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Abstract:- In recent years, Utility mining becomes an emerging topicin the field of data mining. From a 

transaction database the discovery of itemsets with high utility like profits are referred as a high utility itemsets 

mining. In this paper, a new algorithm is proposed,named Enhanced Utility Pattern Growth
+
 (EUP-Growth+), 

for reducing a large number of candidate itemsets for high utility itemsetswith a set of effective strategies. These 

strategies are used for pruning candidate itemsets effectively. By reducing a hefty number of candidate itemsets 

the mining performance upgrades in terms of execution time and space requirement. The selective information 

ofpotential high utility itemsetsare stored in the appropriate memory using a hashing technique and maintained 

in a tree-based data structure named Improved Utility Pattern Tree (IMUP-Tree). The performance of    EUP-

Growth+ is compared with the State-of-the-art algorithms on many types of both real and synthetic data sets. 

Experimental and comparative results reveal that the proposed algorithms, EUP- Growth+, not only reduce the 

number of PHUIs effectivelybut also outperform other algorithms. 

 

Index Terms:- Candidate pruning, utility mining, frequent itemset, potential high utility itemset, 

I. INTRODUCTION 
Data mining is the process of enlightening non-trivial, formerly unknown and potentially useful 

information from large databases. Association Rule Mining is one of the popular and well research technique in 

data mining for finding interesting pattern between variables in a large database. The most      well-known 

example for association rule mining is Market basket analysis. In ARM, the most important pattern mining is 

frequent pattern mining which is a fundamental research topic that has been applied to different kinds of 

databases, such as transnationaldatabases [1], [14], [21], streaming databases [18], [27], and time series 

databases [9], [12], and various application domains, such as Bioinformatics [8], [11], [20], Web click-stream 

analysis [7], [35], and mobile environments [15], [36]. The frequent itemsets identified by ARM reflect only the 

frequency of the existence or nonexistence of an item. Hence, the major drawbacks of frequent pattern mining 

are; first the impact of any other factor are not consider in frequent pattern mining. Next the non-frequent 

itemsets may contribute a large portion of the profit. Finallythe relative importance of each item is not 

considered in frequent pattern mining.   Recently, to address the limitation of ARM, many types of association 

rule mining were defined as weightedfrequent pattern mining and Utility Mining. 

In weighted frequent pattern mining, weights of items such as price and profits are considered in the transaction 

database.With this perception, even if some items come out infrequently, they might still be found if they have 

higher weights. However, in this weighted pattern mining, the quantities of items are not considered yet. 

Therefore, it cannot satisfy the user requirements who are interested in discovering the itemsets with high sales 

profits. 

To overcome this, Utility mining becomes an emerging topicin the field of data mining. In a transaction 

database the discovery of itemsets with high utility like profits are referred as a high utility itemsets mining. In a 

transaction database, the utility of an item consists of two aspects: 1) External utility and 2) Internal utility. 

External utility provides  importance‟s to distinct items. Internal utility provides importance‟sto item in 

transactions. The utility of an itemset is defined as the product of external utility and internal utility. The utility 

of an itemset which is greater than a user-specified minimum utility threshold is called a high utility itemset; 

otherwise, it is called a low-utility itemset. 

However, mining high utility itemsets from databases is not an easy task since downward closure 

property [1] in frequent itemset mining does not hold. In other words, pruning the search space for high utility 

itemset mining is difficult because a superset of a low-utility itemset may be a high utility itemset. A simple 

method to address this problem is to compute all itemsets from databases by the principle of fatigue. Obviously, 

this method requires large search space, particularly when databases restrain lots of long transactions or a lower 
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minimum utility threshold is set. Hence, In order to reduce the search space and efficiently capture all high 

utility itemsets with no mess is a crucial challenge in utility mining. 

In existing studies, the performance of utility mining are improved by applying the overestimated 

methods [3], [10], [16], [17], [19], [24], [29], [30]. In these methods, potential high utility itemsets (PHUIs) are 

identified first, and then one more additional database scan is performed for identifying their utilities. However, 

these methods generate a hefty number of potential high utility itemsets and their mining performance is 

degraded subsequently. This situation may become worse when databases contain many long transactions or low 

thresholds are set. The hefty number of PHUIs forms a challenging problem for the mining performance since 

the algorithm generates a large number of PHUIs and also it requires high processing time it consumes.  

In this paper, the existing UP-Growth
+
 algorithm is enhanced to generate high utility itemsets efficiently for 

large datasets and reduce execution time when compared with existing algorithms. In the experimental section, 

experiments are conducted on our enhanced algorithm and existing algorithm with a variety of synthetic and 

real-time datasets. 

The rest of this paper is organized as follows: In Section 2, the background and related work for high 

utility itemset mining are discussed. In Section 3, the proposed data structure and algorithms are described in 

details. In section 4, the experimental results are shown and conclusions are given in Section 5. 

 

II. BACKGROUNDS 
In this section, we first define the preliminary work of utility mining, and then introduce related work 

in utility mining. 

2.1 Preliminary Work 

Given a finite set of items I= {𝑖1,𝑖2, … 𝑖𝑚  }, each item 𝑖𝑝 ( 1 ≤ 𝑝 ≤ 𝑚 ) has a unit profit pr (𝑖𝑝). An 

itemset X is a set of k distinct items {𝑖1,𝑖2 , … 𝑖𝑚  }, where𝑖𝑝  ∈ 𝐼, 1 ≤ 𝑝 ≤ 𝑚. K is the length of X. An itemset with 

length k is called a k- itemset. A transaction database D = {𝑇1,𝑇2, …𝑇𝑛 }Contains a set of transactions, and each 

transaction 𝑇𝑑 (1 ≤ 𝑑 ≤ 𝑛 ) has a unique identifier d, called TID. Each item 𝑖𝑝 in transaction 𝑇𝑑 is associated with 

a quantity q (𝑖𝑝 , 𝑇𝑑 ), that is, the purchased quantity of 𝑖𝑝 in   𝑇𝑑 . 

Definition:  Utility of an item 𝑖𝑝  in a transaction 𝑇𝑑   is denoted as u (𝑖𝑝 ,𝑇𝑑) and defined as pr (𝑖𝑝) × q (𝑖𝑝 , 𝑇𝑑). 

Definition: Utility of an itemset X in 𝑇𝑑  is denoted as u ( 𝑋, 𝑇𝑑) and defined as ∑ 𝑖𝑝∈ 𝑋∧𝑋⊆ 𝑇𝑑
u (𝑖𝑝 ,𝑇𝑑). 

Definition: Utility of an itemset X in D is denoted as u (𝑋)  and defined ∑𝑋⊆ 𝑇𝑑∧ 𝑇𝑑∈𝐷 u ( 𝑋, 𝑇𝑑 ) 

Definition:  An itemset is called a high utility itemset if its utility is no less than a user-specified minimum 

utility threshold which is denoted as min_util. Definition: Transaction utility of a transaction  𝑇𝑑  is denoted as 

TU ( 𝑇𝑑 ) and defined as u ( 𝑇𝑑 ,𝑇𝑑 ). 

Definition: Transaction-weighted utility of an itemset X is the sum of the transaction utilities of all the 

transactions containing X, which is denoted as TWU(X) and defined as   ∑𝑋⊆ 𝑇𝑑∧ 𝑇𝑑∈𝐷 TU( 𝑇𝑑 ). 

Definition: An itemset X is called a high transaction- weighted utility itemset (abbreviated as HTWUI) if 

TWU(X) is no less than min_util. 

2.2 Related Work 

Extensive studies have been proposed for mining frequent patterns [1], [2], [13], [14], [21], [22], [34], 

and [40]. Among this, Apriori [1] is the first association rule mining algorithm that pioneered the use of support 

based pruning to systematically control the exponential growth of candidate itemsets. Apriori algorithm faces 

two problems dealing with large datasets; first it requires multiple scans of transaction database, incurring a 

major time cost. Second it generates too many candidate sets which take a lot of memory space. All of the 

Apriori-based mining algorithms [1],[2],[3] have time and space cost problems when handling a huge number of 

candidate sets and a large database. 

Numerous pattern growth-based association rule mining algorithms are available in the literature [14], 

[21].  FP-Growth [14] is widely recognized. It achieves a better performance than Apriori-based algorithms 

since it finds frequent itemsets without generating any candidate itemset and scans database just twice. In the 

framework of frequent itemset mining, the importance of items is not considered and also it does not satisfies 

user requirement. 

To overcome this, the topic called weighted association rule mining was brought to the attention [4], 

[26], [28], [31], [37], [38], [39]. CAI et al. First proposed in the concept of weighted items and weighted 

association rules [4]. However, since the framework of weighted association rules does not have downward 

closure property, mining performance is degrades subsequently. To address this problem, the perception of 

weighted downward closure property [28], use transaction weight and weighted support that can not only reflect 

the importance of an itemset but also maintain the downward closure property during the mining process. The 

goal is to steer the mining focus to those significant relationships involving items with significant weights rather 

than being flooded in the combinatorial explosion of insignificant relationships. Although weighted association 

rule mining considers the importance of items but still items, quantities in transactions database are not taken 
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into considerations. Thus, the problem of high utility itemset mining is elevated and many studies[3], [5], [10], 

[16], [17], [19], [24], [25], [29], [30], [32], [33]have elucidated this issues. Recent research has focused on 

efficient high utility mining using intermediate anti-monotone measures for pruning the search space. Liu et al 

[19] proposed a two phase algorithm to mine high utility itemsets. In phase I, it employs an Apriori-based level-

wise method to enumerate HTWUIs. Candidate itemsets with length k are generated from length k-1 HTWUIs 

and once in each pass scans the database to compute theirTWUs. After the above steps, the whole set of 

HTWUIs is collected in phase I. In phase II,high utility itemsets (HTWUI) are identified with an additional 

database scan. Although Two-Phase algorithm reduces search space by using TWDC property, nonetheless it 

generates too many candidates to obtain HTWUIs and requires multiple database scans. A framework for high 

utility itemset mining was proposed recently by Yao et al [16, It is a mining method for describing pruning 

strategies based on the mathematical properties of utility constraints. It developed an algorithm named Umining 

and other heuristic based algorithm Umining_H to discover high utility itemsets. However, this algorithm is 

based on the mathematical approach and it suffers from poor performance when mining dense datasets and long 

patterns much like the Apriori algorithm for frequent pattern mining.  

An isolated item discarding strategy (abbreviated as IIDS) was proposed by Li et al. [17] to reduce the 

number of candidates. During level-wise search the isolated items are pruned and reduces the number of 

candidateitemsets. However, this algorithm still scans database for several times and uses a candidate 

generation-and-test scheme to find high utility itemset which increases time complexity.  

The two novel algorithms, named utility pattern growth (UP- Growth) and UP-Growth +, and a compact tree 

structure, called a utility pattern tree (UP-Tree), for discovering high utility itemsets and maintaining important 

information related to utility patterns within databases were proposed by Tseng et al., [30], [31]. Several 

strategies are proposed for facilitating the mining processes of UP-Growth and UP-Growth+ by maintaining 

only essential information onthe UP - Tree. By these strategies, overestimated utilities of candidates can be well 

reduced by discarding utilities of the items that cannot be high utilized or are not involved in the search space. 

The proposed strategies decrease the overestimated utilities of PHUIs and also greatly reduces the number of 

candidates. Although the UP-Growth+ algorithm reduces the number of potential high utility itemsets for large 

datasets. But it takes more execution time and I/O Operation and also it contains overrated utility   itemset  due 

to  random memory allocation in the Up - tree.  

As stated above, the number of generating PHUIs is a critical issue for the performance of algorithms. 

The random memory allocation is a precarious issue for the mining speed of the up-tree. Therefore, this study 

aims at proposing several strategies for reducing memory, I/O operations, PHUIs, and overestimated utilities. 

By applying the proposed strategies, the number of generated PHUIs can be highly reduced and high utility 

itemsets can be identified more efficiently. Finally reduces memory in the UP - tree. 

 

III. PROPOSED METHODS 
The structure of the proposed methods consists of two steps: In first step it requires two database scan 

for constructing a global IMUP- Tree with the first two strategies (given in Section 3.1). In second step,PHUIs 

are generated recursively from global IMUP-Tree and local IMUP-Trees by EUP-Growth
+
 with the third and 

fourth strategies (given in Section 3.2). 

3.1 The Proposed Data Structure: IMUP-Tree 

To alleviate the mining speed, merge the UP-tree [30], [31] with one of the hashing technique for 

reducing the memory consumption. The improved UP-tree named as an IMUP - Tree is used to store the 

information about transactions and high utility itemsetsin the appropriate memory and maintained as tree 

structure. Two strategies with RH algorithm are applied for reducing the memory and to store the overestimated 

utility of each item during the construction of a global IMUP-Tree.The two strategies and the construction of 

global IMUP-tree with the two strategies are briefly discussed in the following sections. 

3.1.1 DGUM: Discarding Global Unpromising Items and Memory Allocation during Constructing a 

Global IMUP-Tree 

The construction of a global IMUP-Tree is accomplished with two scans of the original database. In the 

first scan, Transaction Utility of each transaction is computed. At the same time, Transaction Weighted Utility 

of each single item is also accrued. By TWDC property, an unpromising item is defined as an item and its 

supersets are unpromising to be high utility itemsets if its TWU is less than the minimum utility threshold. 

During the second scan of the database, transactions are inserted into a global IMUP-Tree. When a transaction is 

retrieved, the unpromising items are removed from the transaction and their utilities should also be eliminated 

from the transaction‟s TU. This concept forms our first strategy. 

Strategy 1. DGUM: Discarding global unpromising items and their actual utilities from transactions and 

transaction utilities of the database.  
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According to DGUM,while utilities of itemsets are being estimated, utilities of unpromising items can be 

pragmatic as irrelevant and be discarded. From this,we can realize that unpromising items play no role in high 

utility itemsets. 

The new TU after pruning unpromising items is called reorganized transaction utility (abbreviated as 

RTU). The remaining promising items in the transaction are sorted in the descending order of TWU. Allocate 

memory for each promising items in the TWU using RH algorithm are described in the section 3.1.2. Moreover, 

before constructing an IMUP-Tree, DGUM can be performed repeatedly till all the promising items are 

allocated to the appropriate memory space. Transactions are inserted into allocated memory of the IMUP - tree 

which are generated by RH algorithm.  

3.1.2Random Hashing  

A random hashing algorithm which is a hash-based technique mines the potential high utility itemsets 

without any collision into the memory. It is a very efficient method in searching for the exact data item set in a 

very short time. The following are the steps which have been performed using RH algorithm. 

The process of RH algorithm is to place each and every item in the memory location for the purpose of ease of 

usability. The basic things required for hashing process is hash functions. The hash function provides a way of 

assigning numbers to the input item such that the item can then be stored in the memory corresponding to the 

assigned number. Random hashing efficiently allocates the memory for the itemsets into the IMUP-tree. The 

potential high utility itemsets are mined exactly by means of penetrating the IMUP-tree. 

 

Table 3 Pseudo Code for Random Algorithm 

1. Generate descending order of TWU for the promising 

items. 

2. Allocate the memory space for tree based on number 

of items in the database. 

       n = (Number of items) + x  

      Where ‘x’ may be any integer and 

The memory size (n) must be nearest   

Prime number to the total number of itemsin the database.       

3. Allocate the memory space for the 1
st 

item based on the hash 

function 

      h (k) = [(( (a . k) + b ) mod s ) mod n ] 

     Where, s is the total number of transactions in the table. 

  (a ,b) is any random number between the number of Items in 

transaction.   

k is the items in the TWU 

4. The above step is repeated until the memoryis allocated for 

all the items in TWU. 

5.If collision occurs, change the random number inthe hash 

function to allocate the memory forcollided item. 

 

Advantage:  

 The followings are the advantages of random hashing, 

 The time and space complexity of the mining process are gradually reduced. 

 It increases the mining process speed. 

 

3.1.3 Strategy DGNM: Decreasing Global Node Utilities and Memory Allocation during Constructing a 

Global UP-Tree 
  It is shown in [3] that the tree-based framework for high utility itemset mining applies the divide-and-

conquer technique in mining methods. Thus, the search space can be alienated into smaller subspaces. From this 

viewpoint, our second proposed strategy for decreasing overestimated utilities is to remove the utilities of 

descendant nodes from their node utilities in a global IMUP - Tree. The process is performed during the 

construction of the global IMUP-Tree. By applying strategy DGNM, the utilities of the nodes are inserted into 

the appropriate memory which reduces memory and also reduces utilities of the nodes that are closer to the root 

of a global UP-Tree. DGNM is especially suitable for the databases containing lots of long transactions. Inthe 

following sections, the process of constructing a global UP-Tree with strategies DGUM and DGNM are 

described. 

3.1.4 Constructing a Global UP-Tree by Applying DGUM and DGNM 

Recall that the construction of a global IMUP-Tree is performed with two database scans. In the first 

scan, Transaction Utility is computed; at the same time, each 1- item‟s TWU is also accrued. 
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Thus, we can get promising items and unpromising items.DGUM is applied to promising items by 

pruning the unpromising items and sorting the remaining promising items in a fixed order. The order can be 

used such as the lexicographic, support, or TWU. Each transaction after the above reorganization is called a 

reorganized transaction. The following paragraphs, we use the TWU descending order to explain the whole 

process since it is mentioned that the performance of this order is the best in previous studies [3]. The remaining 

promising items in the transaction are sorted in the descending order of TWU. Allocate memory for each 

promising items in the TWU using RH algorithm shown in the table 3. A function Insert Reorganized 

Transaction is called to apply DGNM during constructing a global IMUP-Tree. When a reorganized transaction  

𝑡𝑗  ′ = {𝑖1 , 𝑖2, 𝑖3 … 𝑖𝑛} (𝑖𝑘  ∈  𝐼, 1 ≤ 𝐾 ≤ 𝑛 ) is inserted into a global IMUP-Tree, Insert_ Reorganized_ 

Transaction (N,𝑖𝑥  )   Is called, where N is a node in an IMUP - Tree and 𝑖𝑥  is an item in𝑡𝑗  ′(𝑖𝑥  ∈  𝑡𝑗  ′, 1 ≤ 𝑥 ≤

𝑛 ). First, (𝑁𝑅 ,𝑖1) is taken as input, where 𝑁𝑅  is the root node of IMUP-Tree. 

 

Table 4 The subroutine of Insert Reorganized Transaction 

Subroutine: Insert _ Reorganized _ Transaction (N,𝑖𝑥  

)   

Line 1: If N has a child 𝑁𝑖𝑥  such that 𝑁𝑖𝑥 .item =𝑖𝑥 , 

increment 𝑁𝑖𝑥 .count by 1. Otherwise, create a new 

child node 𝑁𝑖𝑥
 with 𝑁𝑖𝑥

.item = 𝑖𝑥𝑁𝑖𝑥
.count = 1, 

𝑁𝑖𝑥 .parent = N 𝑁𝑖𝑥 .nu = 0. 

Line 2: Increase 𝑁𝑖𝑥 .nu by (RTU (𝑡𝑗  ‘) - 

∑ 𝑢(𝑛
𝑝=𝑥+1 𝑖𝑝 ,𝑡𝑗  ‘)), where 𝑖𝑝 ∈ 𝑡𝑗 ’. 

Line 3: If x ≠ n, call Insert_ Reorganized _ 

Transaction (𝑁𝑖𝑥 ,𝑖𝑥+1) 

 

The node for𝑖1 ,𝑁𝑖1
 is found or created under 𝑁𝑅and its support is updated in Line 1.Then DGNM is 

applied in Line 2 by discarding the utilities of descendant nodes under𝑁𝑖1
 , i.e., 𝑁𝑖2

to𝑁𝑖𝑛 . Finally, in Line 3, 

(𝑁𝑖1
,𝑖2 ) is taken as input recursively. 

 

3.2 ENHANCED UP-GROWTH+ ALGORITHM (EUP-GROWTH+) 

In Enhanced UP-Growth+, node utility count in each path are used to reduce the overestimated utilities 

that are closer to their actual utilities values of the unpromising items and descendant nodes. 

A minimal node utility for each node can be acquired during the construction of a global IMUP-Tree. First, add 

an element, namely N.mnu, into each node of    IMUP-Tree. N. menu is the minimal node utility of N. When N 

is traced, N.mnu keeps track of the minimal value of N.name‟s utility in different transactions. If N.menuis 

larger than you (N.name, Tcurrent), N.mnu is set to u (N.name, Tcurrent). The global IMUP-Tree with N.mnu in 

each node is shown in the Fig 2, N.mnu is the last number in each node. 

Node utility count for each path can be acquired during the construction of a local IMUP-Tree. First, 

the node links in IMUP-Tree corresponding to the item im, in header table, are traced. Here item imis a bottom 

entry in the header table. Found nodes are traced to the root of the IMUP-Tree to get paths related to im. All 

retrieved t, their minimum node utility and support count are collected into im„s conditional pattern base. Then, 

Path.node utility count is acquired into im„s conditional pattern base as shown in the Eq (3.1),    

p.nuc = p.mnu – p.count(3.1) 

Where, 

p.nuc is the node utility count  of p in {im }-CPB.   

p.mnu is the minimum node utility of p in {im}-CPB. 

p.count is the support count of p in {im }-CPB.   

The two strategies are introduced to enhance the UP-Growth
+
 named DPU and DPN. When a local 

IMUP-Tree is being constructed, minimal node utilities are retrievedfrom the global IMUP-Tree. In the mining 

process, when a path is retrieved, node utility count of the path is acquired.  

3.2.1 Discarding local unpromising items and their estimated Node Utility Count from the path and path 

utilities of conditional pattern base  

Discarding local unpromising items and their estimated Node Utility Count from the paths and path 

utilities of conditional pattern bases as shown in Eq (3.2) 

𝒑𝒖 𝒑 𝒊𝒎 − 𝑪𝑷𝑩 = 𝒑.  𝒊𝒎 . 𝒏𝒖 − ∑ 𝒎𝒏𝒖 𝒊 + 𝒑. 𝒏𝒖𝒄∀𝒊⊇𝑼𝑰 𝒊𝒎 −𝑪𝑷𝑩 ^𝒊⊆𝒑 (3.2) 

3.2.2 Decreasing local Node path utilities for the nodes of local UP-Tree by estimating utilities of 

descendant Nodes 
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Decreasing local Node path utilities for the nodes of the local IMUP - Tree by estimating utilities of 

descendant Nodes as shown in the Eq (4.3) 

          𝑵𝒊𝒌
 . 𝒏𝒖𝒏𝒆𝒘 = 𝑵𝒊𝒌

 . 𝒏𝒖𝒐𝒍𝒅 +  𝒑𝒖 𝒑,  𝒊𝒎 − 𝑪𝑷𝑩 − ∑ 𝒎𝒏𝒖(𝒊𝒋
𝒎′

𝒋=𝒌+𝟏 ) + 𝒑. 𝒏𝒖𝒄(3.3) 

DPU is applied to each path by pruning the unpromising items. Remaining promising items of each path are 

sorted in a descending order which is called as reorganized paths. The DPN is applied during 

insert_reorganized_transactionmnu into a conditional IMUP-Tree. Assume a reorganized path 𝑃𝑗  = 

<𝑁𝑖1
𝑁𝑖2

𝑁𝑖3
… . 𝑁𝑖𝑚 ′

>, where 𝑁𝑖𝑘
is the nodes in         IMUP-Tree and 1 ≤ k ≤ m‟.  

 

Table 6 The Subroutine Insert_ Reorganized _Path mnu 

 

 

When 𝑁𝑖1
.item,𝑖1 is inserted into the conditional IMUP-Tree, the function Insert_ Reorganized _ Path 

mnu(𝑁𝑅′,𝑖1), as shown in Table 6, is called, where 𝑁𝑅
′ is root node of the conditional UP-Tree. The node for𝑖1,𝑁𝑖1

 

is found or created under 𝑁𝑅
′  and its support is updated in Line 1 the element, minimal node utility, is added into 

𝑁𝑖𝑥 and set 𝑁𝑖𝑥 .mnu = ∞ initially. Then DPN is applied in Line 2 by decreasing estimated utilities of descendant 

nodes under𝑁𝑖1
, i.e., 𝑁𝑖2

to𝑁𝑖𝑚 ′
. Then, 𝑁𝑖𝑥 .mnu is checked by inserting the procedure “If 𝑁𝑖𝑥 .mnu>mnu (𝑖𝑥 , 𝑝𝑗 ), 

set𝑁𝑖𝑥 .mnu to mnu (𝑖𝑥 , 𝑝𝑗 )" . Finally in Line 4, (𝑁𝑖1
,𝑖2) is taken as input recursively. 

The complete set of PHUIs is generated by recursively calling the procedure named UP-Growth. Initially, EUP-

Growth
+
 (𝑇𝑥 , 𝐻𝑥 , 𝑋)is called, where 𝑇𝑥 is the global IMUP- Tree and 𝐻𝑥 is the global header table. The procedure 

of EUP-Growth
+
 is shown in Fig. 5 

 

Table 7 The subroutine of EUP-Growth
+
 

Subroutine: Enhanced UP-Growth
+
 (𝑇𝑥 , 𝐻𝑥 , 𝑋) 

Input: A IMUP-tree𝑇𝑥 , a header table 𝐻𝑥 , an itemset X , and a minimum utility threshold  min_util, 

Output: All PHUIs in 𝑇𝑥  

1)For each entry 𝑖𝑘  in 𝐻𝑥  do 

2)Trace each node related to 𝑖𝑘  via 𝑖𝑘 .hlink and accumulate 𝑖𝑘 .nu to 𝑛𝑢𝑠𝑢𝑚 (𝑖𝑘 ); /* 𝑛𝑢𝑠𝑢𝑚 (𝑖𝑘 ): the 

sum of node utilities of 𝑖𝑘*/ 

3)If 𝑛𝑢𝑠𝑢𝑚 (𝑖𝑘 ) ≥ min_util, do 

4)Generate a PHUI Y = X ∪ 𝑖𝑘 ; 

5)Set pu(𝑖𝑘 ) as estimated utility Y; 

6)Construct Y-CPB; 

7)Put local promising item in Y-CPB into 𝐻𝑌  

8) Apply DPU to reduce path utilities of the paths; 

9)Apply Insert_ Reorganized_ Path mnu to insert into 𝑇𝑌  with DPN; 

10)If 𝑇𝑌  ≠ null then call Enhanced UP-Growth
+
 (𝑇𝑥 , 𝐻𝑥 , 𝑋) 

11)End if 

12)End for 

 

By comparing the existing system, it is clear that the number of Potential High Utility Itemsets, as well 

as the overestimated utilities of itemsets, are further reduced by EUP-Growth
+
. 

 

IV. EXPERIMENTAL EVALUATIONS 
The performance of the proposed algorithms is evaluated in this section. The experiments were 

performed on a 2.80 GHz Intel Pentium D Processor with 3.5 GB memory. The operating system is Microsoft 

Windows 7. The algorithm is implemented in Java language.To evaluate the performance of the proposed 

Subroutine:Insert _ Reorganized _ Path mnu(N,𝑖𝑥  )  

Line 1: If N has a child 𝑁𝑖𝑥
 such that 𝑁𝑖𝑥

.item 

=𝑖𝑥 ,initially 𝑁𝑖𝑥 .mnu = ∞  increment 𝑁𝑖𝑥 .count by 𝑃𝑗  . 

count. Otherwise, create a new child                

 𝑛𝑜𝑑𝑒 𝑁𝑖𝑥  𝑤𝑖𝑡ℎ 𝑁𝑖𝑥 .item = 𝑖𝑥𝑁𝑖𝑥 .count = 𝑃𝑗  . 

count,𝑁𝑖𝑥 .parent = N 𝑁𝑖𝑥 .nu = 0. 

Line 2: Increase 𝑁𝑖𝑥
.nu by Eq(3.3) 

Line 3: If  𝑁𝑖𝑥  . mnu > mnu (𝑖𝑥  , 𝑃𝑗  ) set 𝑁𝑖𝑥 .mnu to 

mnu (𝑖𝑥  , 𝑃𝑗  ) " 

Line 4: If there exists a node  𝑁𝑖𝑥
 in 𝑃𝑗  where x + 

1<m’,call Insert_ Reorganized _ Pathmnu (𝑁𝑖𝑥 ,𝑖𝑥+1) 
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technique, both real and synthetic data sets are used in the experiments. The Synthetic Transactional data set is 

generated from the data generated based on fast algorithm for mining association rules [1]. Parameter 

descriptions and default values of synthetic data sets are shown in Table 9. Real world data sets Retail, a 

Weblog and Chess are obtained from the FIMI Repository [FIMI]. These data sets do not provide profit values 

or the quantity of each item for each transaction. 

 

Table 9 Parameter setting of Synthetic Data Sets 

Parameter Descriptions Default 

|D| Total number of transactions 100K 

T: Average Transactional Length 10 

|I|: Number of distinct items 1000 

F: Average size of maximal potential 

frequent itemsets 

6 

Q: Maximum number of purchase 

items in transactions 

10 

 

As for the performance evaluation of the previous utility based pattern mining[19],[16], unit profits 

from items in utility tables are generated between 1 and 1,000 by using a log-normal distribution and quantities 

of items are generated randomly between 1 and 10.  

 

Table 10 Characteristics of real data sets 

Dataset |D| T |I| Type 

Retail 88162 10.3 16470 Sparse 

Chess 3196 37.0 75 Dense 

Web 

Log 

1.692.08

2 

71.45 5.267.656 Sparse 

Medical 16487 32 497 Sparse 

 

Finally, the results are evaluated by using a real life dataset (medical) with real utility values is 

collected from medical shoppers that is located in Pollachi. The performance of proposed algorithm was 

compared with the existing algorithms UP-Growth [30] and UP-growth+ [31]. For convenience, PHUIs are 

called candidates in our experiments. The characteristics of the above data sets are shown in the Table 10. 

 

4.1 COMPARATIVE ANALYSIS OF PROPOSED ALGORITHM ON DIFFERENT DATA SETS   

In this part, the performance comparison on three real data sets are shown: dense data set Chess and 

sparse data sets Retail and Weblog. First, we show the results on real dense data set Chess in Fig. 4. 

 
Figure 4 Candidate’s comparison on the chess dataset 
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The chess dataset is an extremely dense data set. Dense data sets have many long frequent as well as 

high utilization patterns. Because the probability of an item‟s occurrence is very high in every transaction, for 

comparatively higher thresholds, dense datasets have too many candidate patterns. Here, first comparing the 

number of candidates. 

From Fig. 4, the performance of the proposed methods substantially outperforms that of previous 

methods. The minimum utility threshold range of 900% to 1300% is used here. It is remarkable that since chess 

is a huge dense dataset, a large number of candidate patterns occur at a comparatively higher threshold (above 

50%). The number of candidates increases rapidly below the utility threshold of 1000%. For utility thresholds of 

900% and 1000%, the numbers of candidate patterns are too large for the existing algorithms. The runtime of 

UPT&UPG is the worst, followed by UPT&UPG, UPT&UPG
+
 and IMUPT & EUPG

+ 
is the best. The main 

reason is the performance of UPT&UPG and UPT&UPG
+
 is decided by the number of generating candidates.  

 
Figure 5 Time Comparision on Chess Data Set 

 

Figure 5 it clearly shows the runtime comparison on the chess dataset. The runtime of the methods is 

just proportional to their number of candidates, that is, more the candidates produced by the method leads to the 

greater execution time. Due to several database scans with a large candidate set, the total time needed for the 

algorithm is also very large when compared to sparse data sets.   

 

4.1.2 Performance analysis for Retail Data Set 

            The dataset retail is provided by Tom Brijs (FIMI), and contains the retail market basket data from an 

anonymous Belgian retail store.It is an extreme sparse dataset. Sparse data sets normally have too many distinct 

items. Although in the average case their transaction length is small, they normally have many 

transactions.From Fig 5.3, it evidently shows the comparison of the candidate‟s on the Retail dataset. The 

minimum utility threshold range of 400 to 800 is used  

 
Figure 6 Candidate’s comparison on the RetailDataset 

 

here. It is clear that the performance of UPT&UPG is the worst since it generates the most candidates.  
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Table 7Time Comparison on the Retail Dataset 

 

From Fig 7, it clearly shows the running time  comparison on using the Retail Data Set. It's clear that 

the runtime of UPT&UPG is the worst, followed by UPT&UPG, UPT&UPG
+
, and IMUPT&EUPG

+
 is the best. 

Besides, although the number of candidates of UPT&FPG, UPT&UPG, and UPT&UPG+ are almost the same, 

the execution time of UPT&UPG is the worst among the three methods since UP-Growth+ and EUP-Growth 
+ 

efficiently prune the search space of local IMUP-Trees. 

4.2 PERFORMANCE COMPARISON UNDER DIFFERENT PARAMETERS  

The performance under varied average transaction length (T) is shown in Fig 8. 

 
Figure 8 Time Comparison on the Synthetic Dataset 

 

The experiment is performed on synthetic data sets Tx.F6.|I|1,000.|D|100k and min_util is set to 1 

percent. From Fig 8, it's evident that the  runtime of all algorithms increases with increasing T because when T 

is larger, transactions and databases become longer and larger. Also, the runtime of the methods is proportional 

to the number of candidates. The difference of the performance between the methods appears when T is larger 

than 25. The best method is UPT&UPG+ and the worst one is UPT&UPG.  

 
Figure 9 Candidate’s comparison on the Synthetic Dataset 

 

From Fig.9, it clearly shows the number of candidates generated by UPT&UPG+ is the smallest. This 

shows that  EUP-Growth+ can effectively prune more candidates by decreasing overestimated utilities when 

transactions are longer. In other words, UP-Growth+ is more efficient on the data sets with longer transactions. 
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4.3 SCALABILITY OF THE PROPOSED METHODS 

In this section, the scalability of the proposed method is performed on synthetic data sets 

T10.F6.|I|1,000.|D|xk. Results of run time, number of candidates and the number of high utility itemsets are 

shown in Fig.10 and Table 10 respectively.  

 
Fig. 10 Experimental results under varied database size. 

 

Fig.10 shows that there are significant differences in runtime on different database size. Total runtime 

of IMUPT&EUPG+ is the best, followed by UPT&UPG+ and UPT&UPG being the worst. This is because 

when the size of the database increases, runtime for identifying high utility itemsets also increases. Here, the 

importance of runtime is emphasized again. From Table 10, it is clear that the number of PHUIs generated by 

IMUPT&EUPG+ outperforms other methods in the databases with varied database sizes. Overall, the 

performance of IMUPT&EUPG+ outperforms the other compared algorithms with increasing size of databases 

since it generates the least PHUIs. 

 

TABLE 10:  Number of Candidates and High Utility Item sets under Varied Database Sizes 

Database  UPT&UPG UPT&UPG
+
 IMUPT&EUPG

+
 

200k 51,534 32,261 18,175 

400k 56,844 39,450 18,976 

600k 52,845 34,164 17,324 

800k 52,491 35,645 18,188 

1000k 50,073 32,789 17,144 

 

4.4 MEMORY USAGE OF THE PROPOSED METHODS 

In this section, memory consumption of the proposed methods (in GB) is shown in the  Tables 11 and 

12 under varied min_util on Retail data set and varied database sizes on synthetic data sets 

T10.F6.|I|1,000.|D|xk, respectively.  

In Table 11, it is clear that the memory usage of all methods increases with decreasing min_util since 

less min_util makes UP-Trees and IMUP- Trees larger. Generally, IMUP&EUPG
+
 uses the least memory in 

IMUP-tree to store the PHUIs. This is because the strategies effectively decrease the number of PHUIs in local 

IMUP-Trees. 

Table 11 Memory in (GB) Usage under Varied min_util on Retail Dataset 

 Memory (GB) 

Min_util UPT&UPG UPT&UPG
+
 IMUPT&EUPG

+
 

0.1% 1.017 0.478 0.299 

0.08% 1.033 0.923 0.916 

0.06% 1.132 1.069 1.021 
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0.04% 1.294 1.188 1.125 

0.02% 1.364 1.288 1.174 

 

In the Table 12, it is clear that the memory usage increases with increasing database size. Generally, 

IMUP&EUPG
+
 uses the least memory among the three methods.This is because the strategies effectively 

decrease the number of PHUIs in local IMUP-Trees. On the other hand, the fewer PHUIs are generated by 

IMUPT&EUPG+, it consumes less memory.   

 

Table 12 Memory in (GB) Usage under Varied Database SizesT10.F6.|I|1000.|D|xK (min_util = 0.1 

Percent) 

 Memory (GB) 

Database UPT&UPG UPT&UPG
+
 IMUPT&EUPG

+
 

200K 1.221 1.028 0.979 

400K 1.350 1.290 1.185 

600K 1.490 1.354 1.252 

800K 1.555 1.422 1.326  

1000K 1.699 1.548 1.437 

 

5.7 Summary of the Experimental Results 

Experimental results in this section show that the proposed methods outperform the state-of-the-art 

algorithms almost in all cases on both real and synthetic data sets. The reasons are described as follows, 

First, memory used by global IMUP-Tree is much less the memory used by UP-Tree since DGUM and DGNM 

effectively decrease memory consumption of utilities by RH-algorithm during the construction of a global 

IMUP-Tree.   

Second, EUP-Growth+ generate much fewer candidates than UP-growth and UP-Growth
+
 since DPU, 

and DPN are applied during the construction of local IMUP- Trees. By the proposed algorithm with the 

strategies, generation of candidates can be more efficient since lots of useless candidates are pruned. 

Third, generally, EUP-Growth+ utilizes minimal node utilities and a path node utility count for further 

decreasing overestimated utilities of itemsets. They are more effective especially when there are many longer 

transactions in databases. By the reasons mentioned above, the proposed algorithm EUP-Growth
+
 achieve better 

performance than UP- Growth and UP-Growth
+
 algorithms. 

 

V. CONCLUSIONS 
In this thesis, an efficient algorithm for mining high utility itemset called EUP-growth

+
 is proposed for 

mining high utility itemsets with a set of effective strategies for pruning potential high utility itemsets. A data 

structure namedIMUP-Tree is proposed for maintaining the information of high utility itemsets into the 

appropriate memory using hashing techniques for reducing memory and time. The EUP-Growth 
+
 algorithm 

efficiently generatesPHUIs from IMUP-Tree with only two database scans. By developing four strategies, the 

mining performance is enhanced significantly since both the search space and the number of candidates are 

effectively reduced. The proposed algorithm builds the IMUP - tree to reduce the memory consumption while 

storing the utility itemsets. An IMUP-tree is built only for pruned database that fit into main memory easily. 

According to recent observations, the performances of the algorithms strongly depends on the minimum utility 

levels and the features of the data sets (the nature and the size of the data sets). Therefore it is employed in the 

proposed algorithm to guarantee the time and the memory are further reduced in the case of sparse and dense 

data sets. In the experiments, both real and synthetic data sets were used for performance evaluation. 

Experimental results reveal that the strategies considerably improved performance by reducing the search space, 

time and the number of candidates. It is evident from experiments that EUPG
+   

algorithm outperforms 

substantially than UPG+ and UPG algorithms. 
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