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ABSTRACT:- The Content-Based Image Retrieval application uses large amount of low-level features of images for 

retrieving relevant images. Numerous low-level features are used for retrieval and among them the shape based feature is 

important and can be represented in the form of histogram. It is well known that the low-level feature requires more storage 

space and thus entire content has to be coded, indexed etc. to reduce the storage requirement, feature processing time and 

accessing time. In this work, indexing and encoding mechanism is proposed to effectively access the feature and represent 

the feature in lesser space. The bin values are used as reference for reducing the dimension of the histogram. The non-zero 

values are coded using Golomb-Rice coding and represented as compact histogram. The size of the compact histogram is 

variable in size and thus a similarity measure is proposed to handle the issue. Various well-known benchmark datasets are 

used for experiments to evaluate the performance. It is found that the truncated and encoded histogram performs well and 

achieves high precision of retrieval. 

Keywords:-  Encoding, Golomb-Rice code, Shape Histogram, Similarity measure, Image Retrieval.  

 
I. INTRODUCTION 

Recently, multimedia information retrieval is fetching attention from both academia and industry. For 

multimedia image retrieval applications, the low-level features are extracted for capturing the semantics. These 

extracted low-level features are higher in dimension and requires large storage space and the transmission and 

processing time is huge. It is understood that the feature has to be indexed, encoded and compressed to reduce 

disk space and to improve the processing speed for image retrieval. The feature can be reduced by using suitable 

coding scheme with less decoding time. Even if there is information loss during coding, the precision of 

retrieval should not be affected. During encoding, number of bits that are needed to be transferred and stored 

should be reduced considerably. Though the encoding/decoding overhead increases the communication latency 

and decreases the bandwidth, the encoding technique reduces the size of the low-level feature to a smaller size. 

Multimedia applications use adaptive predictors, entropy coders, de-correlating transforms with quantizes [1, 2] 

as coders and typical entropy coders used are Run-Length, Huffman, Golomb-Rice coders [3].  Due to huge 

variations in the statistics of blocks of integers to be encoded, designing the efficient entropy coders for such 

applications is found to be difficult. Among various entropy coders, Golomb-Rice (GR) coders [4]  have been 

used widely in modern compression systems because of its flexibility in changing the encoding tables by 

modifying a single integer parameter [5, 15, 16, 17, 18]. The output code words are easily computed for the 

corresponding input symbols so that explicit tables are not required. This approach makes GR coders quite 

attractive and computations are much faster compared to memory access. 

In this work, the size of the low-level feature vector is reduced by retaining only the necessary 

information for indexing purpose. The GR coding is used to encode the bin values adaptively for achieving 

lower average bit length. During retrieval, the similarity is calculated in encoded form and observed that 

precision of retrieval is encouraging. It is observed that performance of normal and encoded feature has 

achieved similar precision of retrieval. The quotient code of the encoded histogram alone is sufficient to retrieve 

relevant images. The rest of the paper is organized as follows. In Section II, we review the related work. Section 

III explains the proposed approach in detail. Section IV presents the experimental results and we conclude in the 

last section of the paper. 

 

II. LITERATURE REVIEW 
It is observed that most of the research work that involves encoding and compression techniques uses 

floating-point number that focuses on audio, image, scientific measurement and simulation domains. Encoding 

and compression technique have been proposed for the double-precision output of a numerical solver for 

ordinary differential equations [6]. Integer delta and extrapolation algorithms are used to encode and compress 

the data. However, this method is particularly beneficial for data, which gradually changes and may not be 

suitable for real-time applications. An efficient encoding and compression scheme for image data has been 

designed with an emphasis on 2D and 3D data [7]. The data is predicted using the Lorenzo predictor and 

encoded the residual with a range coder based on Schindler’s quasi-static probability model [8]. A technique 

that combines differentiation and zero suppression is presented to encode and compress floating-point data 

arising from experiments conducted at the Laser Interferometer Gravitation Wave Observatory [9]. It is 
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observed that the compression ratio of this approach is same as GZIP and is significantly faster. However, its 

success is realized only with the nature of LIGO data and thus value changes gradually. An algorithm has been 

proposed to encode the audio data [10]. It transforms the floating-point values into integers and generates an 

additional binary stream for the lossless reconstruction of the original floating-point values [19]. An extension to 

the JPEG2000 [12, 15] standard has been proposed that allow data to be encoded efficiently with bit-plane 

coding algorithms where the floating-point values are represented as big integers [11]. An arithmetic encoder is 

used for single-precision floating-point fields that represent residual vectors between the actual and the 

predicted vertex positions in triangular meshes [13]. In an extended precision algorithm, the Haar wavelet 

transform and Huffman coding is used to achieve lossless compression in 3D curvilinear grids [14]. This 

approach performs differential coding and clustering to generate separate data residuals for the mantissa and 

exponent. The Huffman coder and GZIP have been used to encode the mantissa and exponent residuals. 

An approach has been proposed to encode and compress the histogram by run length coding of 

nonempty leaf nodes [20]. The statistical analysis inaccurately models the underlying random process 

generating the histogram. A feature descriptor codec is presented in [21], where each descriptor is transformed 

by a decorrelating transform, quantized and entropy-coded using Huffman coding or arithmetic coding. A lossy 

buffer compression/decompression technique has been used to find the error [23]. While the error grows 

relatively more, the method uses a lossless compression approach. However, this algorithm has operated only on 

Low Dynamic Range (LDR) data. A new color buffer compression algorithm is presented in [24] for coding 

floating-point buffers. It is considered that the approximate mode is error bounded and the amount of error 

introduced is accumulated and is controlled via few parameters. Hierarchical quad tree decomposition is 

performed and subsequently, hierarchical prediction as well as Golomb- Rice encoding are applied. However, 

this method is applicable for low-dynamic range color buffer. A method for encoding and compressing 16-bit 

floating-point color is presented and depth buffers in a unified manner, with several limitations [25]. This 

scheme does not allow negative values and assumes that the alpha channel is 1.0f. Compressing the alpha 

channel [26] has addressed complexity using two separate compressors for color data. 

Based on the above discussion, it is observed that none of the above method is found to be suitable for 

CBIR applications and also the encoding approach is found to be more complex. As a result, we propose a 

simple indexing and adaptive coding scheme for encoding the bin values of low-level features. The encoding 

scheme has reduced the storage requirement space considerably. The shape histogram is truncated and retained 

only necessary feature values for indexing. The floating point bin values are converted to integer for GR coding. 

We have retrieved the images using only quotient part of GR encoding and found that the precision of retrieval 

is encouraging compared to the retrieval using original histogram. In addition, fast retrieval is achieved with 

lower bit length and low disk space 

The proposed approach has three stages such as indexing, encoding and distance calculation. The 

schematic diagram of the proposed work is shown in Fig. 1. In the primary stage, an indexing scheme is 

proposed for reducing the dimension of the shape feature and has used indexing parameter. The indexed 

histograms are encoded using Golomb-Rice coding approach in the second stage. A new distance measure is 

proposed in the third stage, where the common bin indices between the query and database features are used to 

calculate the distance. 

 

III. PROPOSED APPROACH 
A. Indexing through Reducing Shape Histogram Dimension 

In this paper, we have used shape features of objects in an image for capturing the fuzzy boundary 

information to estimate the degree of closeness of objects with well-known primitive shapes. The radius 

properties of the object are used for obtaining information about the shape irregularity. In this paper, Mr and mR 

are the maximum and minimum length that bisects the diagonal in each of the primitive shapes. For the sake of 

convenience and better understanding, in the rest of the paper, Mr and mR are considered as the maximum 

radius (Mr) and minimum radius (mR) of the object. Also, these values are second maximum (omitting the 

diagonal) and minimum distance between the centre to edge of the object respectively. The minimum and 

maximum radius is measured from the centre of the object. The centre of the object is the centroid and from 

which the distance to the boundary is measured with certain angular displacement. Among the measured sample, 

minimum and maximum value is considered as minimum and maximum radius. It is well known that while 

Mr=mR, the object is a perfect circle. However, for an object with irregular boundaries, the fuzzy membership 

function is defined in Table I for primitive shapes circle, ellipse, square, rectangle, rhombus, cone and cylinder. 
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Fig.1.   Schematic Diagram of the Proposed Work 

 

Table I    Fuzzy Membership Function for Primitive Shapes 

 

Primitive Shapes 

 

Fuzzy Membership Function 

 

Circle     2
1

e  


 cx

C x  

Ellipse    1
e  


 elx

EL x  

Square     2
1

e  


 sqx

SQ x  

Rectangle     2
1

e  


 recx

REC x  

Rhombus     2
1

e  


 rhx

RH x
 

Cone     2
1

e  


 cnx

CN x  

Cylinder     2
1

e  


 cyx

CY x  

 

The extracted shape feature is represented as histogram and it is a normalized histogram in the form of 

single-precision floating-point format of the IEEE 754 standard as shown in Fig. 2. 

 

 
Fig. 2:   32-bit IEEE Floating-Point Representation 

 

The trivial bins of the shape histogram are removed to reduce their dimension and the bins having four 

digits after the decimal points are also truncated. Apart from this, bins having 0 values and the bins having four 

0's after the decimal point are removed. As a result, the shape histogram dimension is reduced to a great extent 

having only non-zero bins. As each shape histogram represents the shape information of the individual object, 

the presence of unequal non-zero bins results in the structural variation of the histogram as shown in Fig. 3. 
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Fig. 3: Schematic Structural variation of the Reduced Histogram 

Since, the shape histogram bins are normalized, the floating point values are converted as integer 

without losing information. This is done since, GR coding uses integer values. Here, suitable multiplication 

factor (Multi-Fact) is found by counting number of zero's after the decimal point to convert floating point values 

to integer values. Here, we preferably selected Multi-Fact as 1000 since, more shape histograms bin values are 

having two 0's after the decimal point. Table.2 represents the Multi-Fact used in this approach and the entire bin 

values of the shape histograms are converted into integer values. Thus, the obtained integer histogram values 

can now use for indexing. 

 

Table II Units for Magnetic Properties 

 

No. of zeros after decimal point Multi-Fact 

 
0.0 100 

 

0.00 

 

1000 

 
0.000 

 
10000 

 

The original shape histogram and reduced shape histogram representation is shown in the form of 

sparse matrix. Fig. 4(a) represents the original normalised shape histogram. Fig 4(b) represents the reduced 

shape histogram which gives the impact of data compressed and thereby encouraging increased computation 

speed. The Eq. (1) represents the indexing scheme (Cm) with 8 index levels (m) having different dimensions at 

each level.  

 

  )1(*)()1(*)(1 mIFRmIFC mm   

 

In the above Eq, IF represents Index Factor=8, Rm is shape histogram dimension range and m is the 

index level [1-8]. A sample indexing structure with the shape histogram dimension range is depicted in Table. 2. 

In this work, the value of m and IF is fixed based on exhaustive retrieval experiments only. For instance, the 

shape histogram having 15 bins fit in index 2, since it falls in the dimension range of [9-16]. 

 

 
(a) 

 
 

 

 
 

 

 
 

 

 
(b) 

 

 

Fig 4:  Sparse Matrix Representation (a) Original Shape Histogram (b) Reduced Shape Histogram 
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Table III Sample Indexing Structure 

 

Index Histogram 

Dimension 

Range 

between 

M-

Parameter 
1 8 [1-8] 108 

2 16 [9-16] 82 

3 24 [17-24] 74 

4 32 [25-32] 63 

5 40 [33-40] 44 

6 48 [41-48] 32 

7 56 [49-56] 25 

8 64 [57-64] 12 

 

The entire image database is grouped into several small blocks. For a given query image, the features 

are extracted, pre-processed, dimension is reduced and compared with the images in the matched block in lesser 

time. 

B. Encoding the Indexed shape Histograms 

Each block index has their header value in the form of M-parameter for which the encoding and 

decoding offset is calculated. The value of M for each block is calculated adaptively based on the indexed block 

size. The shape histogram blocks indexing works well even with uncontrolled data set of WWW. The indexing 

technique can be used to find out the ground truth of images easily for each block. Thus, considering the ground 

truth of each block index, the M-parameter is calculated using Eq. (2). 

(2)                                          
1






















n

i

i W
n

h
M  

In above equation W is constant parameter ih is fixed to 0.69, n is the total number of reduced shape 

histogram bins of respective block index, ih  is the reduced shape histogram bin value of respective block, M is 

the  tunable parameter for quotient and remainder encoding. The shape histogram bin values are in the form of 

integer N and are encoded using tunable parameter M. The bin values are divided into quotient (Q) and 

remainder (R) part using Eq. (3) and Eq. (4). 

 

)3(][int)( MNQQuotient 

)4(]mod[)(Re MNRmainder   

 

While coding, if power of M is 2, then rice code is applied to the remainder and   M2log   bits are 

needed for encoding. Alternatively, if M is not a power of 2, Eq. (5) is applied for encoding the remainder. 

 

   )5(log 2 Mb   

 

Further, two important conditions are noted and they are: 

1. If [(r<2)]^b - M, code r in plain binary using   b-1 bits 

2. If [(r>2)]^b - M, code the number [(r+2)]^b-M   

in plain  binary, using b bits. Based on the quotient and remainder values, code words are generated as per code 

format given in Eq.(6)    

 

)6(Re  CodemainderCodeQuotientCodeFormat  

 

The sample encoded shape histogram is shown in Table. 3. The average bit length of the encoded shape 

histogram is calculated and it is found that the average bit length of dimension reduced shape histogram is 

always low. 

 

The C Code, R Code and Q Code of sample block index is obtained and used for the retrieval. The 

retrieval performance is tested for all the code formats. It is noticed that the retrieval performance of Q Code C 

Code is similar. The performance of R Code is poor due to the fact of minimum information content. As a result, 

Q Code information alone is sufficient to achieve good result, which shown that Q Code information is equal to 

C Code information. This is represented in terms of entropy in Eq. (7) 
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 
 
  )7()(

0

)(

CodeQECodeCE

CodeQE

CodeRCodeQECodeCE







 

since <R Code> is negligible   in (7) 

The entropy for C Code and Q Code for various images are calculated and it is noticed that the 

information content of C Code is slightly greater [w=0.1-0.4] compared to the Q Code and is represented in Eq. 

(7). This is due to the fact that C Code includes both Q Code and R Code. Thus, the difference between the 

entropy of C Code and Q Code is very low and Q Code alone is sufficient for representing the histogram, 

thereby reducing the bit length. 

 

)8()(*)( CodeQEwCodeCE   

 

 

C.  Common Bins Similarity Measure (CBSM) 

The conventional distance measures face the curse of dimensionality issue due to nearest-neighbor 

search. Here, CBSM is proposed, which has good response time without affecting the precision. The entire 

database image is split various blocks and indexed as DB= (B1, B2,…, Bm). The block contains unstructured 

shape histograms with non-zero bins and represented as Bm = (h1, h2, h3,…, hk). The shape histogram bin is 

represented as hk(Nj), such that Nj represents the bin value for the bin index j where j=(1, 2, 3, ...). Given a 

query hq(Ni), the matching Block Index (B1,B2,…,Bm) is identified using its shape histogram dimension range 

(R1,R2,…,Rm). The CBSM computes the distance between query histogram (hq) and histogram (hk) in matched 

block database. Since, there exist a structural variation in the shape histograms; the similarity approach 

considers common bins of the shape histogram to compute the distance between them. The non-zero bin counts 

of query (Count_q) and block database histogram (Count_k) are considered. The common bins (Common (q)) 

between hq and hk are identified and degree of common bins (Common(Degree)) is computed using Eq. (9). 

)9(
)_(

C
)(

 (Degree) 











qCount

Common
ommon

q  

The common bin values of both the shape histograms (hq and hk) are compared. As the bits are binary, 

XOR logic is used for comparison which gives the difference in the common bin values (CB [diff]) for complete 

histogram. This is represented in Eq. (10). Here, Ni(hq)represents the value of i
th

 bin index of query histogram 

(hq) and Nj(hk) is the value of j
th

 bin index of clustered database histogram (hk), which are common (i==j) where, 

i=(1,2, 3,....,n) and  j=(1,2,3,...,n).  

 



n

ji

kjqidiffdiff hNhNCBCB
1

)()( )10()()(   

 

In Table. 4, sample hq and hk is presented for better understanding of the working principle of CBSM. 

The non-zero bins of both the histograms are counted and analysed. It is observed that only five bins are 

common between them and considered for calculating the similarity. The Common (Degree) of query shape 

histogram is computed using Eq. (9). The encoded values (Q Code) of common bins of both histograms are 

compared and represented as CB (diff) using Eq. (10). Similarly, Common (Degree) and CB [diff] between query hq 

and all the other histograms (h1, h2, h3,…,hk) in the Block Bm are calculated. The CB (diff) (dist) is calculated by 

counting number of 1’s in CB (diff) of the histograms as shown in Eq. (11). 

 

  )11()'1()()( sNumberofCBdistCB diffdiff   

 

 The Common (Degree) and CB(diff) (dist) are normalized and their combined values give distance between hq and 

(h1, h2, h3,…, hk) of the Block Bm. This is represented in Eq. (12). 

 

 

   )12()()( Degreediff CommondistCBCBSM   
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Table IV  Comparison of Encoded Values Between Query and Clustered Database Histogram 

Common(q) count_q Common(Degree) hq 

<Q Code> 

hk 

<Q Code> 

XOR CB(diff)=∑

XOR 
3 
4 

5 

54 
55 

23 5/(23) 1110 
1110 

11110 

111110 
1110 

110 
111110 

11111110 

110 
10 

1000 
110000 

11100000 

111000 
1100 

 
11111100 

 

IV. EXPERIMENTAL RESULT 
The effectiveness of the proposed encoded histogram is evaluated in an image retrieval system. For our 

experiment, we have used label me benchmark dataset (http://www.cucl.mit.edu/database.html) with 9356 

images in which 9144 are object images categorized into 101 classes and 212 are texture images categorized 

into 19 classes. We have selected query images from various classes for computing recall and precision and the 

top 50 retrieval images are considered. The CBSM is used as the distance metric to measure the distance 

between query and database are images the Recall Vs. Precision is depicted in Fig.5 (a). It is observed that for 

lower values of recall, the precision is getting higher, which is reaching around 94%. The difference in precision 

for various recalls for both encoded and original shape histogram is almost zero. Further to consolidate the 

performance of the proposed approach, the F-measure is calculated using Eq. (13) which represents harmonic 

mean of recall and precision. 

)20(
2













RP

PR
F

             (13) 

It can be noticed from the Fig. 5(b) that the difference in F-Measure between encoded and original 

histogram for various nearest neighbours is almost zero. This performance enhancement is due to the fact that 

the encoding procedure just assigns the code for minimizing the size of the histogram and the information is not 

lost. It is noticed from the result that the proposed approach performs well and retrieve the same result set as 

original histogram and also consume less space with good computation time.  

 

 

0
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Original Hist
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(b) 

 

 Fig. 5.   Performance between Original and Encoded Shape Histograms  

(a) Precision Vs. Recall (b) F-Measure 
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To consolidate the performance of the proposed approach, we compared with other similar approaches 

such as RLE and arithmetic encoding. In RLE approach, a rate-efficient codec is designed for tree-based 

retrieval and run length encoding is used in [22]. But the approach had a limitation that runs length encoding is 

not able to work well at continuous-tone images. In arithmetic coding, the images are divided into histograms 

blocks. The maximum and minimum pixel value for the entire image is found, with range (R). Further, block 

size (R× R) is set using contrast of the image and arithmetic coding is performed. The performance measures for 

all the approaches are estimated in terms of Precision, Recall and F-measure and shown in Fig. 6 and it 

represents Precision vs. Recall for different query images. The ground truth and Precision vs. Recall is taken 

individually for various blocks and then average Precision vs. Recall is calculated. Proposed approach gives 

70% and RLE approach gives 68% for recall at 0.1.  

 

 
Fig. 6. Precision Vs. Recall of Proposed and Comparative Approach 

 

Thus, the proposed approach encourages good precision of retrieval apart from reduced bit length, 

retrieval time and computation speed along with better search process. 

 

V. CONCLUSION 
The paper has considered the issues related to coding scheme for feature, storage and indexing for 

achieving higher retrieval time. An encoding scheme is proposed along with suitable distance measure to handle 

variance in structure of the histogram of query and database. The feature is coded using GR coding and the 

dimension of the histogram is used for indexing and clustering the features. The appropriate cluster is identified 

based on the dimension of the query histogram. Only quotient part of the histogram for image retrieval is used 

and retrieves the images without decoding. The performance of the proposed approach is evaluated using 

precision, recall and F-Measure and found that the difference in precision of retrieval between original and 

encoded histogram is almost negligible.  
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