
International Journal of Engineering Research and Development

e-ISSN: 2278-067X, p-ISSN: 2278-800X, www.ijerd.com

Volume 11, Issue 07 (July 2015), PP.60-65

60

Comparison of Adders for optimized Exponent Addition circuit

in IEEE754 Floating point multiplier using VHDL

Nishi Pandey
1
, Virendra Singh

2

Sagar Institute of Research & Technology Bhopal

Abstract:- Floating point arithmetic has a vast applications in DSP, digital computers, robots due to its ability

to represent very small numbers and big numbers as well as signed numbers and unsigned numbers. In spite of

complexity involved in floating point arithmetic, its implementation is increasing day by day. Here we compare

three different types of adders while calculating the addition of exponent bits while calculating the single

precision and double precision floating point multiplication. We also present the multiplication of

mantissa/significand bits by decomposition of operands method for IEEE 754 standard multiplication. Here we

break down the mantissa bits of each single precision floating point operand into 4 Parts, each of six bits.

Likewise we breakdown the mantissa bits of double precision floating point operand into 4 Parts, 3 parts of 13

bits each and one part of 14 Bits. We get 16 partial product terms in each case. Careful addition of these partial

product terms are required to get the product of mantissas.

Keywords:- IEEE754, Single Precision Floating Point (SP FP), Double Precision Floating Point (DP FP),

Maximum Combinational Path Delay (MCPD).

I. INTRODUCTION
 IEEE 754 and IEEE 854 are the two standards used to represent floating point numbers. IEEE 854

standard uses variable length of bits to represent the floating point numbers. IEEE 754 is the most widely used

format for representing floating point numbers in computers, providing four level of precision. It is a fixed point

representation [1]. Most of the algorithms implemented in FPGAs are to be fixed point. The floating point

operations has many applications in the various fields because of its great dynamic range, easy operation rules

and high precision. IEEE754 encodes floating point numbers in memory in a way such that it packs three fields

the sign, exponent and significand as follows .The leading bit is the sign bit,0 for + and 1 for-.The next 8 bits

(11 bits for double precision floating point number)hold a biased exponent .the last 23 bits (52 bits for double

precision floating point number)hold the significand‟s magnitude. It is shown in figure 1. In IEEE754 floating

point representation, the exponent is biased in the sense that it is offset value from the actual value by the

exponent bias [2].

Exponent need to be signed values to represent both very small and huge values. Biasing makes the values of

exponents within an unsigned range suitable for high speed comparison.

Figure 1: IEEE 754 Single Precision and Double Precision Floating Point Format

 Greater data precision available with 64 bits representation (double precision floating point

representation), but processing 64 bits of data uses twice as much RAM, cache , and bandwidth, thereby

reducing the overall system performance as compare to 32 bits representation(single precision floating point

representation) [3]. The word double here means double precision number uses twice as many bits as a regular

floating point number (32 bits). The extra bits increase not only the precision but also the range of magnitudes

that can be represented.

o Decimal to IEEE754 Standard Floating Point

The following algorithm needs to be follow to convert a decimal number in to IEEE754 standard floating point

[4].

Comparison of Adders for optimized Exponent Addition circuit in IEEE754 Floating point multiplier using...

61

 Represent the decimal number into binary format.

 Normalize the binary number.

 Normalization is the process in which radix point is either shifted right or to the left such that the MSB

is “1”(add or subtract the exponent accordingly).

 The biased exponent E=exponent value derived from the step 2(normalized exponent) +bias (127 for

single precision floating point and 1023 for double precision floating point).

 Convert E into binary and finally we get exponent E.

 After normalization, bits after the radix point become significand bits. The first bit (1) is not including

in the format that is why it is called the hidden bit.

II. IEEE 754 STANDARD FLOATING POINT MULTIPICATION ALGORITHM
A brief overview of floating point multiplication has been explained below [5-6].

 Both sign bits S1, S2 are need to be Xoring together, then the result will be sign bit of the final product.

 Both the exponent bits E1, E2 are added together, then subtract bias value from it. So, we get exponent

field of the final product.

 Significand bits Sig1 and Sig2 of both the operands are multiply including their hidden bits.

 Normalize the product found in step 3 and change the exponent accordingly. After normalization, the

leading “1 “will become the hidden bit.

Above algorithm of multiplication algorithm is shown in Figure 2.

Figure 2: IEEE754 SP FP and DP FP Multiplier Structure, NE: Normalized exponent,

NS: Normalized Significand

III. EXPONENT ADDER

 In digital electronics most of the adders are used for adding numbers in binary and produces sum bits

and carry bit. Adders can be constructed for any numerical representation such as binary coded decimal, Excess-

3 etc. An adder plays an important role not only in arithmetic logic unit but also in other processors. Many types

of adders are available using different logics to add the binary numbers. Half adder and full adder are the two

most commonly used and basic building blocks for other adders. Half adder adds two bits and produces carry bit

and sum bits whereas full adder adds 3 bits and produces sum bits and carry bit. These two adders are the

simplest types of adders. More complex adders are also available which can adds more than three bits. Parallel

adder, Carry skip adder and Cary select adder are some of them.

o Parallel adder

 Parallel adder can add all bits in parallel manner i.e. simultaneously hence increased the addition speed.

In this adder multiple full adders are used to add the two corresponding bits of two binary numbers and carry bit

of the previous adder. It produces sum bits and carry bit for the next stage adder. In this adder multiple carry

produced by multiple adders are rippled, i.e. carry bit produced from an adder works as one of the input for the

adder in its succeeding stage. Hence sometimes it is also known as Ripple carry adder (RCA). Generalized

diagram of parallel adder is shown in Figure 3.

Comparison of Adders for optimized Exponent Addition circuit in IEEE754 Floating point multiplier using...

62

Figure 3: Block Diagram of Exponent Parallel Adder

o Carry Skip Adder

This adder gives the advantage of less delay over Ripple carry adder. It uses the logic of carry skip, i.e. any

desired carry can skip any number of adder stages. Here carry skip logic circuitry uses two gates namely “and

gate” and “or gate”. Due to this fact that carry need not to ripple through each stage. It gives improved delay

parameter. It is also known as Carry bypass adder. Generalized figure of Carry skip adder is shown in Figure 4.

Figure 4: Block Diagram of Exponent Carry Skip Adder

o Carry select adder

 Carry select adder uses multiplexer along with RCAs in which the carry is used as a select input to

choose the correct output sum bits as well as carry bit. Due to this, it is called Carry select adder. In this adder

two RCAs are used to calculate the sum bits simultaneously for the same bits assuming two different carry

inputs i.e. „1‟ and „0‟. It is the responsibility of multiplexer to choose correct output bits out of the two, once the

correct carry input is known to it. Multiplexer delay is included in this adder. Generalized figure of Carry select

adder is shown in Figure 5.

Figure 5: Block Diagram of Exponent Carry Select Adder

Comparison of Adders for optimized Exponent Addition circuit in IEEE754 Floating point multiplier using...

63

IV. PROPOSED DESIGN
 In IEEE754 standard floating point representation, 8 bit Exponent field in single precision floating

point (SP FP) representation and 11 bit in double precision floating point (DP FP) representation are need to

add with another 8 bit exponent and 11 bit exponent respectively, in order to multiply floating point numbers

represented in IEEE 754 standard as explained earlier. Ramesh et al [1] has used parallel adder for adding

exponent bits in floating point multiplication algorithm. We proposed the use of carry select adder and Carry

skip adder for adding the exponent bits. We have found the improved path delay of Carry select adder and Carry

skip adder over the parallel adder. We have designed parallel adders, Carry select adders and Carry skip adders

for exponent addition of single precision floating point multiplier (8 bit) and double precision floating point

multiplier (11 bit).

o Sign bit calculation

 To calculate the sign bit of the resultant product for SP FP and DP FP multiplier, the same strategy will

work. We just need to xoring together the sign bits of both the operands. If the resultant bit is „1‟, then the final

product will be a negative number. If the resultant bit is „0‟, then the final product will be a positive number.

o Exponent bit calculation

Add the exponent bits of both the operands together, and then the bias value (127 for SPFP and 1023 for DPFP)

is subtracted from the result of addition. This result may not be the exponent bits of the final product. After the

significand multiplication, normalization has to be done for it. According to the normalized value, exponents

need to be adjusted. The adjusted exponent will be the exponent bits of the final product.

o Significand bit calculation

 Significand bits including the one hidden bit are need to be multiply, but the problem is the length of

the operands. Number of bits of the operand will become 24 bits in case of SP FP representation and it will be

53 bits in case of DP FP representation, which will result the 48 bits and 106 bits product value respectively. In

this paper we use the technique of break up the operands into different groups then multiply them. We get many

product terms, add them together carefully by shifting them according to which part of one operand is multiplied

by which part of the other operand. We have decomposed the significand bits of both the operands ain four

groups. Multiply each group of one operand by each group of second operand. We get 16 product terms. Then

we add all of them together very carefully by shifting the term to the left according to which groups of the

operands are involved in the product term.

V. SIMULATION RESULT
 We functionally verified each unit presented in this paper including all three adders and two IEEE754

multipliers. We have been found from the results shown in Table .1, that number of slices used is same in case

of Carry select adder and Parallel adder which is less than slices used in Carry skip adder, but also Carry select

adder gives least amount of path delay. So we designed SP FP and DP FP multiplier using Carry select adder

whose device utilization summary is given inTable.2.

Table 1: Comparisons result for Exponent Adder used in SPFP and DPFP Multiplier

Comparison of Adders for optimized Exponent Addition circuit in IEEE754 Floating point multiplier using...

64

Table 2: Device utilization summary (VertexE-XCV50e-8cs144) of SP FP and DP FP multiplier using

Carry select adder

We have implemented the Carry Select Adder for SP FP and DP FP, also the multipliers on vertexE whose RTL

(Resistor Transistor Logic) view are shown as below. a and b are the exponent inputs bit, s, c is the exponent

output bit as shown in figure 6(a) and 6(b) respectively.

 The RTL view of the SPFP and DPFP multiplier using exponent carry select adder are shown in Figure

7(a) and 7(b) respectively. In this figure e1 and e2 are the exponent bit, s1 and s2 are the sign bit whereas m1

and m2 are the mantissa (significand) bit of the two operands in SP FP and DP FP IEEE754 format. S3, e3 and

m3 are the sign bit, exponent bit and mantissa bit respectively of the product.

Figure 7(a): RTL view of SP FP Multiplier using Carry select adder

 SP FP Multiplier DP FP

Multiplier

No. of Slices 353 1480

No. of 4 input

LUTs

610 2620

No. of bounded

IOBs

121 246

Maximum

combinational

path delay(in ns)

22.021 31.624

Figure 6 (a): RTL view of Carry select adder (11 bit)

Figure 6 (b): RTL view of Carry select adder (8 bit)

Comparison of Adders for optimized Exponent Addition circuit in IEEE754 Floating point multiplier using...

65

Figure 7(b): RTL view of DP FP Multiplier using Carry select adder

VI. CONCLUSION
 IEEE754 standarize two basic formats for representing floating point numbers namely, single precision

floating point and double precision floating point. Floating point arithmetics has a vast applications in many

areas like robotics and DSP. Delay provided and area required by hardware are the two key factors which are

need to be consider Here we present single precision floating point multiplier and double precision multiplier by

using three different adders namely parallel adder,Carry skip adder and Carry Select aader.

Among all three adders, carry select adder provides the least amount of Maximum combinational path delay

(MCDP). Also, it takes least number of slices i.e. occupy least area among all three adders. So, we implement

the SP FP multiplier and DP FP multiplier by using Carry select adder on virtex E XCV50e-8cs144.

REFERENCES
[1]. B. Fagin and C. Renard, "Field Programmable Gate Arrays and Floating Point Arithmetic," IEEE

Transactions on VLS1, vol. 2, no. 3, pp. 365-367, 1994.

[2]. N. Shirazi, A. Walters, and P. Athanas, "Quantitative Analysis of Floating Point Arithmetic on FPGA

Based Custom Computing Machines," Proceedings of the IEEE Symposium on FPGAs for Custom

Computing Machines (FCCM"95), pp.155-162, 1995.

[3]. Malik and S. -B. Ko, “A Study on the Floating-Point Adder in FPGAs”, in Canadian Conference on

Electrical and Computer Engineering (CCECE-06), (2006) May, pp. 86–89.

[4]. D. Sangwan and M. K. Yadav, “Design and Implementation of Adder/Subtractor and Multiplication

Units for Floating-Point Arithmetic”, in International Journal of Electronics Engineering, (2010), pp.

197-203.

[5]. M. K. Jaiswal and R. C. C. Cheung, “High Performance FPGA Implementation of Double Precision

Floating Point Adder/Subtractor”, in International Journal of Hybrid Information Technology, vol. 4,

no. 4, (2011) October.

[6]. L. Louca, T. A. Cook and W. H. Johnson, “Implementation of IEEE Single Precision Floating Point

Addition and Multiplication on FPGAs”, Proceedings of 83rd IEEE Symposium on FPGAs for Custom

Computing Machines (FCCM‟96), (1996), pp. 107–116.

[7]. Jaenicke and W. Luk, "Parameterized Floating-Point Arithmetic on FPGAs", Proc. of IEEE ICASSP,

vol. 2, (2001), pp. 897-900.

[8]. Lee and N. Burgess, “Parameterisable Floating-point Operations on FPGA”, Conference Record of the

Thirty-Sixth Asilomar Conference on Signals, Systems, and Computers, (2002).

[9]. M. Al-Ashrafy, A. Salem, W. Anis, “An Efficient Implementation of Floating Point Multiplier”, Saudi

International Electronics, Communications and Photonics Conference (SIECPC), (2011) April 24-26,

pp. 1-5.

