the control circuit 

while increasing the ratio of the arithmetic circuit. On the other hand, for the embedded world (particularly for 

smart-cards), given the constraints of speed, power, size and security, special cryptographic accelerators have 

been deployed. Most of those Public Key (PK) crypto accelerators propose very elaborate arithmetic processors 

that work on long precision numbers of fixed lengths, resulting in complicated, bulky and inflexible 

architectures. Others have been trying to have a more general approach by enhancing the instruction set of 

general purpose scalar processors . However, none of those approaches have embraced a hardware-software co-

design approach for data level parallel techniques to enhance cryptographic computation We begin this paper by 

performing an extensive study about how cryptography has been implemented on SIMD(Single Instruction 

Multiple Data) architectures. We show how a design-to-cost approach can be adopted by doing a quantitative 

analysis on the functional simulation of a modular multiplication operation. We finally summarize our results 

and compare our work to previous contributions in the field of cryptography‟s. 

                     

II.      RELATED WORK 
VLIW architectures have been studied to exploit high instruction-level parallelism. SIMD architectures 

have been used frequently to exploit high data-level parallelism. IMAPCAR operates 128 processor cores with 

VLIW and SIMD in parallel. The stream processors achieve massively parallel processing by single instruction, 

multiple data streams with single instruction set to the multiple operation lanes and multiple stream data set to each 

operation lane. The performance of the stream processors is 512 GOPS (Giga Operations Per Second) for 8-bit 
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Processing at 800 MHz frequency. SCALE has been in- traduced as an architecture based on this concept. 

Avispa has high generality to enhance SIMD ALUs for scalability with Ultra Long Instruction Word (ULIW). 

 

 
Figure.1: Architecture of VCP 

 

Coarse-grained reconfigurable architectures have also been used. The reconfigurable architectures 

proposed include DRP, DAPDNA-IMX and REMARC .Automatic map- ping of applications to FPGA-based 

and other reconfigurable systems has also been investigated. ADRES is an example of an architecture that 

automatically maps applications onto coarse-grained reconfigurable arrays that are tightly coupled to the VLIW 

processors.  

The proposed processor VCP can exploit high loop-level parallelism by vector processing in addition to 

VLIW and SIMD architectures. A feature of the architecture is that all processing pipeline units share a vector 

register file (VRF); this provides the performance improvement when the common data in VRF data is supplied 

to multiple pipeline units, or the VRF data is cooperatively updated by multiple pipeline units. This architecture 

concept is similar to those of VIRAM, SODA and DXP .However, using asymmetric vector pipelines with 

cascaded SIMD ALUs of VCP; we expect to achieve better cost-performance than other processors. 

 

III.      PROPOSED VECTOR ARCHITECTURE 
The theory of vector processing and its application tomicro-processors is Vector Processor techniques 

have been widely used from supercomputers like the Cray machine [to Digital Signal Processing applications 

like in Intel‟s MMX or in embedded media architectures like VIRAM ,but never for cryptography. In our 

architecture we use a scalar MIPS to provide good scalar performance. To keep instruction decode simple, we 

delegate both vector and scalar instruction fetch and decode to the MIPS core. To suit the MIPS „load-store‟ 

architecture and to avoid complex memory accesses, we chose a Register-to-Register vector architecture. With 

this approach we reduce memory-register transfers, which are also the privileged attack paths for side channel 

analysis. Details about the vector architecture implemented for the analysis done in this paper are given in .we 

need to highlight some of the vector processor‟s architectural details. The architecture of the vector register file 

is illustrated in Six architectural parameters influence the structure of our vector register file: 

• m: The size of each element of the vector registers(m = 32). 

• q: The number of vector registers. 

• p: The number of elements, called depth, in each vector register. 

• r: The number of lanes which correspond to the number of Vector Processing Units (VPUs). This notion is 

borrowed from .Ideally we would have r = p, allowing us to work on all p elements in parallel.  

 
Figure.2: Vector Processing Unit 
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IV.    DISTRIBUTION OF THE VECTOR REGISTERFILE ACROSS VECTOR PROCESSING 

UNITS (VPUS) 
A vector instruction is meant to replace “software loop” where the data being operated on are 

independent from each other and where the calculation of each iteration of the loop is independent from the 

calculation of the „adjacent‟ iterations. By looking at some of the instructions in Appendix A1, we can see that 

operations like VADDU do not obey this rule. For such instructions, we take advantage of the fact that the 

calculation on each element of the vector is only „partially‟ independent from that of its neighbors. We hence 

define the GIVI (Genuinely Independent Vector 

 

A.Coprocessor system and architecture  
VCP consists of a local data memory (DMEM), an instruction memory (IMEM), a vector register file (VRF), 

a scalar register file (SRF), a predicate register file (PRF), a scalar processing unit, a vector processing unit, and a 

load/store unit. The scalar processing unit is a 16-bit 3-way VLIW processor. This unit executes 16-bit scalar 

arithmetic and logic instructions, vector and scalar load/store instructions, data transfer instruction via SRF, and 

branch/jump instructions and controls data transfer to the vector processing unit and program flow. The vector 

processing unit includes three asymmetric vector processing pipelines; each pipeline is identified by the index A, 

B, and C. The vector processing unit has 991 operators in total. There is an instruction queue for each vector 

processing pipeline. The instruction waits in this instruction queue until the execution condition is satisfied. The 

load/store unit has a queue with three entries to transfer data continuously without pipeline stall and to take 

advantage of the memory bandwidth. In addition to the linear transfer, the load/store unit supports rectangular 

transfer for block data.VRF has 64 vector registers that hold sixteen 8-bit data each. VRF has 6-read/3-write ports. 

SRF is a register file for communication between the scalar processing unit and the vector processing unit. It 

consists of 32 8-bit registers. The scalar processing unit can store constant values in SRF. The values are 

transferred into registers of the vector processing unit. Also, an output of the vector processing unit can be stored 

into a register in SRF. PRF is the predication register file. It consists of 64 registers that hold 16 1-bit data, each 

corresponding to 16 sub-words of SIMD data. PRF is used to store a condition flag used for the select operation 

of the vector processing unit. The scalar processing unit can store the 16-bit data in a register in PRF directly.  

1) Vector Pipeline Processing: Fig. 2 shows the overall vector processing pipelines A, B, and C. The vector 

processing unit includes three asymmetric vector processing pipelines that consist of the following five stages of 

16-parallel SIMD ALUs.  

• EX0: data permutation such as byte alignment and unpack operations.  

• EX1: first stage of ALU and shift operations.  

• EX2: second stage of ALU and multiplication (only pipeline A) operations.  

• EX3: accumulation stage.  

• WB: write back to VRF with data reformatting.  

Vector processing pipelines B and C have 3-parallel datapaths at the EX0, EX1, and EX2 stages. The 

accumulators are implemented in all the vector processing pipelines at the EX3 stage. Furthermore, the vector 

processing unit also includes a horizontal addition operator. The input of this operator is connected to all the 

accumulators of the vector processing pipelines and the results are stored into SRF. We assume that the input 

image data is 8-bit pixel and the input data of a vector processing unit is 8-bit SIMD for the first product instance. 

Because it is necessary to guarantee operation accuracy in the intermediate stages, operation bit width in- creases 

as the stage advances. For instance, in pipeline A, the result of the EX1 stage is signed 10 bits and the result of 

multiply in the EX2 stage is signed 17 bits, and the bit width of the accumulator is 21 bits.VRF has six read ports; 

one of them is used for vector load/ store, two of them are assigned to vector processing pipeline A, and the other 

three are assigned to vector processing pipeline B. No specific read ports are assigned to vector processing pipeline 

C. Instead it shares the three read ports of VRF with vector processing pipeline B in order to reduce the area of 

VRF. This port sharing technique yields a restriction, namely, vector LIW instruction C is executed 

simultaneously with vector LIW instruction B. For instance, it enables mapping of 2-D filter operations, vertical 

and horizontal directions, onto pipelines B and C simultaneously. To reduce the area, only pipeline A has 

multipliers. In- stead pipelines B and C support shift and add operators to realize constant multiplication that 

appears frequently in image processing. In the EX0 stage, pipelines B and C execute byte-shift operation on three 

SIMD input data independently and output three pairs of permutated SIMD data. Each pair of SIMD data is sup- 

plied to three parallel data paths.  

 

V.     EXPERIMENTAL RESULTS 
A. Hardware Implementation 

To evaluate the performance, we implemented VCP using HDL, synthesized it, and evaluated its 

frequency. Total gate count is 1268 kgates. The maximum frequency that is a result of STA (Static Timing 

Analysis) after P&R (Place and Route) is 300 MHz for 90-nm CMOS process. The peak performance of VCP is 
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estimated to be about 270 GOPS. We evaluate power consumption by gate-level simulation, which is synthesized 

using Power Compiler and Toshiba ASIC library (90 nm process, high-speed cell). The measured power 

consumption of the edge detect program is 173 mW at 300 MHz with Power Theater, which is the power 

consumption before special RTL optimization for power reduction. Fig. 16 shows the layout result of VCP and 

Table I summarizes the features of VCP's hardware implementation. Table II shows the gate counts of units in VCP.  

 

B. Tool Chain and Evaluation Environment 

We developed the compiler, the assembler, and the simulator for VCP. The tool chain of VCP. The VCP 

C compiler performs optimization to allocate the pipelines and the registers in VRF. Furthermore, the compiler 

analyzes data de- pendency and inserts a synchronization instruction to resolve data hazards between the vector 

LIW instructions statically. For the parallel execution in pipelines B and C and the pipeline chaining, 

programmers have to write program directives explicitly.. Furthermore, programmers have to write programs 

according to VCP C program style that consists of individual descriptions of each operator .The description 

violating the style invokes compile error. Then, programmers have to write in assembly language. We have 

developed the VCP Simulator for not only software development but also verification of RTL. Also, we have 

developed the FPGA evaluation system for VCP. Adaptive pre-filter processing operates on this system.  

 

VI.     PARALLEL IMPLEMENTATIONS OF CRYPTOGRAPHY 
In the „conventional‟ or non-embedded computing world, most of the research has concentrated around 

parallelizing the cryptographic operations in order to take advantage of the SIMD architecture originally 

developed for media applications:     In the authors implement a long precision modular Multiplication on a 

Pentium4 using the SSE2 (Streaming SIMD Extensions 2) instructions. The authors execute four 

exponentiations in parallel, each exponentiation being implemented using a Redundant Representation of 

Montgomery‟s multiplication. The authors report that a 1024-bit modular multiplication takes 60μs, which 

roughly corresponds to 120000 clock cycles for a 2GHz Pentium4 processor. 

• Crandall and Klivington illustrate in how the Velocity Engine of the PowerPC can be used to implement long 

precision multiplications for RSA. we can infer that a 1024-bitMultiplication takes about 3600 clock cycles with 

their approach. However, no figures were reported for a full modular multiplication. 

• The AltiVec extension to the PowerPC was originally developed to target media applications. This vector 

extension is made of 32 128-bit vector registers. AltiVec also offers some superscalar capabilities since 

instructions belonging to different „classes‟ can be executed in parallel. Galois Field arithmetics has been 

implemented on the AltiVec in . In the latter paper, the authors show how the Rijndael algorithm can be made to 

execute in 162 clock cycles on the AltiVec or, even better, in only 100 clock cycles if a bit-sliced approach is 

used. For embedded applications, studies around the use of SIMD architectures for cryptography are even more 

scarce: 

 

Comparison With Conventional VLIW & SIMD Processor: 

We compared the performance of VCP with that of our previous work, a 3-way 64-bit VLIW processor 

[11], which is one of the typical processor architectures with SIMD instructions and de- signed for image 

processing and image recognition. The VLIW processor has two 64-bit SIMD datapaths. One of the processor 

datapaths consists of only an 8-parallel SIMD ALU and an accumulator, whereas the other has an 8-parallel SIMD 

MAC (Multiply and Accumulator) as well. The area of the VLIW processor is 520 kgates including 8-KB 

instruction cache and 8-KB data cache. This gate count is used for comparison of architecture efficiency such as 

normalized performance by area.  

 

Comparison With DSP Processors: 

  We compared  the  performance of VCP with that of DSP processors. Table V shows the performance. 

  

VII.     CONCLUSION 
We introduced a VLIW vector media coprocessor, VCP, with asymmetric cascaded SIMD ALUs to 

exploit the loop-level parallelism. To achieve high performance with small hard- ware size, we reduce the area 

ratio of the control circuit while increasing the ratio of the arithmetic circuit. In particular, to execute 

instructions out-of-order with a small control unit, the compiler for static optimizations of synchronization is 

developed.  To evaluate the performance of the proposed architecture, we measured the processing cycles for the 

calculation of edgeness and SAD by the simulator. we showed that high performance can be achieved through 

parallel computation of cryptography on a vector architecture. It is well known that instruction level parallelism 

is very expensive in terms of hardware and in particular very complex in terms of instruction decoding and 

scheduling. On the other hand, taking a vector approach is a relatively cheap way of achieving high performance 

parallelism as most of the logic goes into the data path and not in the control path.  
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