
International Journal of Engineering Research and Development

e-ISSN: 2278-067X, p-ISSN: 2278-800X, www.ijerd.com

Volume 9, Issue 5 (December 2013), PP. 38-50

38

EUP-Growth
+
 - Efficient Algorithm for Mining High

Utility Itemset

V.JayasudhaV.Umarani MPhil, (Phd)
Research ScholarAssistant Professor

Department of Computer ScienceDepartment of Computer Science

Sri Ramakrishna College of Arts and Science Sri Ramakrishna College of Arts and Science

For Women Coimbatore, Indiafor Women Coimbatore, India

Abstract:- In recent years, Utility mining becomes an emerging topicin the field of data mining. From a

transaction database the discovery of itemsets with high utility like profits are referred as a high utility itemsets

mining. In this paper, a new algorithm is proposed,named Enhanced Utility Pattern Growth
+
 (EUP-Growth+),

for reducing a large number of candidate itemsets for high utility itemsetswith a set of effective strategies. These

strategies are used for pruning candidate itemsets effectively. By reducing a hefty number of candidate itemsets

the mining performance upgrades in terms of execution time and space requirement. The selective information

ofpotential high utility itemsetsare stored in the appropriate memory using a hashing technique and maintained

in a tree-based data structure named Improved Utility Pattern Tree (IMUP-Tree). The performance of EUP-

Growth+ is compared with the State-of-the-art algorithms on many types of both real and synthetic data sets.

Experimental and comparative results reveal that the proposed algorithms, EUP- Growth+, not only reduce the

number of PHUIs effectivelybut also outperform other algorithms.

Index Terms:- Candidate pruning, utility mining, frequent itemset, potential high utility itemset,

I. INTRODUCTION
Data mining is the process of enlightening non-trivial, formerly unknown and potentially useful

information from large databases. Association Rule Mining is one of the popular and well research technique in

data mining for finding interesting pattern between variables in a large database. The most well-known

example for association rule mining is Market basket analysis. In ARM, the most important pattern mining is

frequent pattern mining which is a fundamental research topic that has been applied to different kinds of

databases, such as transnationaldatabases [1], [14], [21], streaming databases [18], [27], and time series

databases [9], [12], and various application domains, such as Bioinformatics [8], [11], [20], Web click-stream

analysis [7], [35], and mobile environments [15], [36]. The frequent itemsets identified by ARM reflect only the

frequency of the existence or nonexistence of an item. Hence, the major drawbacks of frequent pattern mining

are; first the impact of any other factor are not consider in frequent pattern mining. Next the non-frequent

itemsets may contribute a large portion of the profit. Finallythe relative importance of each item is not

considered in frequent pattern mining. Recently, to address the limitation of ARM, many types of association

rule mining were defined as weightedfrequent pattern mining and Utility Mining.

In weighted frequent pattern mining, weights of items such as price and profits are considered in the transaction

database.With this perception, even if some items come out infrequently, they might still be found if they have

higher weights. However, in this weighted pattern mining, the quantities of items are not considered yet.

Therefore, it cannot satisfy the user requirements who are interested in discovering the itemsets with high sales

profits.

To overcome this, Utility mining becomes an emerging topicin the field of data mining. In a transaction

database the discovery of itemsets with high utility like profits are referred as a high utility itemsets mining. In a

transaction database, the utility of an item consists of two aspects: 1) External utility and 2) Internal utility.

External utility provides importance‟s to distinct items. Internal utility provides importance‟sto item in

transactions. The utility of an itemset is defined as the product of external utility and internal utility. The utility

of an itemset which is greater than a user-specified minimum utility threshold is called a high utility itemset;

otherwise, it is called a low-utility itemset.

However, mining high utility itemsets from databases is not an easy task since downward closure

property [1] in frequent itemset mining does not hold. In other words, pruning the search space for high utility

itemset mining is difficult because a superset of a low-utility itemset may be a high utility itemset. A simple

method to address this problem is to compute all itemsets from databases by the principle of fatigue. Obviously,

this method requires large search space, particularly when databases restrain lots of long transactions or a lower

EUP-Growth
+
 - Efficient Algorithm for Mining High Utility Itemset

39

minimum utility threshold is set. Hence, In order to reduce the search space and efficiently capture all high

utility itemsets with no mess is a crucial challenge in utility mining.

In existing studies, the performance of utility mining are improved by applying the overestimated

methods [3], [10], [16], [17], [19], [24], [29], [30]. In these methods, potential high utility itemsets (PHUIs) are

identified first, and then one more additional database scan is performed for identifying their utilities. However,

these methods generate a hefty number of potential high utility itemsets and their mining performance is

degraded subsequently. This situation may become worse when databases contain many long transactions or low

thresholds are set. The hefty number of PHUIs forms a challenging problem for the mining performance since

the algorithm generates a large number of PHUIs and also it requires high processing time it consumes.

In this paper, the existing UP-Growth
+
 algorithm is enhanced to generate high utility itemsets efficiently for

large datasets and reduce execution time when compared with existing algorithms. In the experimental section,

experiments are conducted on our enhanced algorithm and existing algorithm with a variety of synthetic and

real-time datasets.

The rest of this paper is organized as follows: In Section 2, the background and related work for high

utility itemset mining are discussed. In Section 3, the proposed data structure and algorithms are described in

details. In section 4, the experimental results are shown and conclusions are given in Section 5.

II. BACKGROUNDS
In this section, we first define the preliminary work of utility mining, and then introduce related work

in utility mining.

2.1 Preliminary Work

Given a finite set of items I= {𝑖1,𝑖2, … 𝑖𝑚 }, each item 𝑖𝑝 (1 ≤ 𝑝 ≤ 𝑚) has a unit profit pr (𝑖𝑝). An

itemset X is a set of k distinct items {𝑖1,𝑖2 , … 𝑖𝑚 }, where𝑖𝑝 ∈ 𝐼, 1 ≤ 𝑝 ≤ 𝑚. K is the length of X. An itemset with

length k is called a k- itemset. A transaction database D = {𝑇1,𝑇2, …𝑇𝑛 }Contains a set of transactions, and each

transaction 𝑇𝑑 (1 ≤ 𝑑 ≤ 𝑛) has a unique identifier d, called TID. Each item 𝑖𝑝 in transaction 𝑇𝑑 is associated with

a quantity q (𝑖𝑝 , 𝑇𝑑), that is, the purchased quantity of 𝑖𝑝 in 𝑇𝑑 .

Definition: Utility of an item 𝑖𝑝 in a transaction 𝑇𝑑 is denoted as u (𝑖𝑝 ,𝑇𝑑) and defined as pr (𝑖𝑝) × q (𝑖𝑝 , 𝑇𝑑).

Definition: Utility of an itemset X in 𝑇𝑑 is denoted as u (𝑋, 𝑇𝑑) and defined as ∑ 𝑖𝑝∈ 𝑋∧𝑋⊆ 𝑇𝑑
u (𝑖𝑝 ,𝑇𝑑).

Definition: Utility of an itemset X in D is denoted as u (𝑋) and defined ∑𝑋⊆ 𝑇𝑑∧ 𝑇𝑑∈𝐷 u (𝑋, 𝑇𝑑)

Definition: An itemset is called a high utility itemset if its utility is no less than a user-specified minimum

utility threshold which is denoted as min_util. Definition: Transaction utility of a transaction 𝑇𝑑 is denoted as

TU (𝑇𝑑) and defined as u (𝑇𝑑 ,𝑇𝑑).

Definition: Transaction-weighted utility of an itemset X is the sum of the transaction utilities of all the

transactions containing X, which is denoted as TWU(X) and defined as ∑𝑋⊆ 𝑇𝑑∧ 𝑇𝑑∈𝐷 TU(𝑇𝑑).

Definition: An itemset X is called a high transaction- weighted utility itemset (abbreviated as HTWUI) if

TWU(X) is no less than min_util.

2.2 Related Work

Extensive studies have been proposed for mining frequent patterns [1], [2], [13], [14], [21], [22], [34],

and [40]. Among this, Apriori [1] is the first association rule mining algorithm that pioneered the use of support

based pruning to systematically control the exponential growth of candidate itemsets. Apriori algorithm faces

two problems dealing with large datasets; first it requires multiple scans of transaction database, incurring a

major time cost. Second it generates too many candidate sets which take a lot of memory space. All of the

Apriori-based mining algorithms [1],[2],[3] have time and space cost problems when handling a huge number of

candidate sets and a large database.

Numerous pattern growth-based association rule mining algorithms are available in the literature [14],

[21]. FP-Growth [14] is widely recognized. It achieves a better performance than Apriori-based algorithms

since it finds frequent itemsets without generating any candidate itemset and scans database just twice. In the

framework of frequent itemset mining, the importance of items is not considered and also it does not satisfies

user requirement.

To overcome this, the topic called weighted association rule mining was brought to the attention [4],

[26], [28], [31], [37], [38], [39]. CAI et al. First proposed in the concept of weighted items and weighted

association rules [4]. However, since the framework of weighted association rules does not have downward

closure property, mining performance is degrades subsequently. To address this problem, the perception of

weighted downward closure property [28], use transaction weight and weighted support that can not only reflect

the importance of an itemset but also maintain the downward closure property during the mining process. The

goal is to steer the mining focus to those significant relationships involving items with significant weights rather

than being flooded in the combinatorial explosion of insignificant relationships. Although weighted association

rule mining considers the importance of items but still items, quantities in transactions database are not taken

EUP-Growth
+
 - Efficient Algorithm for Mining High Utility Itemset

40

into considerations. Thus, the problem of high utility itemset mining is elevated and many studies[3], [5], [10],

[16], [17], [19], [24], [25], [29], [30], [32], [33]have elucidated this issues. Recent research has focused on

efficient high utility mining using intermediate anti-monotone measures for pruning the search space. Liu et al

[19] proposed a two phase algorithm to mine high utility itemsets. In phase I, it employs an Apriori-based level-

wise method to enumerate HTWUIs. Candidate itemsets with length k are generated from length k-1 HTWUIs

and once in each pass scans the database to compute theirTWUs. After the above steps, the whole set of

HTWUIs is collected in phase I. In phase II,high utility itemsets (HTWUI) are identified with an additional

database scan. Although Two-Phase algorithm reduces search space by using TWDC property, nonetheless it

generates too many candidates to obtain HTWUIs and requires multiple database scans. A framework for high

utility itemset mining was proposed recently by Yao et al [16, It is a mining method for describing pruning

strategies based on the mathematical properties of utility constraints. It developed an algorithm named Umining

and other heuristic based algorithm Umining_H to discover high utility itemsets. However, this algorithm is

based on the mathematical approach and it suffers from poor performance when mining dense datasets and long

patterns much like the Apriori algorithm for frequent pattern mining.

An isolated item discarding strategy (abbreviated as IIDS) was proposed by Li et al. [17] to reduce the

number of candidates. During level-wise search the isolated items are pruned and reduces the number of

candidateitemsets. However, this algorithm still scans database for several times and uses a candidate

generation-and-test scheme to find high utility itemset which increases time complexity.

The two novel algorithms, named utility pattern growth (UP- Growth) and UP-Growth +, and a compact tree

structure, called a utility pattern tree (UP-Tree), for discovering high utility itemsets and maintaining important

information related to utility patterns within databases were proposed by Tseng et al., [30], [31]. Several

strategies are proposed for facilitating the mining processes of UP-Growth and UP-Growth+ by maintaining

only essential information onthe UP - Tree. By these strategies, overestimated utilities of candidates can be well

reduced by discarding utilities of the items that cannot be high utilized or are not involved in the search space.

The proposed strategies decrease the overestimated utilities of PHUIs and also greatly reduces the number of

candidates. Although the UP-Growth+ algorithm reduces the number of potential high utility itemsets for large

datasets. But it takes more execution time and I/O Operation and also it contains overrated utility itemset due

to random memory allocation in the Up - tree.

As stated above, the number of generating PHUIs is a critical issue for the performance of algorithms.

The random memory allocation is a precarious issue for the mining speed of the up-tree. Therefore, this study

aims at proposing several strategies for reducing memory, I/O operations, PHUIs, and overestimated utilities.

By applying the proposed strategies, the number of generated PHUIs can be highly reduced and high utility

itemsets can be identified more efficiently. Finally reduces memory in the UP - tree.

III. PROPOSED METHODS
The structure of the proposed methods consists of two steps: In first step it requires two database scan

for constructing a global IMUP- Tree with the first two strategies (given in Section 3.1). In second step,PHUIs

are generated recursively from global IMUP-Tree and local IMUP-Trees by EUP-Growth
+
 with the third and

fourth strategies (given in Section 3.2).

3.1 The Proposed Data Structure: IMUP-Tree

To alleviate the mining speed, merge the UP-tree [30], [31] with one of the hashing technique for

reducing the memory consumption. The improved UP-tree named as an IMUP - Tree is used to store the

information about transactions and high utility itemsetsin the appropriate memory and maintained as tree

structure. Two strategies with RH algorithm are applied for reducing the memory and to store the overestimated

utility of each item during the construction of a global IMUP-Tree.The two strategies and the construction of

global IMUP-tree with the two strategies are briefly discussed in the following sections.

3.1.1 DGUM: Discarding Global Unpromising Items and Memory Allocation during Constructing a

Global IMUP-Tree

The construction of a global IMUP-Tree is accomplished with two scans of the original database. In the

first scan, Transaction Utility of each transaction is computed. At the same time, Transaction Weighted Utility

of each single item is also accrued. By TWDC property, an unpromising item is defined as an item and its

supersets are unpromising to be high utility itemsets if its TWU is less than the minimum utility threshold.

During the second scan of the database, transactions are inserted into a global IMUP-Tree. When a transaction is

retrieved, the unpromising items are removed from the transaction and their utilities should also be eliminated

from the transaction‟s TU. This concept forms our first strategy.

Strategy 1. DGUM: Discarding global unpromising items and their actual utilities from transactions and

transaction utilities of the database.

EUP-Growth
+
 - Efficient Algorithm for Mining High Utility Itemset

41

According to DGUM,while utilities of itemsets are being estimated, utilities of unpromising items can be

pragmatic as irrelevant and be discarded. From this,we can realize that unpromising items play no role in high

utility itemsets.

The new TU after pruning unpromising items is called reorganized transaction utility (abbreviated as

RTU). The remaining promising items in the transaction are sorted in the descending order of TWU. Allocate

memory for each promising items in the TWU using RH algorithm are described in the section 3.1.2. Moreover,

before constructing an IMUP-Tree, DGUM can be performed repeatedly till all the promising items are

allocated to the appropriate memory space. Transactions are inserted into allocated memory of the IMUP - tree

which are generated by RH algorithm.

3.1.2Random Hashing

A random hashing algorithm which is a hash-based technique mines the potential high utility itemsets

without any collision into the memory. It is a very efficient method in searching for the exact data item set in a

very short time. The following are the steps which have been performed using RH algorithm.

The process of RH algorithm is to place each and every item in the memory location for the purpose of ease of

usability. The basic things required for hashing process is hash functions. The hash function provides a way of

assigning numbers to the input item such that the item can then be stored in the memory corresponding to the

assigned number. Random hashing efficiently allocates the memory for the itemsets into the IMUP-tree. The

potential high utility itemsets are mined exactly by means of penetrating the IMUP-tree.

Table 3 Pseudo Code for Random Algorithm

1. Generate descending order of TWU for the promising

items.

2. Allocate the memory space for tree based on number

of items in the database.

 n = (Number of items) + x

 Where ‘x’ may be any integer and

The memory size (n) must be nearest

Prime number to the total number of itemsin the database.

3. Allocate the memory space for the 1
st

item based on the hash

function

 h (k) = [(((a . k) + b) mod s) mod n]

 Where, s is the total number of transactions in the table.

 (a ,b) is any random number between the number of Items in

transaction.

k is the items in the TWU

4. The above step is repeated until the memoryis allocated for

all the items in TWU.

5.If collision occurs, change the random number inthe hash

function to allocate the memory forcollided item.

Advantage:

 The followings are the advantages of random hashing,

 The time and space complexity of the mining process are gradually reduced.

 It increases the mining process speed.

3.1.3 Strategy DGNM: Decreasing Global Node Utilities and Memory Allocation during Constructing a

Global UP-Tree
 It is shown in [3] that the tree-based framework for high utility itemset mining applies the divide-and-

conquer technique in mining methods. Thus, the search space can be alienated into smaller subspaces. From this

viewpoint, our second proposed strategy for decreasing overestimated utilities is to remove the utilities of

descendant nodes from their node utilities in a global IMUP - Tree. The process is performed during the

construction of the global IMUP-Tree. By applying strategy DGNM, the utilities of the nodes are inserted into

the appropriate memory which reduces memory and also reduces utilities of the nodes that are closer to the root

of a global UP-Tree. DGNM is especially suitable for the databases containing lots of long transactions. Inthe

following sections, the process of constructing a global UP-Tree with strategies DGUM and DGNM are

described.

3.1.4 Constructing a Global UP-Tree by Applying DGUM and DGNM

Recall that the construction of a global IMUP-Tree is performed with two database scans. In the first

scan, Transaction Utility is computed; at the same time, each 1- item‟s TWU is also accrued.

EUP-Growth
+
 - Efficient Algorithm for Mining High Utility Itemset

42

Thus, we can get promising items and unpromising items.DGUM is applied to promising items by

pruning the unpromising items and sorting the remaining promising items in a fixed order. The order can be

used such as the lexicographic, support, or TWU. Each transaction after the above reorganization is called a

reorganized transaction. The following paragraphs, we use the TWU descending order to explain the whole

process since it is mentioned that the performance of this order is the best in previous studies [3]. The remaining

promising items in the transaction are sorted in the descending order of TWU. Allocate memory for each

promising items in the TWU using RH algorithm shown in the table 3. A function Insert Reorganized

Transaction is called to apply DGNM during constructing a global IMUP-Tree. When a reorganized transaction

𝑡𝑗 ′ = {𝑖1 , 𝑖2, 𝑖3 … 𝑖𝑛} (𝑖𝑘 ∈ 𝐼, 1 ≤ 𝐾 ≤ 𝑛) is inserted into a global IMUP-Tree, Insert_ Reorganized_

Transaction (N,𝑖𝑥) Is called, where N is a node in an IMUP - Tree and 𝑖𝑥 is an item in𝑡𝑗 ′(𝑖𝑥 ∈ 𝑡𝑗 ′, 1 ≤ 𝑥 ≤

𝑛). First, (𝑁𝑅 ,𝑖1) is taken as input, where 𝑁𝑅 is the root node of IMUP-Tree.

Table 4 The subroutine of Insert Reorganized Transaction

Subroutine: Insert _ Reorganized _ Transaction (N,𝑖𝑥

)

Line 1: If N has a child 𝑁𝑖𝑥 such that 𝑁𝑖𝑥 .item =𝑖𝑥 ,

increment 𝑁𝑖𝑥 .count by 1. Otherwise, create a new

child node 𝑁𝑖𝑥
 with 𝑁𝑖𝑥

.item = 𝑖𝑥𝑁𝑖𝑥
.count = 1,

𝑁𝑖𝑥 .parent = N 𝑁𝑖𝑥 .nu = 0.

Line 2: Increase 𝑁𝑖𝑥 .nu by (RTU (𝑡𝑗 ‘) -

∑ 𝑢(𝑛
𝑝=𝑥+1 𝑖𝑝 ,𝑡𝑗 ‘)), where 𝑖𝑝 ∈ 𝑡𝑗 ’.

Line 3: If x ≠ n, call Insert_ Reorganized _

Transaction (𝑁𝑖𝑥 ,𝑖𝑥+1)

The node for𝑖1 ,𝑁𝑖1
 is found or created under 𝑁𝑅and its support is updated in Line 1.Then DGNM is

applied in Line 2 by discarding the utilities of descendant nodes under𝑁𝑖1
 , i.e., 𝑁𝑖2

to𝑁𝑖𝑛 . Finally, in Line 3,

(𝑁𝑖1
,𝑖2) is taken as input recursively.

3.2 ENHANCED UP-GROWTH+ ALGORITHM (EUP-GROWTH+)

In Enhanced UP-Growth+, node utility count in each path are used to reduce the overestimated utilities

that are closer to their actual utilities values of the unpromising items and descendant nodes.

A minimal node utility for each node can be acquired during the construction of a global IMUP-Tree. First, add

an element, namely N.mnu, into each node of IMUP-Tree. N. menu is the minimal node utility of N. When N

is traced, N.mnu keeps track of the minimal value of N.name‟s utility in different transactions. If N.menuis

larger than you (N.name, Tcurrent), N.mnu is set to u (N.name, Tcurrent). The global IMUP-Tree with N.mnu in

each node is shown in the Fig 2, N.mnu is the last number in each node.

Node utility count for each path can be acquired during the construction of a local IMUP-Tree. First,

the node links in IMUP-Tree corresponding to the item im, in header table, are traced. Here item imis a bottom

entry in the header table. Found nodes are traced to the root of the IMUP-Tree to get paths related to im. All

retrieved t, their minimum node utility and support count are collected into im„s conditional pattern base. Then,

Path.node utility count is acquired into im„s conditional pattern base as shown in the Eq (3.1),

p.nuc = p.mnu – p.count(3.1)

Where,

p.nuc is the node utility count of p in {im }-CPB.

p.mnu is the minimum node utility of p in {im}-CPB.

p.count is the support count of p in {im }-CPB.

The two strategies are introduced to enhance the UP-Growth
+
 named DPU and DPN. When a local

IMUP-Tree is being constructed, minimal node utilities are retrievedfrom the global IMUP-Tree. In the mining

process, when a path is retrieved, node utility count of the path is acquired.

3.2.1 Discarding local unpromising items and their estimated Node Utility Count from the path and path

utilities of conditional pattern base

Discarding local unpromising items and their estimated Node Utility Count from the paths and path

utilities of conditional pattern bases as shown in Eq (3.2)

𝒑𝒖 𝒑 𝒊𝒎 − 𝑪𝑷𝑩 = 𝒑. 𝒊𝒎 . 𝒏𝒖 − ∑ 𝒎𝒏𝒖 𝒊 + 𝒑. 𝒏𝒖𝒄∀𝒊⊇𝑼𝑰 𝒊𝒎 −𝑪𝑷𝑩 ^𝒊⊆𝒑 (3.2)

3.2.2 Decreasing local Node path utilities for the nodes of local UP-Tree by estimating utilities of

descendant Nodes

EUP-Growth
+
 - Efficient Algorithm for Mining High Utility Itemset

43

Decreasing local Node path utilities for the nodes of the local IMUP - Tree by estimating utilities of

descendant Nodes as shown in the Eq (4.3)

 𝑵𝒊𝒌
 . 𝒏𝒖𝒏𝒆𝒘 = 𝑵𝒊𝒌

 . 𝒏𝒖𝒐𝒍𝒅 + 𝒑𝒖 𝒑, 𝒊𝒎 − 𝑪𝑷𝑩 − ∑ 𝒎𝒏𝒖(𝒊𝒋
𝒎′

𝒋=𝒌+𝟏) + 𝒑. 𝒏𝒖𝒄(3.3)

DPU is applied to each path by pruning the unpromising items. Remaining promising items of each path are

sorted in a descending order which is called as reorganized paths. The DPN is applied during

insert_reorganized_transactionmnu into a conditional IMUP-Tree. Assume a reorganized path 𝑃𝑗 =

<𝑁𝑖1
𝑁𝑖2

𝑁𝑖3
… . 𝑁𝑖𝑚 ′

>, where 𝑁𝑖𝑘
is the nodes in IMUP-Tree and 1 ≤ k ≤ m‟.

Table 6 The Subroutine Insert_ Reorganized _Path mnu

When 𝑁𝑖1
.item,𝑖1 is inserted into the conditional IMUP-Tree, the function Insert_ Reorganized _ Path

mnu(𝑁𝑅′,𝑖1), as shown in Table 6, is called, where 𝑁𝑅
′ is root node of the conditional UP-Tree. The node for𝑖1,𝑁𝑖1

is found or created under 𝑁𝑅
′ and its support is updated in Line 1 the element, minimal node utility, is added into

𝑁𝑖𝑥 and set 𝑁𝑖𝑥 .mnu = ∞ initially. Then DPN is applied in Line 2 by decreasing estimated utilities of descendant

nodes under𝑁𝑖1
, i.e., 𝑁𝑖2

to𝑁𝑖𝑚 ′
. Then, 𝑁𝑖𝑥 .mnu is checked by inserting the procedure “If 𝑁𝑖𝑥 .mnu>mnu (𝑖𝑥 , 𝑝𝑗),

set𝑁𝑖𝑥 .mnu to mnu (𝑖𝑥 , 𝑝𝑗)" . Finally in Line 4, (𝑁𝑖1
,𝑖2) is taken as input recursively.

The complete set of PHUIs is generated by recursively calling the procedure named UP-Growth. Initially, EUP-

Growth
+
 (𝑇𝑥 , 𝐻𝑥 , 𝑋)is called, where 𝑇𝑥 is the global IMUP- Tree and 𝐻𝑥 is the global header table. The procedure

of EUP-Growth
+
 is shown in Fig. 5

Table 7 The subroutine of EUP-Growth
+

Subroutine: Enhanced UP-Growth
+
 (𝑇𝑥 , 𝐻𝑥 , 𝑋)

Input: A IMUP-tree𝑇𝑥 , a header table 𝐻𝑥 , an itemset X , and a minimum utility threshold min_util,

Output: All PHUIs in 𝑇𝑥

1)For each entry 𝑖𝑘 in 𝐻𝑥 do

2)Trace each node related to 𝑖𝑘 via 𝑖𝑘 .hlink and accumulate 𝑖𝑘 .nu to 𝑛𝑢𝑠𝑢𝑚 (𝑖𝑘); /* 𝑛𝑢𝑠𝑢𝑚 (𝑖𝑘): the

sum of node utilities of 𝑖𝑘*/

3)If 𝑛𝑢𝑠𝑢𝑚 (𝑖𝑘) ≥ min_util, do

4)Generate a PHUI Y = X ∪ 𝑖𝑘 ;

5)Set pu(𝑖𝑘) as estimated utility Y;

6)Construct Y-CPB;

7)Put local promising item in Y-CPB into 𝐻𝑌

8) Apply DPU to reduce path utilities of the paths;

9)Apply Insert_ Reorganized_ Path mnu to insert into 𝑇𝑌 with DPN;

10)If 𝑇𝑌 ≠ null then call Enhanced UP-Growth
+
 (𝑇𝑥 , 𝐻𝑥 , 𝑋)

11)End if

12)End for

By comparing the existing system, it is clear that the number of Potential High Utility Itemsets, as well

as the overestimated utilities of itemsets, are further reduced by EUP-Growth
+
.

IV. EXPERIMENTAL EVALUATIONS
The performance of the proposed algorithms is evaluated in this section. The experiments were

performed on a 2.80 GHz Intel Pentium D Processor with 3.5 GB memory. The operating system is Microsoft

Windows 7. The algorithm is implemented in Java language.To evaluate the performance of the proposed

Subroutine:Insert _ Reorganized _ Path mnu(N,𝑖𝑥)

Line 1: If N has a child 𝑁𝑖𝑥
 such that 𝑁𝑖𝑥

.item

=𝑖𝑥 ,initially 𝑁𝑖𝑥 .mnu = ∞ increment 𝑁𝑖𝑥 .count by 𝑃𝑗 .

count. Otherwise, create a new child

 𝑛𝑜𝑑𝑒 𝑁𝑖𝑥 𝑤𝑖𝑡ℎ 𝑁𝑖𝑥 .item = 𝑖𝑥𝑁𝑖𝑥 .count = 𝑃𝑗 .

count,𝑁𝑖𝑥 .parent = N 𝑁𝑖𝑥 .nu = 0.

Line 2: Increase 𝑁𝑖𝑥
.nu by Eq(3.3)

Line 3: If 𝑁𝑖𝑥 . mnu > mnu (𝑖𝑥 , 𝑃𝑗) set 𝑁𝑖𝑥 .mnu to

mnu (𝑖𝑥 , 𝑃𝑗) "

Line 4: If there exists a node 𝑁𝑖𝑥
 in 𝑃𝑗 where x +

1<m’,call Insert_ Reorganized _ Pathmnu (𝑁𝑖𝑥 ,𝑖𝑥+1)

EUP-Growth
+
 - Efficient Algorithm for Mining High Utility Itemset

44

technique, both real and synthetic data sets are used in the experiments. The Synthetic Transactional data set is

generated from the data generated based on fast algorithm for mining association rules [1]. Parameter

descriptions and default values of synthetic data sets are shown in Table 9. Real world data sets Retail, a

Weblog and Chess are obtained from the FIMI Repository [FIMI]. These data sets do not provide profit values

or the quantity of each item for each transaction.

Table 9 Parameter setting of Synthetic Data Sets

Parameter Descriptions Default

|D| Total number of transactions 100K

T: Average Transactional Length 10

|I|: Number of distinct items 1000

F: Average size of maximal potential

frequent itemsets

6

Q: Maximum number of purchase

items in transactions

10

As for the performance evaluation of the previous utility based pattern mining[19],[16], unit profits

from items in utility tables are generated between 1 and 1,000 by using a log-normal distribution and quantities

of items are generated randomly between 1 and 10.

Table 10 Characteristics of real data sets

Dataset |D| T |I| Type

Retail 88162 10.3 16470 Sparse

Chess 3196 37.0 75 Dense

Web

Log

1.692.08

2

71.45 5.267.656 Sparse

Medical 16487 32 497 Sparse

Finally, the results are evaluated by using a real life dataset (medical) with real utility values is

collected from medical shoppers that is located in Pollachi. The performance of proposed algorithm was

compared with the existing algorithms UP-Growth [30] and UP-growth+ [31]. For convenience, PHUIs are

called candidates in our experiments. The characteristics of the above data sets are shown in the Table 10.

4.1 COMPARATIVE ANALYSIS OF PROPOSED ALGORITHM ON DIFFERENT DATA SETS

In this part, the performance comparison on three real data sets are shown: dense data set Chess and

sparse data sets Retail and Weblog. First, we show the results on real dense data set Chess in Fig. 4.

Figure 4 Candidate’s comparison on the chess dataset

EUP-Growth
+
 - Efficient Algorithm for Mining High Utility Itemset

45

The chess dataset is an extremely dense data set. Dense data sets have many long frequent as well as

high utilization patterns. Because the probability of an item‟s occurrence is very high in every transaction, for

comparatively higher thresholds, dense datasets have too many candidate patterns. Here, first comparing the

number of candidates.

From Fig. 4, the performance of the proposed methods substantially outperforms that of previous

methods. The minimum utility threshold range of 900% to 1300% is used here. It is remarkable that since chess

is a huge dense dataset, a large number of candidate patterns occur at a comparatively higher threshold (above

50%). The number of candidates increases rapidly below the utility threshold of 1000%. For utility thresholds of

900% and 1000%, the numbers of candidate patterns are too large for the existing algorithms. The runtime of

UPT&UPG is the worst, followed by UPT&UPG, UPT&UPG
+
 and IMUPT & EUPG

+
is the best. The main

reason is the performance of UPT&UPG and UPT&UPG
+
 is decided by the number of generating candidates.

Figure 5 Time Comparision on Chess Data Set

Figure 5 it clearly shows the runtime comparison on the chess dataset. The runtime of the methods is

just proportional to their number of candidates, that is, more the candidates produced by the method leads to the

greater execution time. Due to several database scans with a large candidate set, the total time needed for the

algorithm is also very large when compared to sparse data sets.

4.1.2 Performance analysis for Retail Data Set

 The dataset retail is provided by Tom Brijs (FIMI), and contains the retail market basket data from an

anonymous Belgian retail store.It is an extreme sparse dataset. Sparse data sets normally have too many distinct

items. Although in the average case their transaction length is small, they normally have many

transactions.From Fig 5.3, it evidently shows the comparison of the candidate‟s on the Retail dataset. The

minimum utility threshold range of 400 to 800 is used

Figure 6 Candidate’s comparison on the RetailDataset

here. It is clear that the performance of UPT&UPG is the worst since it generates the most candidates.

EUP-Growth
+
 - Efficient Algorithm for Mining High Utility Itemset

46

Table 7Time Comparison on the Retail Dataset

From Fig 7, it clearly shows the running time comparison on using the Retail Data Set. It's clear that

the runtime of UPT&UPG is the worst, followed by UPT&UPG, UPT&UPG
+
, and IMUPT&EUPG

+
 is the best.

Besides, although the number of candidates of UPT&FPG, UPT&UPG, and UPT&UPG+ are almost the same,

the execution time of UPT&UPG is the worst among the three methods since UP-Growth+ and EUP-Growth
+

efficiently prune the search space of local IMUP-Trees.

4.2 PERFORMANCE COMPARISON UNDER DIFFERENT PARAMETERS

The performance under varied average transaction length (T) is shown in Fig 8.

Figure 8 Time Comparison on the Synthetic Dataset

The experiment is performed on synthetic data sets Tx.F6.|I|1,000.|D|100k and min_util is set to 1

percent. From Fig 8, it's evident that the runtime of all algorithms increases with increasing T because when T

is larger, transactions and databases become longer and larger. Also, the runtime of the methods is proportional

to the number of candidates. The difference of the performance between the methods appears when T is larger

than 25. The best method is UPT&UPG+ and the worst one is UPT&UPG.

Figure 9 Candidate’s comparison on the Synthetic Dataset

From Fig.9, it clearly shows the number of candidates generated by UPT&UPG+ is the smallest. This

shows that EUP-Growth+ can effectively prune more candidates by decreasing overestimated utilities when

transactions are longer. In other words, UP-Growth+ is more efficient on the data sets with longer transactions.

EUP-Growth
+
 - Efficient Algorithm for Mining High Utility Itemset

47

4.3 SCALABILITY OF THE PROPOSED METHODS

In this section, the scalability of the proposed method is performed on synthetic data sets

T10.F6.|I|1,000.|D|xk. Results of run time, number of candidates and the number of high utility itemsets are

shown in Fig.10 and Table 10 respectively.

Fig. 10 Experimental results under varied database size.

Fig.10 shows that there are significant differences in runtime on different database size. Total runtime

of IMUPT&EUPG+ is the best, followed by UPT&UPG+ and UPT&UPG being the worst. This is because

when the size of the database increases, runtime for identifying high utility itemsets also increases. Here, the

importance of runtime is emphasized again. From Table 10, it is clear that the number of PHUIs generated by

IMUPT&EUPG+ outperforms other methods in the databases with varied database sizes. Overall, the

performance of IMUPT&EUPG+ outperforms the other compared algorithms with increasing size of databases

since it generates the least PHUIs.

TABLE 10: Number of Candidates and High Utility Item sets under Varied Database Sizes

Database UPT&UPG UPT&UPG
+
 IMUPT&EUPG

+

200k 51,534 32,261 18,175

400k 56,844 39,450 18,976

600k 52,845 34,164 17,324

800k 52,491 35,645 18,188

1000k 50,073 32,789 17,144

4.4 MEMORY USAGE OF THE PROPOSED METHODS

In this section, memory consumption of the proposed methods (in GB) is shown in the Tables 11 and

12 under varied min_util on Retail data set and varied database sizes on synthetic data sets

T10.F6.|I|1,000.|D|xk, respectively.

In Table 11, it is clear that the memory usage of all methods increases with decreasing min_util since

less min_util makes UP-Trees and IMUP- Trees larger. Generally, IMUP&EUPG
+
 uses the least memory in

IMUP-tree to store the PHUIs. This is because the strategies effectively decrease the number of PHUIs in local

IMUP-Trees.

Table 11 Memory in (GB) Usage under Varied min_util on Retail Dataset

 Memory (GB)

Min_util UPT&UPG UPT&UPG
+
 IMUPT&EUPG

+

0.1% 1.017 0.478 0.299

0.08% 1.033 0.923 0.916

0.06% 1.132 1.069 1.021

EUP-Growth
+
 - Efficient Algorithm for Mining High Utility Itemset

48

0.04% 1.294 1.188 1.125

0.02% 1.364 1.288 1.174

In the Table 12, it is clear that the memory usage increases with increasing database size. Generally,

IMUP&EUPG
+
 uses the least memory among the three methods.This is because the strategies effectively

decrease the number of PHUIs in local IMUP-Trees. On the other hand, the fewer PHUIs are generated by

IMUPT&EUPG+, it consumes less memory.

Table 12 Memory in (GB) Usage under Varied Database SizesT10.F6.|I|1000.|D|xK (min_util = 0.1

Percent)

 Memory (GB)

Database UPT&UPG UPT&UPG
+
 IMUPT&EUPG

+

200K 1.221 1.028 0.979

400K 1.350 1.290 1.185

600K 1.490 1.354 1.252

800K 1.555 1.422 1.326

1000K 1.699 1.548 1.437

5.7 Summary of the Experimental Results

Experimental results in this section show that the proposed methods outperform the state-of-the-art

algorithms almost in all cases on both real and synthetic data sets. The reasons are described as follows,

First, memory used by global IMUP-Tree is much less the memory used by UP-Tree since DGUM and DGNM

effectively decrease memory consumption of utilities by RH-algorithm during the construction of a global

IMUP-Tree.

Second, EUP-Growth+ generate much fewer candidates than UP-growth and UP-Growth
+
 since DPU,

and DPN are applied during the construction of local IMUP- Trees. By the proposed algorithm with the

strategies, generation of candidates can be more efficient since lots of useless candidates are pruned.

Third, generally, EUP-Growth+ utilizes minimal node utilities and a path node utility count for further

decreasing overestimated utilities of itemsets. They are more effective especially when there are many longer

transactions in databases. By the reasons mentioned above, the proposed algorithm EUP-Growth
+
 achieve better

performance than UP- Growth and UP-Growth
+
 algorithms.

V. CONCLUSIONS
In this thesis, an efficient algorithm for mining high utility itemset called EUP-growth

+
 is proposed for

mining high utility itemsets with a set of effective strategies for pruning potential high utility itemsets. A data

structure namedIMUP-Tree is proposed for maintaining the information of high utility itemsets into the

appropriate memory using hashing techniques for reducing memory and time. The EUP-Growth
+
 algorithm

efficiently generatesPHUIs from IMUP-Tree with only two database scans. By developing four strategies, the

mining performance is enhanced significantly since both the search space and the number of candidates are

effectively reduced. The proposed algorithm builds the IMUP - tree to reduce the memory consumption while

storing the utility itemsets. An IMUP-tree is built only for pruned database that fit into main memory easily.

According to recent observations, the performances of the algorithms strongly depends on the minimum utility

levels and the features of the data sets (the nature and the size of the data sets). Therefore it is employed in the

proposed algorithm to guarantee the time and the memory are further reduced in the case of sparse and dense

data sets. In the experiments, both real and synthetic data sets were used for performance evaluation.

Experimental results reveal that the strategies considerably improved performance by reducing the search space,

time and the number of candidates. It is evident from experiments that EUPG
+

algorithm outperforms

substantially than UPG+ and UPG algorithms.

REFERENCES
[1]. R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association Rules,” Proc. 20th Int‟l Conf.

Very Large Data Bases (VLDB), pp. 487-499, 1994.

[2]. R. Agrawal and R. Srikant, “Mining Sequential Patterns,” Proc. 11th Int‟l Conf. Data Eng., pp. 3-14,

Mar. 1995.

[3]. C.F. Ahmed, S.K. Tanbeer, B.-S. Jeong, and Y.K. Lee, “Efficient Tree Structures for High Utility

Pattern Mining in Incremental Databases,” IEEE Trans. Knowledge and Data Eng., vol. 21, no. 12, pp.

1708-1721, Dec. 2009.

EUP-Growth
+
 - Efficient Algorithm for Mining High Utility Itemset

49

[4]. C.H. Cai, A.W.C. Fu, C.H. Cheng, and W.W. Kwong, “Mining Association Rules with Weighted

Items,” Proc. Int‟l Database Eng. and Applications Symp. (IDEAS ‟98), pp. 68-77, 1998.

[5]. R. Chan, Q. Yang, and Y. Shen, “Mining High Utility Itemsets,” Proc. IEEE Third Int‟l Conf. Data

Mining, pp. 19-26, Nov. 2003.

[6]. J.H. Chang, “Mining Weighted Sequential Patterns in a Sequence Database with a Time-Interval

Weight,” Knowledge-Based Systems, vol. 24, no. 1, pp. 1-9, 2011.

[7]. M.S. Chen, J.S. Park, and P.S. Yu, “Efficient Data Mining for Path Traversal Patterns,” IEEE Trans.

Knowledge and Data Eng., vol. 10, no. 2, pp. 209-221, Mar. 1998.

[8]. C. Creighton and S. Hanash, “Mining Gene Expression Databases for Association Rules,”

Bioinformatics, vol. 19, no. 1, pp. 79-86, 2003.

[9]. M.Y. Eltabakh, M. Ouzzani, M.A. Khalil, W.G. Aref, and A.K. Elmagarmid, “Incremental Mining for

Frequent Patterns in Evolving Time Series Databases,” Technical Report CSD TR#08- 02, Purdue

Univ., 2008.

[10]. A. Erwin, R.P. Gopalan, and N.R. Achuthan, “Efficient Mining of High Utility Itemsets from Large

Data Sets,” Proc. 12th Pacific-Asia Conf. Advances in Knowledge Discovery and Data Mining

(PAKDD), pp. 554-561, 2008.

[11]. E. Georgii, L. Richter, U. Ruckert, and S. Kramer, “Analyzing Microarray Data Using Quantitative

Association Rules,” Bioinformatics, vol. 21, pp. 123-129, 2005.

[12]. J. Han, G. Dong, and Y. Yin, “Efficient Mining of Partial Periodic Patterns in Time Series Database,”

Proc. Int‟l Conf. on Data Eng., pp. 106-115, 1999.

[13]. J. Han and Y. Fu, “Discovery of Multiple-Level Association Rules from Large Databases,” Proc. 21th

Int‟l Conf. Very Large Data Bases, pp. 420-431, Sept. 1995.

[14]. J. Han, J. Pei, and Y. Yin, “Mining Frequent Patterns without Candidate Generation,” Proc. ACM-

SIGMOD Int‟l Conf. Management of Data, pp. 1-12, 2000.

[15]. S.C. Lee, J. Paik, J. Ok, I. Song, and U.M. Kim, “Efficient Mining of User Behaviors by Temporal

Mobile Access Patterns,” Int‟l J. Computer Science Security, vol. 7, no. 2, pp. 285-291, 2007.

[16]. H.F. Li, H.Y. Huang, Y.C. Chen, Y.J. Liu, and S.Y. Lee, “Fast and Memory Efficient Mining of High

Utility Itemsets in Data Streams,” Proc. IEEE Eighth Int‟l Conf. on Data Mining, pp. 881- 886, 2008.

[17]. Y.C. Li, J.S. Yeh, and C.C. Chang, “Isolated Items Discarding Strategy for Discovering High Utility

Itemsets,” Data and Knowledge Eng., vol. 64, no. 1, pp. 198-217, Jan. 2008.

[18]. C.H. Lin, D.Y. Chiu, Y.H. Wu, and A.L.P. Chen, “Mining Frequent Itemsets from Data Streams with a

Time-Sensitive Sliding Window,” Proc. SIAM Int‟l Conf. Data Mining (SDM ‟05), 2005.

[19]. Y. Liu, W. Liao, and A. Choudhary, “A Fast High Utility Itemsets Mining Algorithm,” Proc. Utility-

Based Data Mining Workshop, 2005.

[20]. R. Martinez, N. Pasquier, and C. Pasquier, “GenMiner: Mining nonredundant Association Rules from

Integrated Gene Expression Data and Annotations,” Bioinformatics, vol. 24, pp. 2643-2644, 2008.

[21]. J. Pei, J. Han, H. Lu, S. Nishio, S. Tang, and D. Yang, “H-Mine: Fast and Space-Preserving Frequent

Pattern Mining in Large Databases,” IIE Trans. Inst. of Industrial Engineers, vol. 39, no. 6, pp. 593-

605, June 2007.

[22]. J. Pei, J. Han, B. MortazaviAsl, H. Pinto, Q. Chen, U. Moal, and M.C. Hsu, “Mining Sequential

Patterns by Pattern-Growth: The Prefixspan Approach,” IEEE Trans. Knowledge and Data Eng.,

vol.16, no.10, pp. 1424-1440, Oct. 2004.

[23]. J. Pisharath, Y. Liu, B. Ozisikyilmaz, R. Narayanan, W.K. Liao, A. Choudhary, and G. Memik NU-

MineBench Version 2.0 Data Set and Technical Report, http://cucis.ece.northwestern.edu/

projects/DMS/MineBench.html, 2012.

[24]. B.E. Shie, H.-F. Hsiao, V., S. Tseng, and P.S. Yu, “Mining High Utility Mobile Sequential Patterns in

Mobile Commerce Environments,” Proc. 16th Int‟l Conf. Database Systems for Advanced Applications

(DASFAA ‟11), vol. 6587/2011, pp. 224-238, 2011.

[25]. B.E. Shie, V.S. Tseng, and P.S. Yu, “Online Mining of Temporal Maximal Utility Itemsets from Data

Streams,” Proc. 25th Ann. ACM Symp. Applied Computing, Mar. 2010.

[26]. K. Sun and F. Bai, “Mining Weighted Association Rules without Preassigned Weights,” IEEE Trans.

Knowledge and Data Eng., vol. 20, no. 4, pp. 489-495, Apr. 2008.

[27]. S.K. Tanbeer, C.F. Ahmed, B.S. Jeong, and Y.K. Lee, “Efficient Frequent Pattern Mining over Data

Streams,” Proc. ACM 17th Conf. Information and Knowledge Management, 2008.

[28]. F. Tao, F. Murtagh, and M. Farid, “Weighted Association Rule Mining Using Weighted Support and

Significance Framework,” Proc. ACM SIGKDD Conf. Knowledge Discovery and Data Mining (KDD

‟03), pp. 661-666, 2003.

[29]. V.S. Tseng, C.J. Chu, and T. Liang, “Efficient Mining of Temporal High Utility Itemsets from Data

Streams,” Proc. ACM KDD Workshop Utility-Based Data Mining Workshop (UBDM ‟06), Aug. 2006.

EUP-Growth
+
 - Efficient Algorithm for Mining High Utility Itemset

50

[30]. V.S. Tseng, C.W. Wu, B.E. Shie, and P.S. Yu, “UP-Growth: An Efficient Algorithm for High Utility

Itemsets Mining,” Proc. 16th ACM SIGKDD Conf. Knowledge Discovery and Data Mining (KDD

‟10), pp. 253-262, 2010.

[31]. V.S. Tseng, C.W. Wu, B.E. Shie, and P.S. Yu, “ An Efficient Algorithm for Mining High Utility

Itemsets from Transactional Database,” IEEE Transactions On Knowledge And Data Engineering,

Vol. 25, No. 8, August 2013

[32]. W. Wang, J. Yang, and P. Yu, “Efficient Mining of Weighted Association Rules (WAR),” Proc. ACM

SIGKDD Conf. Knowledge Discovery and Data Mining (KDD ‟00), pp. 270-274, 2000.

[33]. H. Yao, H.J. Hamilton, and L. Geng, “A Unified Framework for Utility-Based Measures for Mining

Itemsets,” Proc. ACM SIGKDD Second Workshop Utility-Based Data Mining, pp. 28-37, Aug. 2006.

[34]. S.J. Yen and Y.S. Lee, “Mining High Utility Quantitative Association Rules.” Proc. Ninth Int‟l Conf.

Data Warehousing and Knowledge Discovery (DaWaK), pp. 283-292, Sept. 2007.

[35]. C.H. Yun and M.S. Chen, “Using PatternJoin and Purchase Combination for Mining Web Transaction

Patterns in an Electronic Commerce Environment,” Proc. IEEE 24th Ann. Int‟l Computer Software and

Application Conf., pp. 99-104, Oct. 2000.

[36]. C.H. Yun and M.S. Chen, “Mining Mobile Sequential Patterns in a Mobile Commerce Environment,”

IEEE Trans. Systems, Man, and CyberneticsPart C: Applications and Rev., vol. 37, no. 2, pp. 278-295,

Mar. 2007.

[37]. U. Yun, “An Efficient Mining of Weighted Frequent Patterns with Length Decreasing Support

Constraints,” KnowledgeBased Systems, vol. 21, no. 8, pp. 741-752, Dec. 2008.

[38]. U. Yun and J.J. Leggett, “WFIM: Weighted Frequent Itemset Mining with a Weight Range and a

Minimum Weight,” Proc. SIAM Int‟l Conf. Data Mining (SDM ‟05), pp. 636-640, 2005.

[39]. U. Yun and J.J. Leggett, “WIP: Mining Weighted Interesting Patterns with a Strong Weight and/or

Support Affinity,” Proc. SIAM Int‟l Conf. Data Mining (SDM ‟06), pp. 623-627, Apr. 2006.

