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Abstract: This paper studies a public key generation in an enhanced ECC (Elliptic Curve Cryptosystem) using 

FPGA’s at the hardware implementation. To improve the strength of encryption and the speed of processing, the 

public key and the private key of EC(Elliptic curve) over GF(2n ) are used to form a shared private key (X,Y). 

And then the X is used with an initial point on HEC(Hyper-Elliptic Curve) over GF(2n ) to generate session 

keys, which are used with 3BC (Block Byte Bit Cipher) (see [1], [6], [13]) algorithm for the data encryption. We 

are investigating a novel approach of software/ hardware code sign implemented in Verilog Hardware 

Description Language (VHDL), which produces hardware algorithm components to place onto the FPGAs, 

thereby creating adaptive software overlays differentiated by use of a Universal Unique Identifier (UUID) as a 

functional operand to a custom Arithmetic Logic Unit (ALU). 
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I. INTRODUCTION 
1.1.  Hyper-Elliptic Curve Cryptosystem: 

A hyper-elliptic curve of genus  over a field  is given by the equation 

𝐶 ∶  𝑦2 + ℎ 𝑥 𝑦 = 𝑓 𝑥  ∈ 𝐾[𝑥, 𝑦] 
Where, ℎ 𝑥 ∈ 𝐾[𝑥] 

 

Is a polynomial of degree not larger than g and  f(x) ∈ K[x] is a monic polynomial of degree 2g + 1 [7]. 

From this definition it follows that elliptic curves are hyper-elliptic curves of genus 1. In hyper-elliptic curve 

cryptography K is often a finite field. The Jacobian of C, denoted J(C), is a quotient group, thus the elements of 

the Jacobian are not points, they are equivalence classes of divisors of degree 0 under the relation of linear 

equivalence. This agrees with the elliptic curve case, because it can be shown that the Jacobian of an elliptic 

curve is isomorphic with the group of points on the elliptic curve. The use of hyper-elliptic curves in 

cryptography came about in 1989 from Neal Koblitz [14]. Although introduced only 3 years after ECC, not 

many cryptosystems implement hyper-elliptic curves because the implementation of the arithmetic isn't as 

efficient as with cryptosystems based on elliptic curves or factoring (RSA). The efficiency of implementing the 

arithmetic depends on the underlying finite field K, in practice it turns out that finite field of characteristic 2 are 

good choices for hardware implementations while software is usually faster in odd characteristic.  

The Jacobian on a hyper-elliptic curve is an Abelian group and as such it can serve as group for 

the discrete logarithm problem (DLP) [30]. In short, suppose we have an Abelian group G and g an element 

of G, the DLP on G entails finding the integer  given two elements of G, namely g and g
a
. The first type of 

group used was the multiplicative group of a finite field, later also Jacobians of (hyper) elliptic curves were 

used. If the hyper-elliptic curve is chosen with care, then Pollard's rho method is the most efficient way to solve 

DLP. This means that, if the Jacobian has  elements, that the running time is exponential in log (n). This 

makes is possible to use Jacobians of a fairly small order, thus making the system more efficient. But if the 

hyper-elliptic curve is chosen poorly, the DLP will become quite easy to solve. In this case there are known 

attacks which are more efficient than generic discrete logarithm solvers or even sub-exponential. Hence these 

hyper-elliptic curves must be avoided. Considering various attacks on DLP, it is possible to list the features of 

hyper-elliptic curves that should be avoided. 

In 1988, Miller, N. Koblitz first forward hyper-elliptic curves cryptosystem as the expansion of ECC, 

the security of HECC is based on the discrete logarithm problem of hyper-elliptic curves on finite field, which is 

HECDLP(Hyper-elliptic Curve Discrete Logarithm Problem). Hyper-Elliptic Curve Cryptosystem has recently 

attracted some researcher’s interests because it gives that appear to offer equal security for a smaller key size. 

HECC is a typically fast public key cryptosystem and it has much superiority and application efficiency  [10-

13]. There are some superiorities of Hyper-Elliptic Curve cryptosystem such as high efficiency, short key length 

as compared with other public key cryptosystems are as follows: 
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(1) Cryptosystem based on hyper-elliptic curves Jacobian group has the same security level as cryptosystem 

based on elliptic curves rational point group with the same group order. For the security of hyper-elliptic 

curves cryptosystem is based on HECDLP (Hyper-elliptic Curve Discrete Logarithm Problem). 

(2) Hyper-elliptic curves cryptosystem can acquire the same security level with shorter operating parameters. 

For hyper-elliptic curves cryptosystem with genus of 3, if the basic finite field is 60 bits, the security level 

HECC is equivalent to that of ECC with 180 bits, and it is far more secure than RSA with 1024 bits (15-17). 

(3) At present, the attack algorithms against hyper-elliptic curves cryptosystem with Low genus g ( g<4 ) all  

prove to be in applicable with exponent complexity, as to hyper-elliptic curves cryptosystem with lower 

genus than 4, no effective attacking algorithms with sub-exponent complexity  have been found, so the 

security of  hyper-elliptic curves cryptosystem proves to be reliable. 

(4) In HECC, a secure Jacobian group with large prime number order can be constructed on a relatively smaller 

basic field [18]. 

 

 
Figure 1:  Hyper-elliptic Curve 

1.2.  Elliptic Curve Cryptography: 

ECC was proposed independently by Miller [8] and Koblitz [9] in 1985, is becoming widely known 

and accepted. Elliptic curves are mathematical constructions, that can be defined over and field. A field is 

defined by a set of elements and some operations that have some special properties. 

Order E is the finite field Fp on the elliptic curve, P is a point on the elliptic curve. E is defined by formula. 

Y
2
=x

3
+ax+b 

 

Where a, b ∈ Fp, and satisfies formula.  

4a
3
+27b

2
≠ 0(mod p) 

Set the order of P is a prime n, so that assemblage P is a cyclic subgroups of elliptic curves which 

generated by P. Prime P, elliptic curve equation E and order n constitute a public set of parameters.  

 

The ECC key pair generation algorithm is generated by following steps: 

(1) Choose a random integer d in [1,n-1].  

(2) Calculate Q=d*p. 

(3) Get the public key pair(Q,d). 

 

Where d is signified private key and Q is signified public key. 

To achieve the elliptic curve encryption, following steps need to do. 

Expressed plaintext m as an Elliptic Curve point M.  

(1) Choose a random key k in [1, n-1]. 

(2) Calculate C1=k*p. 

(3) Calculate C2=M+k*Q. 

(4) Get the public key pair (C1, C2). 

 

Where C1 and C2 are cipher texts. 

The decryption process is receiver calculate M by formula M = C2 + d * C1, then get plaintext m. 
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Figure 2: Elliptic curve 

 

II. THE MATHEMATICAL OVERVIEW 
 

2.1. Hyper-Elliptic Curve Cryptography 

In the study of cryptosystem, hyper-elliptic curve has recently attracted some researchers’ interests 

because it gives that appears to offer equal security for a far smaller key size, thereby saving the processing 

overhead because it gives the same security level with a smaller key length as compared to cryptosystems using 

elliptic curves. From the fact it is expected to be possible to use hyper-elliptic curves to factor integers, since 

elliptic curve method exploits the property of the Abelian groups in the same way as the cryptosystems. 

A hyper-elliptic curve H of genus g(g=>1) over a field F is a nonsingular curve that is given by an 

equation of the following form: 

H :v
2
+ h(u)v = f(u) (in F[u, v]) 

      Where h(u) ∈ F[u] is a polynomial of degree< = g, and f(u) ∈ F[u] is a monic polynomial of degree 2g + 1. 

 

2.1.1. Divisors: 

Divisors of a hyper-elliptic curve are pairs denoted div (a(u), b(u)), where a(u) 

and b(u) are polynomials in GF(2
n
)[u] that satisfy the congruence 

b(u)
2
+ h(u) b(u)  ≡f(u)(moda(u)) 

 

They can also be defined as the formal sum of a finite number of pointson the hyper-elliptic curve. 

Since these polynomials could have arbitrarily large degree and still satisfy the equation, the notion of a reduced 

divisor is needed. In a reduced divisor, the degree of a(u) is no greater than g, and the degree of b(u) is less than 

the degree of a(u). 

 

2.1.2. Reduced divisors: 

   Let H be a hyper-elliptic curve of genus g over a field F. A reduced divisor(definedover F) of H is 

defined as a form div (a, b), wherea, b ∈ F[u] are polynomial such that: 

(1) a is monic, and deg b <deg a  ≤ g, 

(2) a divides (b
2
+bh - f). 

In particular div (1, 0) is called zero divisor. 

 

Algorithm 1: Reduction of a divisor to a Reduced Divisor. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input: A semi-reduced divisor, D = div (a, b). 

Output: The equivalent reduced divisor, D'= div D(a', b') ~ D. 

1. Set a'= (f - bh - b
2
)/a and b'= (-h-b)(moda'). 

2. If degua'>g then set a = a', b = b'and go to step 1. 

3. Let c be the leading coefficient of a'. Set  a'=c
−1

 a′. 

4. Output D'= div (a', b'). 
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2.1.3. Adding divisors: 

If  D1= div (a1, b1) and D2= div (a2, b2) are two reduced divisors defined over F, then Algorithm 2 finds 

a semi-reduced divisor or reduced divisor D3= div (a, b).To find the unique divisor, D3= div (a, b), Algorithm 1 

should be used just after the addition of two divisors. 

 

Algorithm 2:  Addition defined over the group of divisors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.4. Message Encryption And Decryption 

Let us suppose a text file has to be encrypted, a user can encrypt the ASCII code of each and every 

printable character on the keyboard, let us say he has to encrypt an 8bitnumber, 

canrepresent128charactersonthekeyboard.Figure shows the sequence of steps to be followed when a message to 

be encrypted and decrypted using Hyper-elliptic Curve Cryptography. 

 

III. PROPOSED WORK 
3.1. Encryption And Decryption With 3bc Algorithm 

With 3BC algorithm, the procedure of data encryption is divided into three parts, inputting plaintext 

into data block, byte-exchange between blocks, and bit-wise XOR operations between data and session key. 

 

3.1.1. Session Key Generation 

As we know that the value which is obtained by multiplying one’s private key by the other’s public key 

is the same as what is computed by multiplying one’s public key to the other’s private key. The proposed key 

generation HEC with 3BC algorithm to generate session keys and cipher text. The encryption and decryption are 

processes. The result of generates a session key for 3BC. With this advantage and the homogeneity of the result 

of operations, the proposed 3BC algorithm uses a 64-bit session key to perform the encryption and decryption. 

Given the sender’s private key Ks and the receiver’s public key Pr, we multiply Pr by Ks to obtain a point KsPr 

=(X, Y ) on HEC, where X = X1X2…..Xm  and  Y = Y1Y2…..Yn. Then we form a key N by concatenating X and 

Y (i.e.N = X1X2. . .XmY1Y2. . .Yn), and generate the session keys as follows: 

 

i. If the length (number of digits) of X or Y exceed four, then the extra digits on the left are truncated. And 

if the length of X or Y less than four, then they are p added with 0’s on the right. This creates a number 

N'= X'1X'2X'3X'4Y'1Y'2Y'3Y'4. Then anew number N'' is generated by taking the modulus of each digit in 

N' with 8. 

ii. The first session key sk1 is computed by taking bit-wise OR operation on N'' with the reverse string of 

N''. 

iii. The second session key sk2 is generated by taking a circular right shift of sk1 by one bit. And repeat this 

operation to generate all the subsequent session keys needed until the encryption is completed. 

 

3.1.2. Block Data Input 

    The block size is defined as 64 bytes. A block consists of 56 bytes for input data, 4 byte for the data 

block number, and 4 byte for the byte-exchange block number (see Figure). During the encryption, input data 

stream are blocked by 56 bytes. If the entire input data is less than 56 bytes, the remaining data area in the block 

is padded with each byte by a random character. Also, in the case where the total number of data blocks filled is 

odd, then additional block(s) will be added to make it even, and each of those will be filled with each byte by a 

Input: Two reduced divisors, D1 = div (a1, b1) and D2 = div(a2, b2). 

Output: A reduced divisor or semi-reduction divisor, D3= div (a, b) 

1. Compute d1,  e1  and  e2  which satisfy 

d1=GCD (a1, a2) and d1= e1a1+ e2a2. 

 

2. If d= 1, then 

a:= a1a2, b := (e1a1b2+e2a2b1)mod a, 

 

Otherwise do the following: 

(1) Compute d,c1 and  s3which satisfy 

d = GCD (d1, b1 + b2 + h)  and  d = c1d1+ s3(b1+ b2+ h). 

(2) Let and s1:= c1e1and s2:= c1e2, so that d= s1a1 +s2a2                                             +s3(b1+b2+h) 

(3) Leta := a1a2/d2,b := (s1a1b2+ s2a2b1+ s3(b1b2+ f))/d (mod a). 

3. Output D3= div (a, b). 
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random character as well. Also, a data block number in sequence is assigned and followed by a byte-exchange 

block number, which is either 1 or 2. 

 

 
Figure: Structure of block 

 

3.1.3. Byte-Exchanges Between Blocks 

After filling the data into the blocks, we begin the encryption by staring with the first data block and 

select a block, which has the same byte-exchange block number for the byte exchange. In order to determine 

which byte in a block should be exchanged, we compute its row-column position as follows: 

For the two blocks whose blocks exchange number, n = 1, we compute the following: 

Byte-exchange row= (Ni* n) mod 8 (i = 1, 2 . . . 8), 

Byte-exchange col = ((Ni*n) + 3) mod 8 (i = 1, 2 . . . 8), 

 

Where Ni is a digit in N''. These generate 8 byte-exchange positions. Then for n = 1, we only select the 

non-repeating byte position (row, col) for the byte-exchange between two blocks whose block exchange 

numbers are equal to 1. Similarly, we repeating the procedure for n=2. The following example illustrates the 

process of byte-exchange: 

 

 
n = 1                     n = 2 

Figure: Exchange bytes at (row, col) for a selected pair of blocks 

 

Example: Given the values of a sender’s public key 21135 and a receiver’s private key 790, we compute the 

position of row and col for byte-exchange as follows: 

For n = 1. It follows that N''= 11357900 (after truncation, padding and concatenation), and 

row = ((1, 1, 3, 5, 7, 9, 0, 0) * 1)mod 8 = (1, 1, 3, 5, 7, 1, 0, 0) and 

col = (((1, 1, 3, 5, 7, 9, 0, 0) * 1 + 3)mod 8) = (4, 4, 6, 0, 2, 4, 3, 3). 

 

This results 8 byte-exchange positions, (1,4), (1,4), (3,6), (5,0), (7,2), (1,4), (0,3) and(0,3). However, counting 

only once for repeating pairs, the four bytes at (1,4) (3,6), (5,0), and (7,2) will be selected for byte-exchange 

between two blocks (see Figure). 

For n = 2, we have 

row = ((1, 1, 3, 5, 7, 1, 0, 0) * 2)mod 8 = (2, 2, 6, 2, 6, 2, 0, 0) and 
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col = (((1, 1, 3, 5, 7, 1, 0, 0) * 2 + 3)mod 8 = (5, 5, 1, 5, 1, 5, 3, 3), 

which results 8 byte-exchange positions, (2,5), (2,5), (6,1), (2,5), (6,1), (2,5), (0,3) and (0,3). Similarly, only 

three byte positions at (2,5), (6,1), and (0,3) are used for byte-exchanges between two blocks as shown in 

Figure. 

 

3.1.4. Bit-Wise Xor Between Data And Session Keys 

After the byte-exchange is done, the encryption proceeds with a bit-wise XOR operation on the first 8 

byte data with the session sk1 and repeats the operation one very 8 bytes of the remaining data with the 

subsequent session keys until the data block is finished (see Figure). 

 

 
Figure: The bit-wise XOR on rows with session keys 

 

Note that the process of byte-exchange hides the meaning of 56 byte data, and the exchange of the data 

block number hides the order of data block, which needs to be assembled later on. In addition, the bit-wise XOR 

operation transforms a character into a meaningless one, which adds another level of complexity to deter the 

network hackers. Figure an encryption procedure using session keys deriving from a private key and a public 

key. 

 

3.1.5. Decryption: 

Decryption procedures are as follows: 

i. A receiver generates a byte exchange block key sk1 and a bit-wise XOR key sk2 by using the sender’s 

public key and the receiver’s private key. 

ii. The receiver decrypts it in the input data receiving sequence. The receiver does bit-wise XOR operation 

bit by bit, and then, a receiver decodes cipher text by using a byte exchange block key sk1 and moves the 

exchange bytes back to their original position. We construct data blocks in sequence by using the 

decoded data block number. 

 

IV. Conclusion 
The first result is that HECC algorithm is faster than ECC algorithm and it uses smaller key size length. 

One of the most important problems in smart cards is limitation of storage. Providing a multipurpose smart card 

with smaller key size is very important. On the other hand, since in the multipurpose smart card there are three 

different systems, high speed is one the most important requirements in the system. 

HECC algorithm has high level of security and it is faster than ECC algorithm. Since, with the addition 

of 3BC algorithm it is more efficient than the other cryptographic algorithm. 
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