
International Journal of Engineering Research and Development

e-ISSN: 2278-067X, p-ISSN: 2278-800X, www.ijerd.com

Volume 10, Issue 4 (April 2014), PP.41-48

41

An Hierarchical Approach of processing Wavelet Co-efficient in

Breadth First Way by the Arithmetic coder

1
Sundaresha M P,

 2
Harish K V,

3
Prabhas R K,

4
Dinesha Shetty

1
Assistant Professor Department of ECE , Akshaya Institute of Technology, Tumkur

 2
Assistant Professor Department of CSE, Dr. M V Shetty Institute of Technology, Moodbidri

3
Assistant Professor Department of ECE, Dr. M V Shetty Institute of Technology, Moodbidri
4
Assistant Professor Department of ECE, Dr. M V Shetty Institute of Technology, Moodbidri

Abstract:- A high-throughput memory-efficient arithmetic coder architecture for the set partitioning in

hierarchical trees (SPIHT) image compression is proposed based on a simple context model in this paper. The

architecture benefits from various optimizations performed at different levels of arithmetic coding from higher

algorithm abstraction to lower circuits implementations. First, the complex context model used by software is

mitigated by designing a simple context model, which just uses the brother nodes’ states in the coding zero tree

of SPIHT to form context symbols for the arithmetic coding. The simple context model results in a regular

access pattern during reading the wavelet transform coefficients, which is convenient to the hardware

implementation, but at a cost of slight performance loss. Second, in order to avoid rescanning the wavelet

transform co efficient, a breadth first search SPIHT without lists algorithm is used instead of SPIHT with lists

algorithm. Especially, the coding bit-planes of each zero tree are processed in parallel. Third, an out-of-order

execution mechanism for different types of context is proposed that can allocate the context symbol to the idle

arithmetic coding core with a different order that of the input. For the balance of the input rate of the wavelet co

efficient, eight arithmetic coders are replicated in the compression system. And in one arithmetic coder, there

exists four cores to process different contexts. Fourth, several dedicated circuits are designed to further improve

the throughput of the architecture. The common bit detection (CBD) circuit is used for unrolling the

renormalization stage of the arithmetic coding. The carry look- ahead adder (CLA) and fast multiplier-divider

are also employed to shorten the critical path in the architecture. Moreover, an adaptive clock switch mechanism

can stop some invalid bit-planes’ clock for the power saving purpose according to the input images.

Experimental results demonstrate that the proposed architecture attains a throughput of 902.464 Mb/s at its

maximum and achieves savings of 20.08% in power consumption over full bit-planes coding scheme based on

field- programmable gate arrays (FPGAs).

Keywords:- Arithmetic coding, common bit detection (CBD) circuit, context model, out-of-order execution, set

partitioning in hierarchical trees (SPIHT), VLSI arithmetic coder architecture.

I. INTRODUCTION
 Arithmetic coding (AC) [1], [2] method can obtain optimal performance for its ability to generate codes

with fractional bits, it is widely used by various image compression algorithms, such as the QM in JPEG [3], the

MQ in JPEG2000 [4]–[6], and the context-based adaptive binary arithmetic coder (CABAC) [7], [8] in H.264.

Especially, the set partitioning in hierarchical trees (SPIHT) [9] uses an AC method to improve its peak signal-to-

noise ratio (PSNR) about 0.5 dB. Although the theory and program code of AC are mature, the complicated

internal operations of AC limit its application for some real time fields, such as satellite image and high speed

camera image compressions. In order to achieve performance gains, high speed architecture of AC in

compression scenarios must be designed to meet the throughput requirement.

Thus both industrial and academic research groups have put their efforts to AC hardware architectures

for various image compression systems. However, there are two main challenges in hardware architecture design

for high speed applications. One is data dependencies in AC which require the result of iteration before next run

can commence during the adaptive model update and internal loops. The other one is that AC requires

increasingly greater precision as more data arrive. In order to deal with such difficulties, several architectures are

proposed in the past years.

Wiseman [10] proposed systolic hardware architecture for a quasi AC which is a simple version of AC.

In [10], the architecture uses a pipeline processing to compute each stage of AC, which eliminates an internal

high frequency clock and utilizes a fast lookup table for state transitions. Although the architecture can improve

the speed of the internal operations, such as the probability interval update and cumulative calculations, it cannot

offer supports for multi-contexts AC processing in image compression fields. For the QM coder in JPEG, Andra’s

[11] gave a new architecture which decreases operations for the more probable symbol (MPS) and used a non-

An Hierarchical Approach of processing Wavelet Co-efficient in Breadth First Way by the Arithmetic coder

42

overlap window style for the speedup purpose. In [11], the probability interval partition is accelerated by

exchange of the less probable symbol (LPS) interval with the MPS interval. Thus the amount of operations is

reduced by 60%–70% compared with other coders. Another highlight of [11] is the non-overlap window that is

applied to the continuous MPS in order to simplify renormalization operation. Due to simple operations in

Andra’s coder, the performance is slightly lowered by 1%–3% .

 In SPIHT algorithm aspect, many researchers proposed various modifications to improve performance

of SPIHT. Some algorithms aim for better PSNR values, which do not concern about hardware issues. Kassim

[12] introduced a method for selecting an optimal wavelet packet transform (WPT) basis for SPIHT, which

efficiently compacts the high-frequency sub-band energy into as few trees as possible and avoids parental

conflicts. Their proposed SPIHT-WPT coder achieved improved coding gains for highly textured images. Ansari

[13] proposed a context based SPIHT (CSPIHT) method, which used segmentation and interactive method for

selecting the contextual region of interest mask to achieve a better performance results in medical images. In

order to reduce memory and speed up SPIHT software, Akter [14] used one list to store the coordinates of

wavelet coefficients instead of three lists of SPIHT and merged the sorting pass with the refinement pass together

as one scan pass. On the other side, Wheeler [15] proposed a modified SPIHT algorithm which does not use lists.

Because of no insert and search operations for list, the speed of algorithm can be improved greatly.

 In SPIHT implementation area, corresponding architectures are mainly designed for SPIHT algorithm

without AC. Memory bands for storing the wavelet coefficients are used in SPIHT coder [16], [17]. But for some

large width images, for example, satellite images, it is difficult to integrate many memories on board in the

memory bands architectures. Fry and Hauck [18] realized a configurable SPIHT coder with field programmable

gate array (FPGA) devices, which can reach a throughput of 244 Mpixels/s. Huang [19] gave his SPIHT

implementation architecture which modified the coefficient scanning process of SPIHT and used a 1-D

addressing method for the wavelet coefficients. The throughput of [19] can be 30 frames per second with CIF

images. Ritter [20] proposed an SPIHT coder with reduced access to random memory. Pan [21] proposed a

listless modified SPIHT which reduced memory in hardware architecture. Unfortunately, all of these architectures

mentioned above did not give a detailed AC part description in their coders. However for some critical

applications, an AC part in SPIHT is nontrivial in order to further improve the performance. Therefore it is

necessary to design a high speed AC architecture for SPIHT.

 As far as architecture is concerned, there are three stages during implementation. The first step for

designing an AC in SPIHT is to set a context model suitable for hardware processing. One of context model is

designed in the QccPackSPIHT by Fowler [22]. In the architecture, a simple context model based on the

QccPackSPIHT software is designed, which just exploits the relationship of nodes in one zerotree and establishes

four types of context for current position value, current position sign, descendant set (D set) and grant descendant

set (L set). The second step is to remove the internal loops of AC and arrange different modules for hardware.

The last step is to connect all modules by different paths to build one AC. The main contributions of this

architecture can be summarized as follows.

 A simple context state model which is based on the neighbor pixels’ significant states is designed for

hardware implementation. In order to achieve high speed architecture, we adopt a fixed breadth first

search scan order for SPIHT coding instead of variable scan order to avoid rescanning the wavelet

coefficients. Based on this scanning order, we design a simple context model which just uses the brother

nodes’ states in the coding tree for the fast processing purpose. The degradation of performance in

PSNR values compared with the QccPackSPIHT

 According to the context model, different context symbols formed by SPIHT algorithm are processed in

parallel by the arithmetic coder for the speedup purpose. In order to improve the throughput of our

arithmetic coder, we utilize two methods to remove the bottlenecks in the whole image coding process.

One method is a bit-plane parallel scheme for all wavelet co efficient bitplanes, which changes the

process order of bit-plane from sequential to parallel manner. The other important way is an out of order

mechanism for the execution in the arithmetic coder. By the out of order execution for multiple contexts,

the coding speed can be accelerated greatly. Thus the architecture is able to consume multiple input

symbols in one clock cycle.

 For power efficient design, a dedicated adaptive power management module is used to stop clocks for

the invalid bit-plane, which contains no information about the wavelet coefficients. And the memory

access pattern is also compacted for power saving purpose.

 According to SPIHT, the number of bit-planes used for representing the wavelet coefficients varies with

different images. The rich content images may use more bits to represent the wavelet coefficients. On the other

hand, the poor content images may require fewer bits to represent these coefficients. Then, we can stop some bit-

plane coders by cutting its input clock according to the maximal coefficient in wavelet domain adaptively. We

An Hierarchical Approach of processing Wavelet Co-efficient in Breadth First Way by the Arithmetic coder

43

also analyze the pattern of memory access and optimize the memory behavior in the architecture to reduce power

consumption

II. BACKGROUND AND MOTIVATION
 Basically, AC will shorten the length of the coding Interval continuously as new symbols arrive. If the

input symbol’s probability is high, the shrink of the coding interval will be slow. Otherwise, if there are some rare

symbols in the coder, the speed of shrink will be fast. Thus, the coding interval will be large at the end of coding

for high probability symbols which consume fewer bits for final codes than those of low frequency symbols.

In practical applications, conditional probabilities of symbols have better performance than non-conditional

probabilities do. Then the context-based AC is widely used in the various fields. The context means conditions

for current symbol. As far as the image coding is concerned, the context refers to neighbor pixels states. After the

transform stage in compression, the coefficients have the property of energy compaction.

 Then different coefficients form different context windows using a preset model. The different contexts

will be sent to independent coding parts for updating the interval and emitting the code bits.

A. SPIHT Image Compression

 SPIHT with lists algorithm uses three different lists to store significant information of wavelet

coefficients for image coding purpose. Three lists are list of insignificant sets (LIS), list of insignificant pixels

(LIP), and list of significant pixels (LSP). At first, SPIHT combines nodes of a coefficient tree in wavelet domain

and its successor nodes into one set which is denoted as insignificant. With traveling each tree node, sets in the

LIS are partitioned into four different subsets which are tested for significant state.

If the magnitudes of nodes in the set are less than some predefined threshold, i.e., the set is insignificant, a bit will

be emitted for the entire set. Because of similarity of coefficients in a zero tree, the strategy used in the partition

procedure can be very efficient for coding transform information. That is why SPIHT can use fewer bits to code

coefficients of one image after wavelet transform.

 During the partition processing, AC consumes coding symbols with its contexts and switches to the

different probability interval. After updating the probability interval, AC outputs the final coding bits. The key

factor of AC performance is its context scheme. If the context model is simple, the corresponding hardware

complexity is low at a cost of performance degradation. On the contrary, with the complicated context forms, the

performance of AC can be improved, but the capacity of memory and throughput will be a significant bottleneck

in architecture.

B. Challenges with SPIHT arithmetic coding architecture

 As far as hardware architecture of arithmetic coder in SPIHT is concerned, there are three main

challenges for designers to solve during real-time implementation. First, a large amount of coding symbols is

supplied to arithmetic coder which can be a bottleneck for high speed real-time applications. Because the scheme

of SPIHT is a bit-plane based method, which codes each bit-plane from the most significant bit- plane (MSB) to

the least significant bit-plane (LSB) sequentially, the quantity of context symbols for arithmetic coder will be

proportional to the coded planes that are determined by the maximal wavelet coefficient. For the 9/7 wavelet

filter, the precision of wavelet coefficient will be increased compared to the pixel precision after transformation

stage. Therefore in order to keep speed balance between the wavelet transformation and the arithmetic coder, the

throughput of arithmetic coder must match the input rate of the wavelet stage. For the design of arithmetic coder,

we test some typical images with different pixel precision and compression ratio using the QccPackSPIHT

software. The number of context symbols used for the arithmetic coding is shown in Tables I–III. In Tables I–III,

the average context symbols per pixel and the bit-planes used for arithmetic coding are proportional to the bit rate

and the bit depth of pixel. In order to achieve the balance mentioned above, there are two basic ways for the

arithmetic coder, i.e., increasing the clock frequency of arithmetic coder without area overhead or multiple

arithmetic coders’ replication without the clock frequency increment.

An Hierarchical Approach of processing Wavelet Co-efficient in Breadth First Way by the Arithmetic coder

44

 In the architecture, a replication method is used to alleviate the bottleneck. Second, the memory size in a

single arithmetic coder can be limited for implementation. The memory used for the probability values and the

cumulative probability values are main parts for the arithmetic coder. In order to simplify the architecture, we

need small size of memory for these parts. In software, every probability value is represented by an aligned data

type, which is not efficient as the real range for the probability used. Therefore in the architecture design, we

cannot use simple array for these memory part as software does. The last challenge comes from the carry

propagation problem caused by the probability update operation, which increases the critical path of the coder and

reduces the speed of arithmetic coder.

III. SPIHT WITH BREADTH FIRST SEARCH AND ITS CONTEXT MODEL FOR

ARITHMETIC CODING
A. Bit-plane parallel SPIHT with breadth first search

 In order to prevent multiple scan of the wavelet coefficients that is difficult for the real-time hardware

implementations, we uses the breadth first search (BFS) for traveling a zero tree. The SPIHT-BFS visits each

coefficient only once and outputs coding information to form context symbols according to the corresponding

context model for hardware.

 After the SPIHT-BFS is defined, the main challenge for hardware implementation comes from the

sequential processing style of bit-planes. In order for bit-plane parallel processing, all kinds of significant

information for each bit- plane, i.e., the pixel significant information, the set and the set significant information

should be achieved simultaneously. According to the significant test function, if a pixel turns to be significant at

P+1 th bit-plane, then it will be permanently significant for the the other bit-planes from the th to the LSB bit-

plane. On the other side, if the magnitude bit of a pixel at the th bit-plane is 1, but the current state of the pixel is

insignificant, then the pixel also becomes significant. Therefore a pixel’s significant state at the p
th

 bit- plane is

defined by the following formula:

 Note: Sig
p
 (i,j) is the significant state for pixel at of(i,j) of pth bit-plane, mag

p
 (i,j) stands for the

corresponding magnitude value.After expanding formula (2) the relationship between significance of each

coefficient and magnitude bit can be obtained. For the architecture design, an OR gates array can be exploited for

the significant states. Then the significant information is independent on the coding planes. For the D set

significant state and the L set significant state, we can also exploit some logic gates and delay unit to realize

parallel processing Then all information needed for coding a tree is ready for parallel processing Because the set

significant state bits can only be resolved by logic gates after one tree is visited, a whole tree needs to be stored.

Fig. 1 draws the travel order of zero tree by the breadth first search with three levels of wavelet transform. The

pipeline can be used for the SPIHT-BFS and the latency is just one zero tree clocks

B. Context model for ac in SPIHT with breadth first search

 In SPIIT BFS, wavelet coefficients are organized into zero trees through bands. The coding information

is formed during each run of visiting from the MSB bit-plane to the LSB bit-plane. And for the tradeoff between

memory constraint and coding performance, the context model should be confined to only one zero tree. In order

to reduce complexity, only four types of information is used to form context model in the coding stage, i.e., the

current position significant, the magnitude value, the current position sign value, the current position descendant

set value and the current position grant descendant set value.

 In SPIHT-BFS, each node in the zero tree can emit four types of information, i.e., FC (for the current

position significant or magnitude value), FSign (for the current position sign value), FD (for the current position

descendant set value), and FL (for the current position grant descendant set value). Four bits will output at most if

all information are valid. If all kinds of information are invalid, there is no bit emitted in the code stream. During

the context design, the context type is divided into four categories according to the four types above. For a node

in a zero tree, the root node and non-root nodes can be treated by different ways. Fig. 1 shows the position of two

kinds of nodes. The root node has no brother in the same level, but has three son nodes in the next level. On the

other hand, a non-root node has four son nodes in the next level. For the simplicity, the label is used in Fig. 1 as

An Hierarchical Approach of processing Wavelet Co-efficient in Breadth First Way by the Arithmetic coder

45

the context window for both root and non-root nodes. Then the context model can be built on the state of these

four nodes. When the node is visited in a zero tree, the context of current node is depended on the other three

neighbor nodes’ state. For each type of information, there are 2
3
=8 contexts. And the total context number is

4*8=32 for the four types of information. The symbol of each context is 0 or 1, which means significant state for

the FC, FD, FL, or FSign state for the current node. In order to reduce the context number, we decrease each type

of information’s context to 4. Then the total number of context can be reduced to 16.

Fig. 1 Node’s position in the zero tree.

IV. ARCHITECTURE OF ARITHMETIC CODER
A. Whole SPIHT Architecture

In Fig. 2, the detailed architecture of SPIHT encoding is shown.

 The original images are transformed by the line based lifting wavelet engine [24] at first. The

transformed coefficients are written into the wavelet coefficients buffer. The processor dispatcher receives

coefficients in the breadth first way from the wavelet coefficients buffer and allocates these coefficients to one of

arithmetic coders (ACs) from eight processors array through the internal bus. In order to adapt a wide precision

and compression ratio range, eight arithmetic coders are symmetric and work in parallel. The output of each

arithmetic coder is sent to the internal bus and is distributed to the corresponding codeFIFO by the code FIFO

dispatcher. The Read FIFO and Truncate module are responsible for the final code stream formation, which reads

each code FIFO from top to bottom and truncates the code stream according to the bit rate requirement. Besides

the main parts in the architecture, there are some auxiliary modules in Fig. 2. The power management part will

stop the clock input for the unused bit-planes of each arithmetic coder based on the maximal bit-plane register file

for power reduction. The configuration and control part is responsible for the parameters setting such as image

resolution, wavelet type, decomposition level and target bit rate. The control signals for the whole architecture are

also asserted by this part.

Fig. 2 Architecture of SPIHT encoding

An Hierarchical Approach of processing Wavelet Co-efficient in Breadth First Way by the Arithmetic coder

46

Fig. 3 Arithmetic coder’s core structure.

 From Fig. 2, the arithmetic coder in the overall architecture plays an important role during the coding

process. The arithmetic coder consists of three main parts, i.e., the tree construction noted as Tree Con, the bit

plane context FIFOs array and the coding core. The tree construction part visits the wavelet coefficients by the

breadth first search order. During the reading process, the context values of each bit-plane are formed based on

the context model mentioned. For speedup, all valid bit planes are scanned in parallel. The invalid bit-planes are

idle by stopping the corresponding clock. The bit plane context FIFOs array includes twelve FIFOs, which store

the context values of twelve bit-planes. The size of each FIFO is 256 × 5 bits because each code tree has 256

nodes and 16 different contexts will use 4 bits, the last bit is used for the binary context symbol. The coding core

part reads these context first-input–first-outputs (FIFOs) sequentially and calculates the corresponding context to

form code bytes.

Fig. 4 Internal structure of arithmetic coder.

B. Architecture of AC Core

 The structure of the core part is illustrated in Fig. 3. The input signals can be divided into two categories,

i.e., the context related and the control related. When the context label and binary code symbol arrive, the context

switch differentiates the input context and sends the context value to the context dispatcher by different paths.

The main task of the context dispatcher is to schedule the order of the input contexts, which are sent to different

calculation cores. In order for speedup, the context dispatcher can emit the context values to each core by a

disorder, which means that execution order can be different from that of input. A small buffer for context value is

set in the context dispatcher to implement reorganizing the processing order. Table V shows an example of

execution using twelve different contexts. Each of four coding cores has its state register to indicate whether the

coding core can receive new context. When there is no context in the buffer. The state of core is set to idle. If a

context symbol arrives, the state of core is set to the context label to block any new context. The dispatcher

checks the states to find if there is an idle core. Then the dispatcher combines several contexts and emits them to

the corresponding cores. The context and its binary symbol are emitted to the corresponding calculation cores,

i.e., FC core, FSign core, FD core, and FL core through the internal bus. If the incoming context is blocked, it will

An Hierarchical Approach of processing Wavelet Co-efficient in Breadth First Way by the Arithmetic coder

47

be delayed in the dispatcher and wait for the next clock cycle to be emitted. At beginning, four cores are ready for

processing the contexts. Then in the first clock cycle, four contexts are emitted simultaneously. In the second

clock cycle, two new contexts arrive. As (FD0, D0) context pair is not finished (FD1, D1), context pair is

blocked. Only (FC1, D1), context pair can be emitted to the FC core because (FC0, D0), has been done by the FC

core. But in the third clock cycle, the (FD1, D1), context pair can be emitted to the FD core because the FD core

is ready to process new pair

 From Fig. 3, every code core works independently, which allows multi-contexts being calculated in

parallel. Then the outputs of each core are connected with another bus. The code stream reorder buffer is used to

sort the order of each code core as the execution order differs from the input order. The code stream multiplex

module collects all code bits emitted by the code cores and assembles these bits into bytes. The code stream bytes

are finally emitted to external by output ports. The internal structure of each code core is identical, as shown in

Fig. 4. For each core, the Read Context and Symbol part compares the context label with its internal register to

judge whether the context label conforms to its own tag. Then the correct label is transmitted to Boundary Update

part. In this part, the upper and lower bounds are computed by two different parts, i.e., Upper Bound Update and

Lower Bound Update. The coding symbol probability register file records the symbol probability values for the

symbol. The cumulative probabilities Cum_freq[i]and Cum_freq[i-1] , which are stored in the cumulative

probability register file, accompanied with the old bound values high and low to compute new bounds for the

probability interval. The outputs of two update parts, i.e., new_high and new_low, are calculated by these

variables based on the formula (1). Fig. 6 gives the detailed calculation units for these values. There are only one

adder and one multiplier in the unit which is suitable for high speed implementation with FPGA devices. For

speedup purpose, a CLA and a fast multiplier array are employed to reduce the delay of critical path. The new

bound values are then registered and connected to the common bit detector (CBD) part which unrolls the internal

loop and records the same bits from the MSB to the LSB between two registers. At last the same bits are collected

to form byte-align code stream in the Bit Assembly. These bytes are supplied directly to the Code Stream Output

part for emitting bytes to the external bus. The Coding Control part is responsible for the whole code core’s

running and sending the various commands and control signals.

V. EXPERIMENTAL RESULTS
A. Software Results

The experimental results come in two folds, i.e., software and hardware. First, PSNR results for typical

images using different SPIHT methods are recorded, including SPIHT with arithmetic, SPIHT without arithmetic,

SPIHT without lists and arithmetic and our SPIHT prototype. Table VI lists the detailed data. From the results,

SPIHT- HW is slightly lower than SPIHT-AC as the precision is limited during the wavelet transform and a

simple context model is involved.

An Hierarchical Approach of processing Wavelet Co-efficient in Breadth First Way by the Arithmetic coder

48

B. Hardware Results Based on FPGA Device

The overall architecture including the wavelet part and the arithmetic part is synthesized and simulated

by VHDL using XC2V3000 as target device. The results are reported by XILINX ISE9.1-XST and shown in the

Table VII. The maximal clock frequency is 56.404 MHz. For hardware implementation, the input is confined to

gray images with resolution of 1024+1024 and the precision of pixel from 8 bits to 16 bits. Thus the throughput

of whole compression system is 56.404 frames per second (fps). Then for pixel precision of 16 bits with

resolution 1024 +1024, the throughput of coder can be56.404×1024×16= 902.464 Mb/s at its maximum. We also

synthesize this part and record the results in the Table VIII. There are four contexts processed simultaneously in

the architecture. Each context uses one bit for symbols. Then four symbols can be consumed simultaneously. The

throughput is 71.05 ×4 MSPS/s, i.e., 284.2 MSPS/s.

VI. CONCLUSION
Arithmetic coding makes itself a standard technique for its high efficiency. However, as far as hardware

implementation is concerned, the complexity of calculation limits AC in the filed of high speed real-time coding.

For improvement of throughput purpose, we propose a high speed architecture of AC used in SPIHT without lists

algorithm. In the architecture, a simple context scheme is used first to reduce the memory size. Then high speed

calculation units are employed for speedup purpose. Especially, a power control module can reduce the power

dissipation efficiently. It is a high parallelism and calculation device that makes the speed of context processing

fast. From the simulation results, our AC architecture can meet many high speed image compression

requirements. And the degradation of performance incurred by the fixed point calculation is slight.

REFERENCES
[1] J. Rissanen, “Generalized kraft inequality and arithmetic coding,” IBM J. Res. Developm., vol. 20, no.

3, pp. 198– 203, May 1976.

[2] J. Rissanen and G. G. Langdon, “Arithmetic coding,” IBM J. Res. Developm., vol. 23, no. 2, pp. 149–

162, Mar. 1979.

[3] ISO/IEC JTC1 Information Technology-Digital Compression and Coding of Continuous-Tone Still

Images-Part 1: Requirements and Guidelines, ISO/IEC International Standard 10918-1, ITU-T

Rec.T.81, 1993.

[4] JPEG2000 Part I Final Draft International Standard, ISO/IEC JTC1/ SC29/WG1 N1890, Sep. 2000.

[5] D. Taubman, “High performance scalable image compression with EBCOT,” IEEE Trans. Image

Process., vol. 9, no. 7, pp. 1158–1170,Jul. 2000.

[6] B. Cao, Y.-S. Li, and K. Liu, “VLSI architecture of MQ encoder in JPEG2000,” J. Xidian Xuebao, vol.

31, no. 5, pp. 714–718, Oct. 2004.

[7] D. Marpe, H. Schwarz, and T. Wiegand, “Context-based adaptive binary arithmetic coding in the

H.264/AVC video compression standard,” IEEE Trans. Circuits Syst. for Video Technol., vol. 13, no.

7, pp.620–636, Jul. 2003.

[8] Said and W. A. Pearlman, “A new ,fast and efficient image codec based on set partitioning in

hierarchical

[9] R. Stefo, J. L. Núñez, C. Feregrino, S. Mahapatra, and S. Jones “FPGA-Based modelling unit for high

speed lossless arithmetic coding,” Field-Program. Logic Appl. Lecture Notes Comput. Sci., vol.

2147/2001, pp. 643–647, 2001.

[10] K. M. Marks, “A JBIG-ABIC compression engine for digital document processing,” IBM J. Res.

Developm., vol. 42, no. 6, pp. 753–758, Jun. 1998.

[11] Adaptive on-line binary arithmetic coding chip,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 45, no.

7, pp. 693–706, Jul. 1998.

[12] H. Printz and P. Stubley, “Multi alphabet arithmetic coding at 16 MBytes/sec,” in Proc. Data

Compression Conf., Mar. 1993, pp.128–137.

