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Abstract:- Floating point arithmetic has a vast applications in DSP, digital computers, robots due to its ability 

to represent very small numbers and big numbers as well as signed numbers and unsigned numbers. In spite of 

complexity involved in floating point arithmetic, its implementation is increasing day by day. Here we compare 

three different types of adders while calculating the addition of exponent bits while calculating the single 

precision and double precision floating point multiplication. We also present the multiplication of 

mantissa/significand bits by decomposition of operands method for IEEE 754 standard multiplication. Here we 

break down the mantissa bits of each single precision floating point operand into 4 Parts, each of six bits. 

Likewise we breakdown the mantissa bits of double precision floating point operand into 4 Parts, 3 parts of 13 

bits each and one part of 14 Bits. We get 16 partial product terms in each case. Careful addition of these partial 

product terms are required to get the product of mantissas. 

  

Keywords:- IEEE754, Single Precision Floating Point (SP FP), Double Precision Floating Point (DP FP), 

Maximum Combinational Path Delay (MCPD). 

 

 

I. INTRODUCTION 
 IEEE 754 and IEEE 854 are the two standards used to represent floating point numbers. IEEE 854 

standard uses variable length of bits to represent the floating point numbers. IEEE 754 is the most widely used 

format for representing floating point numbers in computers, providing four level of precision. It is a fixed point 

representation [1]. Most of the algorithms implemented in FPGAs are to be fixed point. The floating point 

operations has many applications in the various fields because of its great dynamic range, easy operation rules 

and high precision. IEEE754 encodes floating point numbers in memory in a way such that it packs three fields 

the sign, exponent and significand as follows .The leading bit is the sign bit,0 for + and 1 for-.The next 8 bits 

(11 bits for double precision floating point number)hold a biased exponent .the last 23 bits (52 bits for double 

precision floating point number)hold the significand‟s magnitude. It is shown in figure 1. In IEEE754 floating 

point representation, the exponent is biased in the sense that it is offset value from the actual value by the 

exponent bias [2].  

Exponent need to be signed values to represent both very small and huge values. Biasing makes the values of 

exponents within an unsigned range suitable for high speed comparison. 

 

 
Figure 1: IEEE 754 Single Precision and Double Precision Floating Point Format 

 

 Greater data precision available with 64 bits representation (double precision floating point 

representation), but processing 64 bits of data uses twice as much RAM, cache , and bandwidth, thereby 

reducing the overall system performance as compare to 32 bits representation(single precision floating point 

representation) [3]. The word double here means double precision number uses twice as many bits as a regular 

floating point number (32 bits). The extra bits increase not only the precision but also the range of magnitudes 

that can be represented. 

 

o Decimal to IEEE754 Standard Floating Point 

The following algorithm needs to be follow to convert a decimal number in to IEEE754 standard floating point 

[4]. 
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 Represent the decimal number into binary format. 

 Normalize the binary number. 

 Normalization is the process in which radix point is either shifted right or to the left such that the MSB 

is “1”(add or subtract the exponent accordingly). 

 The biased exponent E=exponent value derived from the step 2(normalized exponent) +bias (127 for 

single precision floating point and 1023 for double precision floating point). 

 Convert E into binary and finally we get exponent E. 

 After normalization, bits after the radix point become significand bits. The first bit (1) is not including 

in the format that is why it is called the hidden bit. 

 

II. IEEE 754 STANDARD FLOATING POINT MULTIPICATION ALGORITHM  
A brief overview of floating point multiplication has been explained below [5-6]. 

 Both sign bits S1, S2 are need to be Xoring together, then the result will be sign bit of the final product. 

 Both the exponent bits E1, E2 are added together, then subtract bias value from it. So, we get exponent 

field of the final product. 

 Significand bits Sig1 and Sig2 of both the operands are multiply including their hidden bits. 

 Normalize the product found in step 3 and change the exponent accordingly. After normalization, the 

leading “1 “will become the hidden bit. 

Above algorithm of multiplication algorithm is shown in Figure 2. 

 

 
Figure 2: IEEE754 SP FP and DP FP Multiplier Structure, NE: Normalized exponent,  

NS: Normalized Significand 

 
III. EXPONENT ADDER 

 In digital electronics most of the adders are used for adding numbers in binary and produces sum bits 

and carry bit. Adders can be constructed for any numerical representation such as binary coded decimal, Excess-

3 etc. An adder plays an important role not only in arithmetic logic unit but also in other processors. Many types 

of adders are available using different logics to add the binary numbers. Half adder and full adder are the two 

most commonly used and basic building blocks for other adders. Half adder adds two bits and produces carry bit 

and sum bits whereas full adder adds 3 bits and produces sum bits and carry bit. These two adders are the 

simplest types of adders. More complex adders are also available which can adds more than three bits. Parallel 

adder, Carry skip adder and Cary select adder are some of them. 

 

o Parallel adder 

 Parallel adder can add all bits in parallel manner i.e. simultaneously hence increased the addition speed. 

In this adder multiple full adders are used to add the two corresponding bits of two binary numbers and carry bit 

of the previous adder. It produces sum bits and carry bit for the next stage adder. In this adder multiple carry 

produced by multiple adders are rippled, i.e. carry bit produced from an adder works as one of the input for the 

adder in its succeeding stage. Hence sometimes it is also known as Ripple carry adder (RCA). Generalized 

diagram of parallel adder is shown in Figure 3. 
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Figure 3: Block Diagram of Exponent Parallel Adder 

 

o Carry Skip Adder 

This adder gives the advantage of less delay over Ripple carry adder. It uses the logic of carry skip, i.e. any 

desired carry can skip any number of adder stages. Here carry skip logic circuitry uses two gates namely “and 

gate” and “or gate”. Due to this fact that carry need not to ripple through each stage. It gives improved delay 

parameter. It is also known as Carry bypass adder. Generalized figure of Carry skip adder is shown in Figure 4. 

 

 
Figure 4: Block Diagram of Exponent Carry Skip Adder 

 

o Carry select adder 

 Carry select adder uses multiplexer along with RCAs in which the carry is used as a select input to 

choose the correct output sum bits as well as carry bit. Due to this, it is called Carry select adder. In this adder  

two RCAs are used to calculate the sum bits simultaneously for the same bits assuming two different  carry 

inputs i.e. „1‟  and „0‟. It is the responsibility of multiplexer to choose correct output bits out of the two, once the 

correct carry input is known to it. Multiplexer delay is included in this adder. Generalized figure of Carry select 

adder is shown in Figure 5. 

 

 
Figure 5: Block Diagram of Exponent Carry Select Adder 
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IV. PROPOSED DESIGN 
 In IEEE754 standard floating point  representation, 8 bit Exponent  field in single precision floating 

point (SP FP) representation and 11 bit in double precision floating point (DP FP) representation  are need to 

add with another 8 bit exponent and 11 bit exponent respectively, in order to multiply floating point numbers 

represented in IEEE 754 standard as explained earlier. Ramesh et al [1] has used parallel adder for adding 

exponent bits in floating point multiplication algorithm. We proposed the use of carry select adder and Carry 

skip adder for adding the exponent bits. We have found the improved path delay of Carry select adder and Carry 

skip adder over the parallel adder. We have designed parallel adders, Carry select adders and Carry skip adders 

for exponent addition of single precision floating point multiplier (8 bit) and double precision floating point 

multiplier (11 bit).  

 

o Sign bit calculation 

 To calculate the sign bit of the resultant product for SP FP and DP FP multiplier, the same strategy will 

work. We just need to xoring together the sign bits of both the operands. If the resultant bit is „1‟, then the final 

product will be a negative number. If the resultant bit is „0‟, then the final product will be a positive number. 

 

o Exponent bit calculation 

Add the exponent bits of both the operands together, and then the bias value (127 for SPFP and 1023 for DPFP) 

is subtracted from the result of addition. This result may not be the exponent bits of the final product. After the 

significand multiplication, normalization has to be done for it. According to the normalized value, exponents 

need to be adjusted. The adjusted exponent will be the exponent bits of the final product.  

 

o Significand bit calculation 

 Significand bits including the one hidden bit are need to be multiply, but the problem is the length of 

the operands. Number of bits of the operand will become 24 bits in case of SP FP representation and it will be 

53 bits in case of DP FP representation, which will result the 48 bits and 106 bits product value respectively. In 

this paper we use the technique of break up the operands into different groups then multiply them. We get many 

product terms, add them together carefully by shifting them according to which part of one operand is multiplied 

by which part of the other operand. We have decomposed the significand bits of both the operands ain four 

groups. Multiply each group of one operand by each group of second operand. We get 16 product terms. Then 

we add all of them together very carefully by shifting the term to the left according to which groups of the 

operands are involved in the product term. 

 

V. SIMULATION RESULT 
 We functionally verified each unit presented in this paper including all three adders and two IEEE754 

multipliers. We have been found from the results shown in Table .1, that number of slices used is same in case 

of Carry select adder and Parallel adder which is less than slices used in Carry skip adder, but also Carry select  

adder gives least amount of path delay. So we designed SP FP and DP FP multiplier using Carry select adder 

whose device utilization summary is given inTable.2. 

 

Table 1: Comparisons result for Exponent Adder used in SPFP and DPFP Multiplier 
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Table 2: Device utilization summary (VertexE-XCV50e-8cs144) of SP FP and DP FP multiplier using 

Carry select adder 

 

 

 

 

 

 

 

 

 

 

 

 

We have implemented the Carry Select Adder for SP FP and DP FP, also the multipliers on vertexE whose RTL 

(Resistor Transistor Logic) view are shown as below. a and b are the exponent inputs bit, s, c is the exponent 

output bit as shown in figure 6(a) and 6(b) respectively. 

 

 
 

 
 

 

 The RTL view of the SPFP and DPFP multiplier using exponent carry select adder are shown in Figure 

7(a) and 7(b) respectively. In this figure e1 and e2 are the exponent bit, s1 and s2 are the sign bit whereas m1 

and m2 are the mantissa (significand) bit of the two operands in SP FP and DP FP IEEE754 format. S3, e3 and 

m3 are the sign bit, exponent bit and mantissa bit respectively of the product.   

 

 
Figure 7(a): RTL view of SP FP Multiplier using Carry select adder 

 SP FP Multiplier DP FP 

Multiplier 

No. of Slices 353 1480 

No. of 4 input 

LUTs 

610 2620 

No. of bounded 

IOBs 

121 246 

Maximum 

combinational 

path delay(in ns) 

22.021 31.624 

Figure 6 (a): RTL view of Carry select adder (11 bit) 

 

Figure 6 (b): RTL view of Carry select adder (8 bit) 
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Figure 7(b): RTL view of DP FP Multiplier using Carry select adder 

 

VI. CONCLUSION 
 IEEE754 standarize two basic formats for representing floating point numbers namely, single precision 

floating point and double precision floating point. Floating point arithmetics has a vast applications in many 

areas like robotics and DSP. Delay provided and area required by hardware are the two key factors which are 

need to be consider Here we present single precision floating point multiplier and double precision multiplier by 

using three different adders namely parallel adder,Carry skip adder and Carry Select aader.   

Among all three adders, carry select adder provides the least amount of Maximum combinational path delay 

(MCDP). Also, it takes least number of slices i.e. occupy least area among all three adders.  So, we implement 

the SP FP multiplier and DP FP multiplier by using Carry select adder on virtex E XCV50e-8cs144. 
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