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Abstract: with the advent of new technology in the fields of VLSI and communication, there is also an ever 

growing demand for high speed processing and low area design. It is also a well-known fact that the chip area 

and maximum combinational path delay (MCPD) unit forms an integral part of processor design. Due to this 

regard, high speed and low area architectures become the need of the day. A fast Fourier transform (FFT) is any 

fast algorithm for computing the DFT. The development of FFT algorithms had a tremendous impact on 

computational aspects of signal processing and applied science. The decimation-in-time (DIT) fast Fourier 

transform (FFT) very often has advantage over the decimation-in-frequency (DIF) FFT for most real-valued 

applications, like speech/image/video processing, biomedical signal processing, and time-series analysis, etc., 

since it does not require any output reordering.  

Index Terms: FFT, Decimation in Time, Decimation in Frequency, real Value data 

 

I. INTRODUCTION  
The discrete Fourier transform (DFT) is an important tool in many branches of science and engineering 

[1] and has been studied extensively [2]. For many practical applications, it is important to have an 

implementation of the DFT that is as fast as possible. In the past, speed was the direct consequence of clever 

algorithms [2] that minimized the number of arithmetic operations. On present day general-purpose 

microprocessors, however, the performance of a program is mostly determined by complicated interactions of 

the code with the processor pipeline, and by the structure of the memory. Designing for performance under these 

conditions requires an intimate knowledge of the computer architecture. In this paper, we address this problem 

by means of a novel adaptive approach, where the program itself adapts the computation to the details of the 

hardware. We developed FFTW, an adaptive, high performance implementation of the Cooley-Tukey fast 

Fourier transform (FFT) algorithm [3], written in C. We have compared many C and FORTRAN 

implementations of the DFT on several machines, and our experiments show that FFTW typically yields 

significantly better performance than all other publicly available DFT software. 

The FFT (Fast Fourier Transform) and its inverse (IFFT) are the key components of OFDM 

(Orthogonal Frequency Division Multiplexing) systems. Recently, the demand for long length, high-speed and 

low-power FFT has increased in the OFDM applications. There are three kinds of main design architectures for 

implementing a FFT processor. One is the single-memory architecture. It has one processing element and one 

main memory. Hence, it occupies a small area. The second is the dual memory architecture, which has two 

memories. This architecture has a higher throughput than the single-memory architecture because it can store 

butterfly outputs and read butterfly inputs at the same time. The fast Fourier transform plays an important role in 

many digital signal processing (DSP) systems. Recent advances in semiconductor processing technology have 

enabled the deployment of dedicated FFT processors in applications such as telecommunications, speech and 

image processing. Specifically, in the OFDM communication systems, FFT and inverse FFT (IFFT) play a very 

important role. The OFDM technique, due to its effectiveness in overcoming adverse channel effects [1, 2] as 

well as spectrum utilization, has become widely adopted in wire line and wireless communication standards. 

The OFDM technique has been adopted in several standards like digital audio broadcasting (DAB) [3], digital 

video broadcasting terrestrial (DVB-T) [4], asymmetrical digital subscriber line (ADSL) [5] and very-high-

speed digital subscriber line (VDSL) [6]. Therefore, efficient and low-power VLSI implementation of FFT 

processors is essential for successful deployment of these OFDM-based systems. According to the standards of 

DAB, DVB-T, ADSL and VDSL, various FFT sizes are required, as shown in Table 1. From this Table, it is 

clear that variable-length FFT hardware is a crucial module in the low-cost solution of the above communication 

systems. The Cooley – Tukey N-point FFT algorithm requires O (Nlog N) computations, which is a huge saving 

over direct computation of the discrete Fourier transform (DFT). However, hardware implementation of the 

algorithm is both computational intensive, in terms of arithmetic operations, and communication intensive, in 

terms of data swapping. For real-time processing of FFT, O(log N) arithmetic operations are required per 

sample cycle. High speed real-time processing can be accomplished in two different ways. In the conventional 

general-purpose digital signal processor (DSP) approach, the computation is carried out by a single processor 
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driven to a high clock frequency, which is O(log N) times the data sample frequency. In the application specific 

parallel or pipelined processor approach, the required operations are performed at the clock frequency 

equivalent to the sample frequency, and this approach usually consumes less power. 

 

II. FAST FOURIER TRANSFORM 
Before going further to discuss on the FFT and IFFT design, it is good to explain a bit on the fast 

Fourier transform and inverse fast Fourier transform operation. The fast Fourier transform (FFT) and inverse 

fast Fourier transform (IFFT) are derived from the main function which is called Discrete Fourier Transform 

(DFT). The idea of using FFT/IFFT instead of DFT is that the computation of the function can be made faster 

where this is the main criteria for implementation in the digital signal processing. In DFT the computation for 

N-point of the DFT will calculate one by one for each point. While for FFT/IFFT, the computation is done 

simultaneously and this method saves quite a lot of time. Below is the equation (2.2) showing the DFT and from 

here the equation is derived to get FFT/IFFT function. 
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X (k) represent the DFT frequency output at the k-the spectral point where k ranges from 0 to N-1. The quantity 

N represents the number of sample points in the DFT data frame. 

The quantity x (n) represents the nth time sample, where n also ranges from 0 to N-1. In general equation, x (n) 

can be real or complex. 

The DFT equation can be re-written equation (2) into:
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The quantity 
nk

NW  is defined as in equation (3)                                                                   
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Here is where the secret lies between DFT and FFT/IFFT where the equation (2.4) function above is 

called Twiddle Factor. This factor is calculated and put in a table in order to make the computation easier and 

can run simultaneously. The Twiddle Factor table is depending on the number of point use. During the 

computation of IFFT, the factor does not to recalculate since it can refer to the Twiddle factor table thus it save 

time since calculation is done concurrently. 

 

Inverse Fast Fourier Transform 

Inverse fast Fourier transform (IFFT) is used to generate OFDM symbols. The data bits is represent as 

the frequency domain and since IFFT convert signal from frequency domain to time domain, it is used in 

transmitter to handle the process. 

 

Table 1: Twiddle factor for 8 point inverse fast Fourier transform 

IFFT (N=8) 

No. W Value 

1 0

8

W  1 

2 1

8

W  0.7071+j0.7071 

3 2

8

W  j 

4 3

8

W  -0.7071+j0.7071 

5 4

8

W  -1 

6 5

8W  -0.7071-j0.7071 

7 6

8

W  -j1 

8 7

8

W  0.7071-j0.7071 
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IFFT is defined as the equation (4) below:
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Same FFT algorithm can be used to find IFFT function with the changes in certain properties. The 

changes that implement is by adding a scaling factor of 1/N and replacing twiddle factor value ( ) with the 

complex conjugate ( ) to the above equation. With these changes, the same FFT flow graph also can be used for 

the inverse fast Fourier transform. Below is the table 2.2 show the values of twiddle factor for IFFT. 

 

 
Figure 1: Radix-2 Decimation in Time Domain FFT Algorithm  

 

III. PROPOSED METHOD 
The flow chart of the proposed methodology is shown in figure 3. In this paper we are used three 

techniques i.e. unsigned multiplier, signed multiplier and complex multiplier.  In this figure the two signed and 

unsigned bit multiplier (i.e. multiplier n-bit, multiplicand m-bit) and final output of the multiplier is n+m bits. 

All the multiplier is design into two parts i.e. partial product generator and multi operand addition.  

 

 
Figure 3: Flow Chart of the proposed Methodology 

 

Array Multiplier:- 
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Signed Multiplier:- 

 

 
 

Complex Multiplier:- 

 

 
 

The FFT algorithms are classified into two broad categories, namely, the decimation-in-time (DIT) and the 

decimation-infrequency (DIF) algorithms. The proposed radix-2 DIT algorithm is shown in figure 3. 

 

 
Figure 4: Radix-2 DIT algorithm  

 

DIT butterfly involves a multiplication followed by additions. As shown in Table I the computation time 

of fixed-point multiplication followed by an addition is less than that of addition followed by a multiplication. 

The DIT-based FFT butterfly thus involves less propagation delay than that of DIF-based RFFT butterfly 

although both these butterflies involve the same number of multipliers and adders. Therefore, the choice of DIT 

algorithm to derive FFT structure has an advantage over DIF algorithm. In this paper, we present an efficient 

architecture for the DIT radix-2 RFFT algorithm. Derivation of proposed RFFT structure using register-based 

storage. 
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Figure 5: Proposed 8-point Radix-2 DIT Algorithm 

 
Figure 6: Proposed 16-point Radix-2 DIT Algorithm 

 

This algorithm decomposes a sequence of DFT into four small DFTs of 1/4 lengths in a recursive 

manner and their outputs are employed to manipulate several other outputs by which the cost of computation 

will be reduced. The input data is disintegrated into four small sequences of x (4n + i) where n = 0, 1... N/4-1 

and i = 0, 1, 2, 3. 

 

 
Figure 7: Proposed 32-point Radix-2 DIT Algorithm 

 

This algorithm decomposes a sequence of DFT into four small DFTs of 1/3 lengths in a recursive 

manner and their outputs are employed to manipulate several other outputs by which the cost of computation 

will be reduced. The input data is disintegrated into four small sequences of x (3n + i) where n = 0, 1... N/3-1 

and i = 0, 1, 2. 
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Figure 8: Proposed 9-point Radix-3 DIT Algorithm 

 
Figure 9: Proposed 9-point Radix-3 DIT Algorithm 

 

IV. DELAY AND AREA METHODOLOGY 
The delay and area evaluation methodology considers all gates to be made up of AND, OR, and 

Inverter (AOI), each having delay equal to 1 unit and area equal to 1 unit. We then add up the number of gates 

in the longest path of a logic block that contributes to the maximum delay. The area evaluation is done by 

counting the total number of AOI gates required for each logic block. 

 

Table 1: Delay and Area calculate in basic block of FFT 

 

 

 

 

 

 

Table 2: Computational Delay of Mult-add And Add-mult Operations 

 

 

 

 

 

 

 

 

 

 

 

V. SIMULATION RESULT 
All the designing and experiment regarding algorithm that we have mentioned in this paper is being 

developed on Xilinx 6.2i updated version. Xilinx 6.2i has couple of the striking features such as low memory 

requirement, fast debugging, and low cost. The latest release of ISE
TM 

(Integrated Software Environment) design 

Adder Block Delay Area 

XOR 3 5 

2:1 MUX 3 4 

Half Adder 3 6 

Full Adder 6 13 

Architecture TMA TAM TAM- TMA % Difference 

8-bit 

Pramod Kumar Meher et al. [1] 8.345 8.967 0.622 6.9% 

Proposed Design 8.048 8.343 0.295 3.5% 

16-bit 

Pramod Kumar Meher et al. [1] 9.453 10.321 0.868 8.4% 

Proposed Design 8.653 9.240 0.587 6.3% 

32-bit 

Pramod Kumar Meher et al. [1] 14.532 14.982 0.45 3.0% 

Proposed Design 13.377 14.010 0.633 4.5% 



High Speed Area Efficient Radix-2 Fast Fourier transforms using Signed and Complex Number   

24 

tool provides the low memory requirement approximate 27 percentage low. ISE 6.2i that provides advanced 

tools like smart compile technology with better usage of their computing hardware provides faster timing 

closure and higher quality of results for a better time to designing solution. ISE 6.2i Xilinx tools permits greater 

flexibility for designs which leverage embedded processors. Also included is the newest release of the chip 

scope Pro Serial IO Tool kit, providing simplified debugging of high-speed serial IO designs for Virtex-2p FX 

and Virtex-2p LXT and SXT FPGAs. With the help of this tool we can develop in the area of communication as 

well as in the area of signal processing and VLSI low power designing. 

 

Table III: Comparison result for existing algorithm and proposed algorithm 

Radix-2 DIT Algorithm for N=8 

Parameter Number of Slice Number of LUTs MCPD (nsec) 

Proposed Design (unsigned) 96 192 15.548  

Proposed Design (signed) 221 387 15.137 

Radix-2 DIT Algorithm for N=16 

Parameter Number of Slice Number of LUTs MCPD (nsec) 

P. K. Meher et al. [1] - - 21.054  

Proposed Design (unsigned) 256 512 19.260  

Proposed Design (signed) 573 1000 18.927 

Radix-2 DIT Algorithm for N=32 

Parameter Number of Slice Number of LUTs MCPD (nsec) 

P. K. Meher et al. [1] - - 24.421  

Proposed Design (unsigned) 640 1280 22.147  

Proposed Design (signed) 1410 2462 22.806 

Radix-2 DIT Algorithm for N=64 

Parameter Number of Slice Number of LUTs MCPD (nsec) 

P. K. Meher et al. [1] - - 29.421  

Proposed Design (unsigned) 1536 3072 26.319  

Proposed Design (signed) 2431 4063 22.785 

Radix-2 DIT Algorithm for N=128 

Parameter Number of Slice Number of LUTs MCPD (nsec) 

P. K. Meher et al. [1] - - 36.421  

Proposed Design (unsigned) 2739 5042 32.895  

Proposed Design (signed) 3390 6042 33.806 

 

Table IV: Result for complex number 

Radix-2 DIT Algorithm for N=8 and N=16 

Parameter Number of Slice Number of LUTs MCPD (nsec) 

N=8 438 864 24.948  

N=16 1168 2304 30.687 

 

 
 Figure 9: Bar graph of the complex number for N=8 and N=16  

 

Table VI: Result for DIT and DIF algorithm for radix-3 algorithm 

Parameter Number of Slice Number of LUTs MCPD (nsec) 

DIT algorithm for N=9 144 288 15.109 

DIF algorithm for N=9 120 240 15.640 
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Figure 10: Bar graph of the radix-3 algorithm for N=9 

Table V: Result for DIT and DIF algorithm for radix-4 algorithm 

Parameter Number of Slice Number of LUTs MCPD (nsec) 

DIT algorithm for N=16 320 640 18.526 

DIF algorithm for N=16 289 568 19.095 

 

 
Figure 11: Bar graph of the radix-4 algorithm for N=16 

 

VI. CONCLUSION 

The prime objective is to construct a FFT in order to have low power consumption and lesser area. The 

parameters (i) power consumption (ii) Area occupancy were given due consideration for comparing the proposed 

circuit with other FFTs. The circuits were simulated using Model-Sim 6.3c and synthesized with Xilinx ISE 

14.1.The performance of various 64 point FFT such as Radix-2, Radix-4, split Radix, mixed -radix 4-2, R2MDC 

and the proposed modified R2MDC were carried out and their performance were analyzed with respect to the 

number of CLB slices, utilization factor and Power consumption.     
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