
International Journal of Engineering Research and Development

e-ISSN: 2278-067X, p-ISSN: 2278-800X, www.ijerd.com

Volume 12, Issue 6 (June 2016), PP.18-25

18

High Speed Area Efficient Radix-2 Fast Fourier transforms using

Signed and Complex Number

Kunwar Ved Pratap Singh Parihar and Prof. Monika Kapoor
MTech. Scholar, Assistant Professor, Electronics & Communication Department, Lakshmi Narain College of

Technology, Bhopal, (M.P) [India]

Abstract: with the advent of new technology in the fields of VLSI and communication, there is also an ever

growing demand for high speed processing and low area design. It is also a well-known fact that the chip area

and maximum combinational path delay (MCPD) unit forms an integral part of processor design. Due to this

regard, high speed and low area architectures become the need of the day. A fast Fourier transform (FFT) is any

fast algorithm for computing the DFT. The development of FFT algorithms had a tremendous impact on

computational aspects of signal processing and applied science. The decimation-in-time (DIT) fast Fourier

transform (FFT) very often has advantage over the decimation-in-frequency (DIF) FFT for most real-valued

applications, like speech/image/video processing, biomedical signal processing, and time-series analysis, etc.,

since it does not require any output reordering.

Index Terms: FFT, Decimation in Time, Decimation in Frequency, real Value data

I. INTRODUCTION
The discrete Fourier transform (DFT) is an important tool in many branches of science and engineering

[1] and has been studied extensively [2]. For many practical applications, it is important to have an

implementation of the DFT that is as fast as possible. In the past, speed was the direct consequence of clever

algorithms [2] that minimized the number of arithmetic operations. On present day general-purpose

microprocessors, however, the performance of a program is mostly determined by complicated interactions of

the code with the processor pipeline, and by the structure of the memory. Designing for performance under these

conditions requires an intimate knowledge of the computer architecture. In this paper, we address this problem

by means of a novel adaptive approach, where the program itself adapts the computation to the details of the

hardware. We developed FFTW, an adaptive, high performance implementation of the Cooley-Tukey fast

Fourier transform (FFT) algorithm [3], written in C. We have compared many C and FORTRAN

implementations of the DFT on several machines, and our experiments show that FFTW typically yields

significantly better performance than all other publicly available DFT software.

The FFT (Fast Fourier Transform) and its inverse (IFFT) are the key components of OFDM

(Orthogonal Frequency Division Multiplexing) systems. Recently, the demand for long length, high-speed and

low-power FFT has increased in the OFDM applications. There are three kinds of main design architectures for

implementing a FFT processor. One is the single-memory architecture. It has one processing element and one

main memory. Hence, it occupies a small area. The second is the dual memory architecture, which has two

memories. This architecture has a higher throughput than the single-memory architecture because it can store

butterfly outputs and read butterfly inputs at the same time. The fast Fourier transform plays an important role in

many digital signal processing (DSP) systems. Recent advances in semiconductor processing technology have

enabled the deployment of dedicated FFT processors in applications such as telecommunications, speech and

image processing. Specifically, in the OFDM communication systems, FFT and inverse FFT (IFFT) play a very

important role. The OFDM technique, due to its effectiveness in overcoming adverse channel effects [1, 2] as

well as spectrum utilization, has become widely adopted in wire line and wireless communication standards.

The OFDM technique has been adopted in several standards like digital audio broadcasting (DAB) [3], digital

video broadcasting terrestrial (DVB-T) [4], asymmetrical digital subscriber line (ADSL) [5] and very-high-

speed digital subscriber line (VDSL) [6]. Therefore, efficient and low-power VLSI implementation of FFT

processors is essential for successful deployment of these OFDM-based systems. According to the standards of

DAB, DVB-T, ADSL and VDSL, various FFT sizes are required, as shown in Table 1. From this Table, it is

clear that variable-length FFT hardware is a crucial module in the low-cost solution of the above communication

systems. The Cooley – Tukey N-point FFT algorithm requires O (Nlog N) computations, which is a huge saving

over direct computation of the discrete Fourier transform (DFT). However, hardware implementation of the

algorithm is both computational intensive, in terms of arithmetic operations, and communication intensive, in

terms of data swapping. For real-time processing of FFT, O(log N) arithmetic operations are required per

sample cycle. High speed real-time processing can be accomplished in two different ways. In the conventional

general-purpose digital signal processor (DSP) approach, the computation is carried out by a single processor

High Speed Area Efficient Radix-2 Fast Fourier transforms using Signed and Complex Number

19

driven to a high clock frequency, which is O(log N) times the data sample frequency. In the application specific

parallel or pipelined processor approach, the required operations are performed at the clock frequency

equivalent to the sample frequency, and this approach usually consumes less power.

II. FAST FOURIER TRANSFORM
Before going further to discuss on the FFT and IFFT design, it is good to explain a bit on the fast

Fourier transform and inverse fast Fourier transform operation. The fast Fourier transform (FFT) and inverse

fast Fourier transform (IFFT) are derived from the main function which is called Discrete Fourier Transform

(DFT). The idea of using FFT/IFFT instead of DFT is that the computation of the function can be made faster

where this is the main criteria for implementation in the digital signal processing. In DFT the computation for

N-point of the DFT will calculate one by one for each point. While for FFT/IFFT, the computation is done

simultaneously and this method saves quite a lot of time. Below is the equation (2.2) showing the DFT and from

here the equation is derived to get FFT/IFFT function.

N
kjN

n

enxkX
21

0

)()(

 (1)

X (k) represent the DFT frequency output at the k-the spectral point where k ranges from 0 to N-1. The quantity

N represents the number of sample points in the DFT data frame.

The quantity x (n) represents the nth time sample, where n also ranges from 0 to N-1. In general equation, x (n)

can be real or complex.

The DFT equation can be re-written equation (2) into:

nk

N

N

n

WnxkX

1

0

)()(

 (2)

The quantity
nk

NW is defined as in equation (3)

 N
kj

nk

N eW
2

 (3)

Here is where the secret lies between DFT and FFT/IFFT where the equation (2.4) function above is

called Twiddle Factor. This factor is calculated and put in a table in order to make the computation easier and

can run simultaneously. The Twiddle Factor table is depending on the number of point use. During the

computation of IFFT, the factor does not to recalculate since it can refer to the Twiddle factor table thus it save

time since calculation is done concurrently.

Inverse Fast Fourier Transform

Inverse fast Fourier transform (IFFT) is used to generate OFDM symbols. The data bits is represent as

the frequency domain and since IFFT convert signal from frequency domain to time domain, it is used in

transmitter to handle the process.

Table 1: Twiddle factor for 8 point inverse fast Fourier transform

IFFT (N=8)

No. W Value

1 0

8

W 1

2 1

8

W 0.7071+j0.7071

3 2

8

W j

4 3

8

W -0.7071+j0.7071

5 4

8

W -1

6 5

8W -0.7071-j0.7071

7 6

8

W -j1

8 7

8

W 0.7071-j0.7071

High Speed Area Efficient Radix-2 Fast Fourier transforms using Signed and Complex Number

20

IFFT is defined as the equation (4) below:

nk

N

N

n

WkX
N

nx

1

0

)(
1

)(

 (4)

Same FFT algorithm can be used to find IFFT function with the changes in certain properties. The

changes that implement is by adding a scaling factor of 1/N and replacing twiddle factor value () with the

complex conjugate () to the above equation. With these changes, the same FFT flow graph also can be used for

the inverse fast Fourier transform. Below is the table 2.2 show the values of twiddle factor for IFFT.

Figure 1: Radix-2 Decimation in Time Domain FFT Algorithm

III. PROPOSED METHOD
The flow chart of the proposed methodology is shown in figure 3. In this paper we are used three

techniques i.e. unsigned multiplier, signed multiplier and complex multiplier. In this figure the two signed and

unsigned bit multiplier (i.e. multiplier n-bit, multiplicand m-bit) and final output of the multiplier is n+m bits.

All the multiplier is design into two parts i.e. partial product generator and multi operand addition.

Figure 3: Flow Chart of the proposed Methodology

Array Multiplier:-

High Speed Area Efficient Radix-2 Fast Fourier transforms using Signed and Complex Number

21

Signed Multiplier:-

Complex Multiplier:-

The FFT algorithms are classified into two broad categories, namely, the decimation-in-time (DIT) and the

decimation-infrequency (DIF) algorithms. The proposed radix-2 DIT algorithm is shown in figure 3.

Figure 4: Radix-2 DIT algorithm

DIT butterfly involves a multiplication followed by additions. As shown in Table I the computation time

of fixed-point multiplication followed by an addition is less than that of addition followed by a multiplication.

The DIT-based FFT butterfly thus involves less propagation delay than that of DIF-based RFFT butterfly

although both these butterflies involve the same number of multipliers and adders. Therefore, the choice of DIT

algorithm to derive FFT structure has an advantage over DIF algorithm. In this paper, we present an efficient

architecture for the DIT radix-2 RFFT algorithm. Derivation of proposed RFFT structure using register-based

storage.

High Speed Area Efficient Radix-2 Fast Fourier transforms using Signed and Complex Number

22

Figure 5: Proposed 8-point Radix-2 DIT Algorithm

Figure 6: Proposed 16-point Radix-2 DIT Algorithm

This algorithm decomposes a sequence of DFT into four small DFTs of 1/4 lengths in a recursive

manner and their outputs are employed to manipulate several other outputs by which the cost of computation

will be reduced. The input data is disintegrated into four small sequences of x (4n + i) where n = 0, 1... N/4-1

and i = 0, 1, 2, 3.

Figure 7: Proposed 32-point Radix-2 DIT Algorithm

This algorithm decomposes a sequence of DFT into four small DFTs of 1/3 lengths in a recursive

manner and their outputs are employed to manipulate several other outputs by which the cost of computation

will be reduced. The input data is disintegrated into four small sequences of x (3n + i) where n = 0, 1... N/3-1

and i = 0, 1, 2.

High Speed Area Efficient Radix-2 Fast Fourier transforms using Signed and Complex Number

23

Figure 8: Proposed 9-point Radix-3 DIT Algorithm

Figure 9: Proposed 9-point Radix-3 DIT Algorithm

IV. DELAY AND AREA METHODOLOGY
The delay and area evaluation methodology considers all gates to be made up of AND, OR, and

Inverter (AOI), each having delay equal to 1 unit and area equal to 1 unit. We then add up the number of gates

in the longest path of a logic block that contributes to the maximum delay. The area evaluation is done by

counting the total number of AOI gates required for each logic block.

Table 1: Delay and Area calculate in basic block of FFT

Table 2: Computational Delay of Mult-add And Add-mult Operations

V. SIMULATION RESULT
All the designing and experiment regarding algorithm that we have mentioned in this paper is being

developed on Xilinx 6.2i updated version. Xilinx 6.2i has couple of the striking features such as low memory

requirement, fast debugging, and low cost. The latest release of ISE
TM

(Integrated Software Environment) design

Adder Block Delay Area

XOR 3 5

2:1 MUX 3 4

Half Adder 3 6

Full Adder 6 13

Architecture TMA TAM TAM- TMA % Difference

8-bit

Pramod Kumar Meher et al. [1] 8.345 8.967 0.622 6.9%

Proposed Design 8.048 8.343 0.295 3.5%

16-bit

Pramod Kumar Meher et al. [1] 9.453 10.321 0.868 8.4%

Proposed Design 8.653 9.240 0.587 6.3%

32-bit

Pramod Kumar Meher et al. [1] 14.532 14.982 0.45 3.0%

Proposed Design 13.377 14.010 0.633 4.5%

High Speed Area Efficient Radix-2 Fast Fourier transforms using Signed and Complex Number

24

tool provides the low memory requirement approximate 27 percentage low. ISE 6.2i that provides advanced

tools like smart compile technology with better usage of their computing hardware provides faster timing

closure and higher quality of results for a better time to designing solution. ISE 6.2i Xilinx tools permits greater

flexibility for designs which leverage embedded processors. Also included is the newest release of the chip

scope Pro Serial IO Tool kit, providing simplified debugging of high-speed serial IO designs for Virtex-2p FX

and Virtex-2p LXT and SXT FPGAs. With the help of this tool we can develop in the area of communication as

well as in the area of signal processing and VLSI low power designing.

Table III: Comparison result for existing algorithm and proposed algorithm

Radix-2 DIT Algorithm for N=8

Parameter Number of Slice Number of LUTs MCPD (nsec)

Proposed Design (unsigned) 96 192 15.548

Proposed Design (signed) 221 387 15.137

Radix-2 DIT Algorithm for N=16

Parameter Number of Slice Number of LUTs MCPD (nsec)

P. K. Meher et al. [1] - - 21.054

Proposed Design (unsigned) 256 512 19.260

Proposed Design (signed) 573 1000 18.927

Radix-2 DIT Algorithm for N=32

Parameter Number of Slice Number of LUTs MCPD (nsec)

P. K. Meher et al. [1] - - 24.421

Proposed Design (unsigned) 640 1280 22.147

Proposed Design (signed) 1410 2462 22.806

Radix-2 DIT Algorithm for N=64

Parameter Number of Slice Number of LUTs MCPD (nsec)

P. K. Meher et al. [1] - - 29.421

Proposed Design (unsigned) 1536 3072 26.319

Proposed Design (signed) 2431 4063 22.785

Radix-2 DIT Algorithm for N=128

Parameter Number of Slice Number of LUTs MCPD (nsec)

P. K. Meher et al. [1] - - 36.421

Proposed Design (unsigned) 2739 5042 32.895

Proposed Design (signed) 3390 6042 33.806

Table IV: Result for complex number

Radix-2 DIT Algorithm for N=8 and N=16

Parameter Number of Slice Number of LUTs MCPD (nsec)

N=8 438 864 24.948

N=16 1168 2304 30.687

 Figure 9: Bar graph of the complex number for N=8 and N=16

Table VI: Result for DIT and DIF algorithm for radix-3 algorithm

Parameter Number of Slice Number of LUTs MCPD (nsec)

DIT algorithm for N=9 144 288 15.109

DIF algorithm for N=9 120 240 15.640

High Speed Area Efficient Radix-2 Fast Fourier transforms using Signed and Complex Number

25

Figure 10: Bar graph of the radix-3 algorithm for N=9

Table V: Result for DIT and DIF algorithm for radix-4 algorithm

Parameter Number of Slice Number of LUTs MCPD (nsec)

DIT algorithm for N=16 320 640 18.526

DIF algorithm for N=16 289 568 19.095

Figure 11: Bar graph of the radix-4 algorithm for N=16

VI. CONCLUSION

The prime objective is to construct a FFT in order to have low power consumption and lesser area. The

parameters (i) power consumption (ii) Area occupancy were given due consideration for comparing the proposed

circuit with other FFTs. The circuits were simulated using Model-Sim 6.3c and synthesized with Xilinx ISE

14.1.The performance of various 64 point FFT such as Radix-2, Radix-4, split Radix, mixed -radix 4-2, R2MDC

and the proposed modified R2MDC were carried out and their performance were analyzed with respect to the

number of CLB slices, utilization factor and Power consumption.

REFERENCES
[1] Charles. Roth Jr., ―Digital Systems Design using VHDL‖, Thomson Brooks/Cole, 7th reprint, 2005.

[2] S. S. Kerur, Prakash Narchi, Jayashree C N, Harish M Kittur and Girish V A, ―Implementation of Vedic multiplier for

Digital Signal Processing‖, International Conference on VLSI, Communication & Instrumentation (ICVCI) 2011,

Proceedings published by International Joural of Computer Applications® (IJCA), pp.1-6.

[3] Himanshu Thapaliyal and M.B Srinivas, ―VLSI Implementation of RSA Encryption System Using Ancient Indian

Vedic Mathematics‖, Center for VLSI and Embedded System Technologies, International Institute of Information

Technology Hyderabad, India.

[4] Jagadguru Swami Sri Bharati Krishna Tirthaji Maharaja, ―Vedic Mathematics: Sixteen simple Mathematical Formulae

from the Veda‖, Delhi (2011).

[5] Harpreet Singh Dhillon and Abhijit Mitra, ―A Reduced-bit Multiplication Algorithm for Digital Arithmetic‖,

International Journal of Computational and Mathematical Sciences, Febrauary 2008, pp.64-69.

[6] Sumit Vaidya and Depak Dandekar. ―Delay-power performance comparison of multipliers in VLSI circuit design‖.

International Journal of Computer Networks & Communications (IJCNC), Vol.2, No.4, July 2010.

[7] Pramod Kumar Mehe, Basant Kumar Mohanty, Sujit Kumar Patel, Soumya Ganguly, and Thambipillai Srikanthan,

“Efficient VLSI Architecture for Decimation-in-Time Fast Fourier Transform of Real-Valued Data”, IEEE

Transactions on Circuits And Systems—I: Regular Papers, Vol. 62, No. 12, December 2015.

[8] M. Ayinala, Y. Lao, and K. K. Parhi, ―An in-place FFT architecture for real-valued signals,‖ IEEE Trans. Circuits

Syst. II, Exp. Briefs, vol. 60, no. 10, pp. 652–656, Oct. 2013.

[9] Shashank Mittal, Md. Zafar Ali Khan and M.B. Srinivas, ―Area Efficient High Speed Architecture of Bruun’s FFT for

Software Defined Radio‖, 1930-529X/07/$25.00 © 2007 IEEE.

[10] B. G. Jo and M. H. Sunwoo, ―New continuous-flow mixed-radix (CFMR) FFT processor using novel in-place

strategy,‖ IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 52, no. 5, pp. 911–919, May 2005.

