
International Journal of Engineering Research and Development

e-ISSN: 2278-067X, p-ISSN: 2278-800X, www.ijerd.com

Volume 10, Issue 12 (December 2014), PP.01-12

1

Divisible Transferable Anonymous Electronic Cash System for

General Use

Israt Jahan
1
, Mohammad Zahidur Rahman

2
 ,

Liton Jude Rozario
3
 and Kaafi Mahmud Sarker

4

1,2,3,4
Dept. of Computer Science and Engineering, Jahangirnagar University, Savar, Dhaka, Bangladesh.

Abstract:- In this paper we propose an elegant and unique divisible transferable anonymous electronic cash

system with observer. The proposed divisible e-cash solves most of the crucial problems with existing paper

cash and untraceable e-cash proposals. Electronic cash provides unconditional anonymity to the user. Research-

ers observed, however, that if anonymity in payment system is unconditional, it might be exploited to facilitate

crimes like money laundering. This observation spurred research into the idea of making anonymity in payment

systems conditional, and, in particular, revocable by a third party or trustee or observer under bank's order. The

idea of having an observer is that it can be incorporated in the wallet in such a way that no user module can do a

transaction on its own. For any transaction protocol to be executed by the wallet, it needs help (a secret informa-

tion) from the observer i.e. the wallet and the observer must confirm mutually when they work together. The

advantage of the proposed electronic cash system is that it is able to construct an observer capable of co-

operating with divisible and transferable e-cash. Due to the presence of observer, the proposed e-cash has prior

resistance of double spending. In each transfer of divisible e-cash, coin authentication and denomination revela-

tion is checked to verify the validity of divisible e-cash. In any stage of coin transfer, the anonymity is guaran-

teed with protection of double spending.

Keywords:- Binary tree, Blending technique, Smartcard, Java card, Observer.

INTRODUCTION
 With the onset of the Information Age, people are becoming increasingly dependent upon net-work

communications. Computer-based technology is significantly impacting our ability to access, store, and distri-

bute information. Among the most important uses of this technology is electronic commerce: performing finan-

cial transactions via electronic information exchanged over Internet. A key requirement for electronic commerce

is the development of secure and efficient electronic payment systems. In light of the explosive increase in elec-

tronic services, means for electronic payments become an essential asset. Electronic cash or e-cash refers to cash

and associated transactions performed with it on an open communication network. An observer is a tamper re-

sistant device that prevents double-spending physically. The user module is called a wallet since, it actually car-

ries money.

 Special protocols are used to manage secure e-cash transactions [1-3]. Ideal e-cash [4] system should

be independent, anonymous, unforgeable, divisible, unlinkable, undouble-spending, transferable and of course,

offline [5]. Though cryptography solves some of the problems such as anonymity, offline etc., double-spending

cannot be prevented only through cryptography. Most of the e-cash authors suggested use of a temper-proof

hardware as an observer of the system [5-13]. Due to the presence of observer, the proposed e-cash has prior

resistance of double spending. If user spends same coin twice or manipulates information inside observer, the

observer drops working [13].

 The advantage of the proposed electronic cash system is that it is able to construct an observer capable

of co-operating with divisible and transferable e-cash. A user who generates a divisible coin can transfer his any

divisible amount of e-cash to another user and to a number of users subsequently without losing anonymity and

without contacting the bank between the two transactions. Smartcard is the best candidate to be an observer, but

implementation of very efficient and secured e-cash protocols with observer cannot come to reality due to li-

mited resources in smartcards.

 Basic Card [12], MUSCLE [15] Card and Java Card [16] are three different types of programmable

smartcards available in the market. All these smartcards are resource constrained devices, and we tried to over-

come this limitation by applying different techniques and associating with wallet and CORBA-based high-level

bank server. Bank server is powered by LiDIA libraries. LiDIA can handle larger integers essential for e-cash

security, and can suitably be implemented in bank and wallet components. Length of secret keys generated by

smartcard needs to be matched with those generated by the bank and the wallet. However, without compromis-

ing security issues, the key published by bank, random numbers, observer's secret key, and different computa-

tional parameters exchanged among bank, wallet and smartcard are synchronized in this paper. The processing

Divisible Transferable Anonymous Electronic Cash System for General Use

2

cost and response time of smartcard is optimized by distributing some processing to card hosts. Parameters are

reduced in size using one way hashing and matching when they are being participated in various calculations

inside the observer. We refer this technique as blending technique. We choose a realistic e-cash protocol and

carefully analyze performance of each type of smartcard as e-cash observer.

MODEL OF DIVISIBLE TRANSFERABLE E-CASH WITH OBSERVER
 E-cash is similar to paper cash and should guarantee anonymity. David Chaum [17] proposed an ano-

nymous payment protocol in 1983 introducing the concept of e-cash. To prevent illegal copies of coins Chaum

also described a method of preserving a list of all coins spent. Bank can verify any coin before it is being reused.

But the verification needs to be performed online; otherwise, the payment will not be a valid payment. However,

this limitation was corrected by Chaum, Fiat and Naor [18]. They proposed an offline e-cash model where trans-

actions can be done online even the bank remains offline. RSA [19] public key based blind signatures and use of

one way hash function are the strength of their protocol. The major drawback of these protocols is bank can

detect double-spending only when coins are deposited back to the bank which might incur a huge loss.

 Okamoto and Ohta [20] added divisibility property to e-cash based on binary tree, and hardness of the

factorization and quadratic residues problems. Though binary tree representation efficiently handles large value

of coins, anonymity is compromised in this scheme. Ferguson [7] proposed single-term scheme, where RSA

signatures are combined with random blind signatures. He added a secret-sharing concept with which it is possi-

ble to know who commits fraud, but unfortunately, the security of this protocol was not guaranteed [21]. S.

Brands's scheme superseded others and considered as practical single-term e-cash. Earlier Chaum and Pedersen

[22] introduced almost similar protocol. Yet the time between a fraud incident and its detection do not guarantee

banks for their financial losses.

 Recently, Liu, Luo, Si Ya-li, Wang and Li Feng worked with N, K based payment protocol with ob-

server, where N denotes total coins value and K denotes payment times. It solves double-spending effectively

with the prior restraint smartcard. But it demands huge storage when large value of e-cash needs to be with-

drawn. However, Israt Jahan [13] proposed an elegant method with binary tree representation of coins, where

large valued e-cash can be efficiently handled. Use of a prior-restraint smartcard not only protects reuse at the

time a coin is being spent but also lightens the burden of the bank. Fig. 1 shows the basic model.

Bank B

User U
0

U
1

U
n

U
n-1

U
2

Withdrawal Deposit

Observer Observer Observer Observer Observer

Transfer Transfer Transfer Transfer Transfer

Figure 1. Model of offline transferable e-cash with observer.

PROTOCOL DESCRIPTION

In the protocol described in [11]. Here p, q, g, g1, g2 and H are the system parameters published by the bank

where the orders of g, g1, g2 are x and xt are q. x and xt are the secret key of bank. x will be used for issuing

digital cash and xt will be used for issuing coin extension. h=g
x
 and ht=g

xt
 are the public keys of the bank.

Divisible Transferable Anonymous Electronic Cash System for General Use

3

Observer of

User U
0

User U
0

Bank B

Setup1()

Calculate1()

Trans1 (oa
0
)

Trans2 (OA
0
)

Setup2()

Trans3 (I
0
)

Precomputation

stage

Trans4 (l,ω)

Calculate2()
Trans6 (encrypted

values of node and OB
0
)

Trans5 (z
0,

a
0,

b
0
)

Calculate3()

Calculate4()

Trans7 (c
0
)

Trans8 (r
0
)

Calculate5()

Calculate6()

Figure 2. Bank’s setup, account opening and withdrawal of e-cash by user U0.

Divisible Transferable Anonymous Electronic Cash System for General Use

4

Observer of

User U
1

User U
1

Bank B

Setup1()

Calculate1()

Trans1 (oa
1
)

Trans2 (OA
1
)

Setup2()

Trans3 (I
1
)

Precomputation

stage
Calculate2()

Trans5 (OB
1
)

Trans4 (z
1,

a
1,

b
1
)

Calculate3()

Calculate4()

Trans6 (c
1
)

Trans7 (r
1
)

Calculate5()

Calculate6()

Figure 3. Withdrawal of coin extension by user U1.

and sends it to user 1U . In Calculate2() user calculates 0 and sends it to 0U . In Calculate3() 0U calculates

'

0 and sends
'

0 and corresponding node of the coin to the observer of 0U . If the node is found then it is

erased. The observer calculates . In the last step it checks if any node exists; if not,

then erases 0O .

Observer of

User U
0

User U
0

Calculate2()

Trans1 (Tr
0
)

Trans3 ()

Calculate4()

Calculate3()

Calculate5()

Trans5 ()

User U
1

Calculate1()

Trans2 ()0

Calculate3()

OB0j j ...jn 1 2 0

Trans4 () 0

,
0 0

Calculate6()

,

Observer of

User U
1

Calculate1'()

Calculate2'()

Figure 4. User U0 spends his coin to user U1.

Divisible Transferable Anonymous Electronic Cash System for General Use

5

D. Deposit

User deposits his coin to the bank. If the coin is not deposited previously it is deposited to the account.

IV. IMPLEMENTATION OF OBSERVER IN SMARTCARD
 The objective is to use smartcard as an observer of an e-cash model. To be an observer, smartcard

needs to ensure enough security by itself, and of course, it must be synchronized with the user wallet applica-

tion. Moreover, smartcard processing cost must be within the tolerable limit. We designed and built an observer

which is fully compatible to the divisible, transferable, e-cash protocol proposed in [13] and completed the pro-

posal. The user (the wallet application running in customer's PC) and the bank are the major actors in this proto-

col. Observer is another piece of program which is associated with the user and loaded into a smartcard. The

bank issues it to its customer to operate along with his/her user application. The customer possesses the smart-

card and uses it in every transaction he/she makes through his/her user application. The user and the bank com-

municate between themselves using a network in a distributed environment. The interface between the bank and

the user is designed as CORBA Interface Definition Language (IDL). The bank and the user program are devel-

oped in C++ language under Linux platform.

 Several experiments are carried out to find out the suitability to be an observer without compromising

major features of an efficient e-cash scheme. Suitable environments are setup both for development and testing

to carry out each experiment. At first we set up environment using Basic Card and analyze its suitability. Then

we choose MUSCLE card with PC/SC lite driver installed in Linux environment. Our last experiment is carried

out with Java card. Following sections describe research approaches to find a realistic observer solution for e-

cash operation.

A. Research Approach with Basic Card

 Basic Card [12] is a programmable smartcard. Programs executed in Basic Card are written in ZC-

Basic language. Size of RAM ranges from 265 to 1768 bytes and that of user programmable EEPROM is from 1

to 31 kilobytes. The EEPROM contains the user's application code which is compiled and converted into virtual

machine language called P-Code. User's permanent data is stored in EEPROM, and the RAM contains run-time

data including the P-Code stack.

 The observer is implemented in card-side, and the request towards the card comes through the card

terminal. The whole setting works in the basis of client-server model. We develop a set of programs for both the

card and the terminal. The card-side code receives parameters and instructions from the outside world (usually

the user wallet), generates secret key with the help of cryptographic libraries which could be used as digital

coins, and stores them safely inside the card. The card processor sends a successful status to the outside world

when the generation of all coins of demand is completed.

 Another piece of code is written for the card processor to erase the spent coin from the stored digital

coins' list. If the coin is not spent i.e., not erased earlier, the processor erases the same coin, and sends a success-

ful status to the outside world; otherwise, it sends a “double spent” status. Sample code is given in Fig. 5.

...

Call Compare Key (Key$)

If Key$ = "" Then

Print "Double spent"

Exit

Else

Call Remove Key (Key$)

...

...

Figure 5. Sample code for Basic Card.

 Source code is compiled into .img file and the image file is downloaded into the Basic Card using a

card loader tool. Another way is to compile the source file into P-Code, an intermediate language that can be

thought of as the machine code for the card's virtual machine. P-Code is downloaded to the card using the card

loader tool. The virtual machine in the Basic Card executes the P-Code instructions at run-time when instruc-

tions are passed to the card.

 A terminal-side code initializes and calls the functions and procedures stored inside the card. This part

of the source code is compiled into standard executable files with .exe extension.

Limitations of Basic Card as Observer: Though Basic Card has the capability of handling standard cryptograph-

ic functions and it is much simpler and less costly to develop, it loses suitability to be the candidate observer

because of the following reasons:

1. The Observer operating environment must support, or, at least, must be capable of interacting to CORBA

interfaces. ZC-Basic does not have the capability to interface with CORBA.

Divisible Transferable Anonymous Electronic Cash System for General Use

6

2. Though Basic Card provides support for almost all security algorithms such as RSA with AES and DES

encryption, EC cryptography, SHA-1 etc, it is not dependable when it would be used in off-line e-cash domain

or even as e-cash processing unit. At least, Basic Card has to support the calculations used in the e-cash proto-

col.

3. A general purpose e-cash needs to interact to various types of applications such as travel tickets, gasoline,

parking, shopper, etc in addition to the wallet, purse, loyalty etc written in different programming languages and

deployed for different organizations. Integration among such applications, specially in the global aspect, would

be almost impossible unless there is a common interface platform. ZC-Basic language is designed with the Basic

Card in mind. Here, all programs must be written in ZC-Basic language and the use of Basic Card hardware

must be ensured.

4. Basic Card does not provide open platform. Hence, deployment and use of new encryption algorithms are

not possible. Someone has to wait until it is enabled by the manufacturer itself.

B. Research Approach with MUSCLE Card

MUSCLE [15] has been passed through a number of changes, Hence, installation and usage of smartcard soft-

ware under MUSCLE is a complex task. The experiment was carried out on Linux (Fedora 8) environment and

the smartcard devices were collected from ACS [21]. We used the ACR38DT smartcard reader/writer and the

Gem Combi smartcard from Gem Plus Inc [24].

We installed and configured PC/SC Lite driver (pcsc-lite-1.3.3.tar.gz), ACR38DT driver (ACR38UDriver-1.8.0-

1.i386.rpm), libmusclecard-1.3.3, MuscleCard BundleTool, MuscleCard Framework 1.1.6 and MuscleCard Plu-

gin. Then we inserted the GemCombi smartcard into the card reader, selected appropriate communicator from

the BundleTool and ran the test program. Fig. 6 shows a code snippet to connect the card reader.

// connect to card

Sz Readers = msz Readers;

rv = SCard Connect (hContext,

 sz Readers,

 SCARD_SHARE_SHARED,

 SCARD_PROTOCOL_T0,

 &hCard,

 & dw Active Protocol);

...

...

Figure 6. MUSCLE card code snippet.

Findings from MUSCLE Card Experiment: MUSCLE Card could be the best e-cash observer candidate. Recent

MUSCLE researches approach towards distributed processing where there is separation between application

code inside the card and the card operating system (COS) itself. Java has the same capability and hence,

MUSCLE extends the research towards Java enabled smartcards called Java Card.

C. Research Approach with Java Card

 In Java card, the Java Card Runtime Environment (JCRE) requires a fair amount of computational

power in order to work properly. Experiments were carried out in Java card simulator using 16K of ROM, 8K of

EEPROM, and 256 bytes of RAM. We used Java Card API specification provided by Sun Microsystems Inc. It

requires Java card Workstation Development Environment (WDE). We developed the card services using new

classes to run on Java card platform RMI API, and the card services ran on simulated environment using T=1

protocol. The card services used port number 9011 and 9022 with interfaces to bank and wallets. Bank and wal-

let components were developed in CORBA architecture using LiDIA library sets in C++ language, and the ob-

server is was implemented in Java language. The bank server and wallet ran on two separate PCs with 1.7 GHz

processor each. The experiment was carried out in Linux environment. Fig. 7 shows components‟ architecture

and their interfaces. Fig. 8 shows an interfacing code segment.

Divisible Transferable Anonymous Electronic Cash System for General Use

7

JNI

J
a

v
a

 C
a

r
d

 R
M

I
In

te
r
fa

c
e

C
O

R
B

A
 I
D

L

Java

client

C++

client

Observer

Applets

(implemented

in Java card)

Bank Server

(implemented

in C++)

C
O

R
B

A
 I
D

L

R
M

I
In

te
r
fa

c
e

RMI

IIOP

UserObserver Bank

Figure 7. Wallet with Java card observer and bank server component architecture.

...

...

Account_ptr

Bank_impl::create()

Account_impl * ai = new Account_impl;

Account_ptr aref = ai->this();

assert (!CORBA::in_nil (aref));

...

...

Figure 8. Code segment shows pointer for bank interface.

V. DESIGN ISSUES
 Bank issues Java based smartcards to users. The smartcard contains the observer for e-cash transac-

tions. User performs e-cash transactions through ATM or his/her PC. If ATM is used to perform e-cash transac-

tions, ATM carries out the tasks those the user's wallet does. If e-cash transactions are not performed through

ATMs, the user's PC runs the wallet. In this case, a smartcard reader device is attached to the user's PC. Both the

ATM and the wallet, running in user's PC, are connected to the bank component. The wallet, running in ATM or

user's PC, performs e-cash loading, spending and depositing to bank in presence of respective observers.

 In this design, we use ATM as both the smartcard reader and the execution platform of the wallet appli-

cation. The term User is used to represent the wallet. Observer of the e-cash system is the smartcard system.

A. Use Cases

Following are the use cases of the system.

Use Case 1: Bank setup and account opening

Precondition Customer inserts Observer

(smartcard) into the ATM.

Successful

outcome

h and h
t
 are stored in Observer

and ejects the Observer to cus-

tomer.

Primary actor ATM

Secondary

actor

User, Observer and Account

Main scenario 1. User inputs x and x
t
 into the

Bank system.

2. Bank generates h and h
t
, and

stores them into the Observer.

Post scenario h and h
t
 are stored in the Observer

and ejects the Observer to cus-

tomer.

Divisible Transferable Anonymous Electronic Cash System for General Use

8

Use Case 2: Withdrawal of e-cash by user 0U

Precondition Customer has balance in his ac-

count maintained in the bank and

has a valid Observer (smartcard)

inserted into the ATM.

Successful

outcome

Coins are generated into the wal-

let and transferred to the Observ-

er.

Primary actor ATM, User and Observer

Secondary

actor

Account

Main scenario 1. Customer inputs withdrawal

amount.

2. Bank creates coins and stores

them into the Observer.

 Use Case 3: Withdrawal of coin extension by user 1U

Precondition Customer has an account in the

bank.

Successful

outcome

Blank coins are generated into the

Observer.

Primary actor ATM, User and Observer

Secondary

actor

Account

Main scenario Bank creates blank coins and

stores them into the Observer.

Use Case 4: Coin transfer from user 0U to user 1U

Precondition 1. Two Observers inserted into

ATM.

2. Two Users communicate to

each other.

Successful

outcome

Coins are transferred from one

User to other User.

Primary actor 1. Spending User

2. Observer of spending User

3. Receiving User

4. Observer of receiving User

Main scenario 1. Spending User inputs amount

to be transferred.

2. Spender‟s Observer validates

input and erases required number

of coins.

3. Spending User creates a

transcript and transfers it to

receiving User.

4. Receiving User stores the

received transcript into receiver‟s

Observer.

Divisible Transferable Anonymous Electronic Cash System for General Use

9

Use Case 5: Deposit

Precondition Customer inserts Observer (smart-

card) into the ATM.

Successful

outcome

Coins are deposited to customer‟s

account in his bank.

Primary actor ATM

Secondary

actor

User, Observer and Account

Main scena-

rio

1. Customer inputs amount to be

deposited.

2. User generates a transcript and

sends it to the ATM.

3. ATM validates the transcript.

4. Observer erases required coins

if the Bank sends

acknowledgement.

Post scenario h and h
t
 are stored in the Observer

and ejects the Observer to custom-

er.

B. Parameters

p , q , g , 1g , 2g , H : System parameters published by the bank
txx, : Secret keys of bank

thh, : Public keys of bank

10 ,uu : Users' secret keys

10 ,oaoa : Observers' secret keys

C. Implementation Classes

Since APIs, supporting blending technique, are not specified in Java card specification, we designed blending

APIs to perform various actions inside Java card. Classes and interfaces related to blending keys and parameters

those used in Java card are as follows:

 javacard.security.BlendRandom - This class helps generating random values.

 javacard.security.BlendBigInt - This class helps blending large integers of bank server and unmatched

integers inside Java card observer.

 javacard.security.BlendBigMod - This class helps calculating blended modulus for large parameters of

bank server and unmatched parameters inside Java card.

 javacard.security.BlendPower - This class helps calculating blended power for large integers of bank

server and unmatched integers inside Java card.

 javacard.security.BlendGenerateTree - This class helps constructing binary tree for blended values of

coin inside Java card.

Fig. 9 shows sample code for using APIs related to blending technique.

...

...

Blend Big Int coin Count = (Blend Bid Int) (wl/l);

Byte [] buffer = new byte[coin Count];

Blend Random random = Blend Random. Get Instance (Blend Random. RAND);

...

Blend Generate Tree tree = Blend Generate Tree. set Coin (total Value, tree Depth);

...

...

Figure 9. Sample code for using APIs related to blending technique.

Divisible Transferable Anonymous Electronic Cash System for General Use

10

VI. RESULTS
We used various sizes of keys in the observer with fixed key size of bank and wallet. Fig. 10 and Fig. 11 are two

screenshots while the experiment was carried out using Basic Card.

..

Generating Secret key for card

EEPROM Max size: 8096 byte

Card side Code size: 7258 byte

EEPROM Used: 7258 byte

Inititlization code size: 3552 byte

Terminal code size: 3674 byte

..

Figure 10. Basic card runtime environment.

Figure 11. Sample output of Basic Card program.

Table I shows Basic Card performance with various sizes of integers used to generate secret keys.

Table I. Performance analysis of basic card with various sizes of secret keys

Integer

Size

Time for

Random Hash

(sec)

Time for se-

cret key (sec)

Total time

taken

(sec)

1 0.092 0.0291 0.1211

2 0.094 0.0328 0.1268

3 0.095 0.0355 0.1305

In the experiment using Java card we used various sizes of keys in the observer with fixed key size of bank and

wallet. Sample output of compiling, loading and execution of applets is given in Fig. 12.

Received ATR = 0x3b 0xf0 0x11 0x00 0xff 0x00

...

...

CLA: 80, INS: 30, P1: 00, P2: 00, Lc: 01, 64, Le: 00, SW1: 90, SW2: 00

CLA: 80, INS: 50, P1: 00, P2: 00, Lc: 00, Le: 02, 00, 64, SW1: 90, SW2: 00

CLA: 80, INS: 40, P1: 00, P2: 00, Lc: 01, 32, Le: 00, SW1: 90, SW2: 00

CLA: 80, INS: 50, P1: 00, P2: 00, Lc: 00, Le: 02, 00, 32, SW1: 90, SW2: 00

CLA: 80, INS: 30, P1: 00, P2: 00, Lc: 01, 80, Le: 00, SW1: 6a, SW2: 83

CLA: 80, INS: 50, P1: 00, P2: 00, Lc: 00, Le: 02, 00, 32, SW1: 90, SW2: 00

CLA: 80, INS: 40, P1: 00, P2: 00, Lc: 01, 33, Le: 00, SW1: 6a, SW2: 85

CLA: 80, INS: 50, P1: 00, P2: 00, Lc: 00, Le: 02, 00, 32, SW1: 90, SW2: 00

CLA: 80, INS: 40, P1: 00, P2: 00, Lc: 01, 80, Le: 00, SW1: 6a, SW2: 83

CLA: 80, INS: 50, P1: 00, P2: 00, Lc: 00, Le: 02, 00, 32, SW1: 90, SW2: 00

...

...

Figure 12. Snapshot of the output of Applet Compilation and Loading.

Table II shows processing time for various sizes of keys generated by the observer while the number of tree

nodes were 63.

Divisible Transferable Anonymous Electronic Cash System for General Use

11

Table I. Processing Time for The Combination Of Various Lengths Of Keys

Length of Keys

generated by bank

and wallet

Length of keys

generated by

Observer

Processing

Time (msec)

310 8 165.882

310 10 254.156

310 22 478.521

VII. SECURITY
 Inherent security mechanism of smartcard prevents coin tempering inside it. Specially, Java has a clear

separation between the card operating system (COS) and applications running on it to ensure distributed and

secured execution environment [25]. Moreover, adoption of Schnorr identification scheme [26] guaranties effi-

ciency of the secret keys.

 Smartcard and the user's personal computer compose the user's electronic wallet, and they participate in

transactions together. Only keys and calculation parameters are exchanges via open network; no coins are

transmitted out of the card or even allowed to get in from the outer world. When user spends any coins, he needs

to activate smartcard by any means. Smartcard erases the coin trace from its coins' tree by itself. Any illegal

attempts can be traced instantly by the observer during spending coins. On the other hand, smartcard cannot be

activated without active command issued from the wallet. Thus, this protocol not only prevents double-spending

but also ensures that the card is useless if stolen or theft.

VIII. CONCLUSION
 Most electronic cash (e-cash) based payment systems that have been proposed do not possess the prop-

erty of both divisibility and transferability. Transferability in an e-cash based system means that when a payee

receives an electronic coin in a transaction, he/she may spend it without depositing the coin and getting a new

coin issued from a bank. In this paper, a single-term e-cash system where coins can be divided into smaller to-

kens and can be transferred over multiple hands, spread over various transactions similar to physical cash has

been presented. It has also the prior resistance of double spending. At withdrawal time, the user must construct

the tree 'bottom-up'; hence, the divisibility precision is determined and set at withdrawal time and, most impor-

tantly, the user's computation is on the order of the divisibility precision, O(N). Similarly, at payment time the

user must either reconstruct the nodes to be spent from the scratch or store them in memory; hence, either the

computation or the storage requirements are in O(N). Additionally, the user must 'link' each node to the root of

the tree at payment. Hence, the communication per spent node is O(log(N)). This paper introduces a divisible

transferable e-cash scheme which can be practically implementable. A prototype of the divisible e-cash protocol

is implemented and tested in small scale with CORBA so that it can be easily transferred to mobile devices. The

security of the coin transfer is double checked i) by the observer (which indicates safe off-line transaction) and

ii) by checking double spender at any stage of transaction(which is performed by the bank while the coin is de-

posited). The design of the divisible e-cash is basically done for mobile devices (Jahan, Sarker and Rahman,

2009) which has more computational capabilities and able to form a small scale nework with bluetooth technol-

ogy. The proposed e-cash protocol successfully handles both on-line and off-line transaction. The security of all

transactions are defended which indicates the use of the e-cash protocol is ready for mass scale. Moreover, the

proposed scheme can attach expiration date to coins so that the banking system can manage its databases more

efficiently. We can extend our idea with currency conversion technique to cope with the different currencies of

the world and the use of multiple banks. To transfer an amount that is specialized in a different currency than the

currency maintained by the tamper-resistance device, the following technique can be used. When the tamper

resistant device receives e-cash it multiplies the amount by an appropriate conversion rate-a field, specification,

can be reserved in the tamper-resistant device that indicates the two currencies involved in the payment, and the

conversion rate used for these two currencies. This field can be filled in at payment time by the parties involved

in the payment. This specification will also contain the date and time. So, the bank can verify at deposit whether

a correct conversion rate has been applied to the two currencies specified in specification. If not, it rejects the

payment transcript. Different Internet banks can co-exist. Each bank can issue its own electronic cash tokens, by

using its own signature scheme. One way to embody this is to let each bank use its own secret key x. When only

a limited number of banks is participating, the public keys of each bank can be stored locally at the service pro-

viders. If there are a great many banks, the public-key certificate technique can be used to enable service pro-

viders to verify the validity of electronic cash tokens of banks that are not known to them. Hereto, a master-

organization must issue a public-key certificate on the public key of each Internet bank, which can then be trans-

ferred along with the other payment data to the service provider. To settle between multiple banks, a clearing

center must be used.

Divisible Transferable Anonymous Electronic Cash System for General Use

12

REFERENCES
[1] Jiangxiao Zhang, Zhoujun Li, Hua Guo, Chang Xu, “Efficient Divisible E-Cash in the Standard Mod-

el”, Green Computing and Communications (GreenCom), 2013 IEEE and Internet of Things (iTh-

ings/CPSCom), IEEE International Conference on and IEEE Cyber, Physical and Social Computing,

pp. 2123-2128, August 2013.

[2] Cong Wang, Hongxiang Sun, Hua Zhang, Zhengping Jin, “ An Improved Off-Line Electronic Cash

Scheme”, Computational and Information Sciences (ICCIS), 2013 Fifth International Conference, pp.

438-441, June 2013.

[3] Bin Lian, “A provably secure and practical fair E-cash scheme”, IEEE International Conference on

Information Theory and Information Security (ICITIS), pp. 251-255, December 2010.

[4] Kamlesh Tiwari, “Transferable E-Cash Without Observer”, A Thesis for Master of Technology,

Department of Computer Science and Engineering, Indian Institute of Technology Kanpur, July 2009.

[5] L. Wen-yuan, L. Yong-an, S. Ya-li, W. Bao-wen and L. Feng, “Offline divisible e-cash scheme based

on smart card”, in Eighth ACIS International Conference on Software Engineering, Artificial

Intelligence, Networking, and Parallel/Distributed Computing, pp. 799-804, IEEE, 2007.

[6] I. Jahan and M. Z. Rahman, “A realistic divisible transferable electronic cash for general use”, Journal

of Discrete Mathematical Science and Cryptography, vol. 10 (2007), No. 1, pp. 125-150, 2007.

[7] C. Lam and J. Liu, “Mobile agent clone detection system using general transferable e-cash”, in

International Conference on Information Security, 2002.

[8] D. Chaum and T. Pederson, “Wallet database with observer”, pp. 89-105, Spriger-Verlag, Berlin

Heidel-berg, 1993.

[9] N. Ferguson, “Single term offline coins”, in Advances in Cryptology: Eurocrypt '93, Proceedings,

Lecture Notes in Computer Science no. 765, pp. 318-328, Springer-Verlag, 1993.

[10] R. Cramer and T. Pedersen, “Improved privacy in wallets with observers”, in Advances in Cryptology:

Eurocrypt '93, Proceedings, Lecture Notes in Computer Science no. 765, pp. 329-343, Springer-Verlag,

1993.

[11] S. Brands, “Untraceable off-line cash in wallets with observers”, in Advances in Cryptology: Pre-

Proceedings of Crypto '93, 1993.

[12] X. Hou and C. Tan, “Fair traceable off-line electronic cash in wallets with observers”, in Proceedings

of the 6th International Conference on Advanced Communication Technology, pp. 595-599, 2004.

[13] I. Jahan, Efficient Electronic Cash for General Use, PhD Thesis, Jahangirnagar University, Savar,

Dhaka, Bangladesh, 2009.

[14] Basic Card, “Basic Card Products”, available at http://www.ZeitControl.de, last visited on September

2008.

[15] MUSCLE, Movement for the use of smart card in Linux environment, “PC/SC implementation for

Linux”, available at http://www.linuxnet.com, last visited on May 2008.

[16] Sun Microsystems Inc., Java Card

2.2.2, Application Programming Interface specification, 2005.

[17] D. Chaum, “Blind signature for untraceable payments”, in Proceedings of Advances in Cryptology -

Crypto '83, pp. 199-203, 1983.

[18] D. Chaum, A. Fiat, and M. Naor, “Untraceable electronic cash”, in Proceedings. Crypto '88 - Advances

in Cryptology, Santa Barbara, California, Lecture Notes in Computer Science, vol. 403, pp. 319-327,

Springer, Berlin, 1990.

[19] R. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital signatures and public key

cryptosystems”, ACM, vol. 21, pp. 120-126, 1978.

[20] T. Okamoto and K. Ohta, “Universal Electronic Cash”, in Advances in Cryptology- Crypto „91, pp.

321-337, 1991.

[21] Y. Tiannis, Efficient Electronic Cash: New Notations and Techniques. PhD Thesis, North-eastern

University Boston, Massachusetts, 1997.

[22] D. Chaum and T. Pederson, “Wallet databases with observers”, in E. Brickell editor, Advances in

Cryp-tology - Crypto '92, Proceedings, Lecture Notes in Computer Science, pp. 89-105, Springer-

Verlag, New York, 1993.

[23] ACS, Advanced Card Systems Ltd, available at http://www.acs.com.hk, last visited on May 2008.

[24] Gemalto, Home Page, available at http://gemalto.com, last visited on April 2009.

[25] Z. Chen, Java Card Technology for Smart Cards, Addison-wesley, 2000.

[26] C. P. Schnorr, “Efficient signature generation by smart cards”, Journal of Cryptography, vol. 4, pp.

161-174, 1991.

[27] Gemalto NV, .NET Card, available at http://www.gemalto.com/products/dotnet_card/, last visited on

June 2009.

[28] I.Jahan, K.M. Sarker and M.Z. Rahman “ Ecash observer implementation in smartcards”. 12th

International Conference on Computers and Information Technology, pp. 626-631. 2009.

