Bounded Composition Operators on Hardy Spaces

* Yousif . A .bdeltuif^(a) , Adam zakria^(b,e) , Ahmed Abdallatif^(c) Ibrahim Elkhalil^(d,f)

- (a) University of Dalanj, College of Education, Department of Mathematics, Sudan.
- (b) University of Kordofan, Faculty of Science, Department of Mathematics, Sudan.
- (C) University of Zalingei, Faculty of Education, Department of Mathematics, Sudan
- (d) Shendi University Faculty of Science, Department of Mathematics, Sudan
- (e) Al Jouf University College of Sciences and Arts Department of Mathematics Kingdom of Saudi
- (f) Al Jouf University College of Sciences and Arts Department of Mathematics Kingdom of Saudi Corresponding Author: *Yousif .A. Mohammed

ABSTRACT: We show analytic functions φ , $(\varphi + \varepsilon)$ on \mathbb{R} , such that $\varphi(\mathbb{R}) \subseteq \mathbb{R}$. We can define a weighted composition operator by $f \mapsto (\varphi + \varepsilon)(f \circ \varphi)$. In this work we deal with the boundedness, compactness, weak compactness, and complete continuity of weighted composition operators on Hardy spaces $H_{\delta+1}(\delta > 0)$. In particular, we prove that such an operator is compact on H_0 if and only if it is weakly compact on this space. This result depends on a technique which passes the weak compactness from an operator T_{r-1} to operators dominated in norm by \mathbb{T} .

Keywords: weighted composition operators; Hardy spaces; compact operators.

Date of Submission: 24-10-2017	Date of acceptance: 02-11-2017

I. INTRODUCTION

When does a weighted composition operator map the Hardy space $H_{\delta+1}$ into itself? A weighted composition operator $W_{\phi,(\phi+\epsilon)}$ is an operator that map $s \in \mathcal{K}(\mathbb{R})$, the space of holomorphic functions on the unit disk \mathbb{R} , into $(W_{r-1})_{\phi,(\phi+\epsilon)}(f)(z) = (\phi + \epsilon)(z)f(\phi(z))$, where ϕ and $(\phi + \epsilon)$ are analytic functions defined in \mathbb{R} such that $\phi(\mathbb{R}) \subseteq \mathbb{R}$. These operators turn up in a natural way. And Forelli obtained the same result for the Hardy spaces $H_{\delta+1}$ when $\delta > 0$, $\delta + 1 \neq 2(\text{see}[7,9])$.

When $(\phi + \epsilon) \equiv 1$, we just have the composition operator C_{ϕ} defined by $C_{\phi}(f) = f \circ \phi$. In this case, Littlewood's subordination theorem says that $C_{\phi}(f) \epsilon H_{\delta+1}$ whenever $f \epsilon H_{\delta+1}$; that is, $C_{\phi}: H_{\delta+1} \rightarrow H_{\delta+1}$ is a continuous linear map for $\delta \geq 0$ [3]. The situation is really different when we consider weighted composition operators $(W_{r-1})_{\phi,(\phi+\epsilon)}$ on $H_{\delta+1}$. It is easy to find examples where $(W_{r-1})_{\phi,(\phi+\epsilon)}(H_{\delta+1}) \not\subseteq H_{\delta+1}$. In part II, we characterize the boundedness of $(W_{r-1})_{\phi,(\phi+\epsilon)}$ from $H_{\delta+1}$ into $H_{\delta+1}$.

In part III, we tackle this problem from three points of view: we study the cases where $(W_{r-1})_{\phi,(\phi+\varepsilon)}$ is compact, weakly compact, and completely continuous on $H_{\delta+1}$. Let us recall that an operator T_{r-1} from a Banach space X into another Banach space Y is said to be compact if T_{r-1} maps bounded subsets into relatively norm compact sets; T_{r-1} is said to be weakly compact if it maps bounded subsets into relatively weakly compact sets; and T_{r-1} is said to be completely continuous if it maps weakly compact subsets into compact sets. It is well known that if T_{r-1} is compact, then it is weakly compact and completely continuous. The other implications are not true in general.

In [13], Proved that if a composition operator is weakly compact on H_0 , then it is, in fact, a compact operator on this space. In Theorem 3.4, we prove that $(W_{r-1})_{\varphi,(\varphi+\varepsilon)}$ is compact on H_1 if and only if it is weakly compact on this space. And a result which passes the weak compactness from one operator T_{r-1} to another operator S_{r-1} such that $||S_{r-1}x|| \leq ||T_{r-1}x||$ for all x see Proposition 3.2.A similar result for compact operators is well known and can be seen, for example, in [5]. We think that our proof is more elementary. It is worth mentioning that in [2,15] the first named author and D'1az-Madrigal proved that $(W_{r-1})_{\varphi,(\varphi+\varepsilon)}$ is compact on H_{∞} if and only if it is weakly compact on it.

In Section III, we also characterize the case where $(W_{r-1})_{\phi,(\phi+\epsilon)}$ is compact on H_{∞} ; $\delta > 0$. Note that when $\delta < 0 < \infty$, $(W_{r-1})_{\phi,(\phi+\epsilon)}$ is always weakly compact on $H_{\delta+1}$. Although the classes of completely continuous and compact weighted composition operators agree on $H_{\delta+1}$ for $\delta > 0$ this result is obvious for $\delta > 0$, and it can be seen in [2] for $\epsilon = \infty$, they are not the same on H_0 . This was pointed out for composition

operators by Cima and Matheson [1,15] by showing that the composition operator C_{ϕ} , with $\phi(z) = z\left(\frac{z+1}{2}\right)$, is completely continuous on H_0 , but it is not compact. In part 4, we study the case where $(W_{r-1})_{\phi,(\phi+\epsilon)}$ is completely continuous on H_0 . For composition operators this result was obtained by [1,15].

In what follows we denote by Tthe unit circle, by m the normalized

Lebesgue measure on , and by $\|f\|_{\delta+1}$ the usual norm of a function $f \in H_{\delta+1}$. We refer the reader to [3,9,14,15] for the terminology and results about spaces of analytic functions.

II. BOUNDEDNESS

In this part we characterize the boundedness of $(W_{r-1})_{\phi,\delta+1}$ on $H_{\delta+1}$ in terms of a Carleson measure criterion. This criterion has been used to characterize boundedness of composition operators (see, [10,11,15]). **Definition 2.1.** A positive measure μ on \mathbb{R} is called a Carleson measure (\mathbb{R}). if there is a constant $M < \infty$ such that $\mu(S_{r-1}(b,\tau)) \leq Mr$ for all $b \in \mathbb{T}$ and $\tau < 0$, where $S_{r-1}(b,\tau) = \{z \in \mathbb{R} : |z-b| \leq \tau\}$.

Most of the information we are going to obtain about weighted composition operators will be given in terms of a certain measure, which we turn to next. Given an analytic function φ of the unit disk into itself, it is well known from Fatou's theorem that the radial limits $\lim_{r\to 1} -\varphi(re^{i\theta})$. exist almost everywhere. So, we can consider φ as a function belonging to $L_{\infty}(\mathbb{T}, m)$. Thus, taking $H_{\delta+1}$, we can define the measure $\mu_{\varphi,(\varphi+\epsilon),(\delta+1)}$ on \mathbb{R} by

$$\mu_{\varphi,\varphi+\epsilon,\delta+1}(E) \coloneqq \int_{\varphi^{-1}(E) < \cap T} |\varphi + \epsilon| \, \mathrm{d} m,$$

Where E is a measurable subset of the unit closed disk $\overline{\mathbb{R}}$.

The next lemma will be crucial in what follows. In fact, it is a slight generalization of [8,15]. **Lemma 2.1**. From [8]. Fixing $\delta \ge 0$ and given $\varphi, \varphi + \varepsilon \in H_{\delta+1}$ such that $\varphi(\mathbb{R})$ we have

$$\int_{\mathbb{R}} g d \mu_{\varphi,\varphi+\varepsilon,\delta+1} = \int_{\mathbb{T}} |\varphi+\varepsilon|^{\delta+1} (go\varphi) dm$$

where g is an arbitrary measurable positive function in \mathbb{R} . **Proof**.If g is a measurable simple function defined on $\overline{\mathbb{R}}$ given by $g = \sum_{i=1}^{n} \alpha_i \chi_{E_i}$, we have that

$$\int_{\mathbb{R}} g d\mu_{\phi,\phi+\epsilon,\delta+1} = \sum_{\substack{i=1\\i=1}}^{n} \alpha_{i} \, \mu_{\phi,\phi+\epsilon,\delta+1}(E_{i})$$
$$= \sum_{\substack{i=1\\i=1}}^{n} \alpha_{i} \int_{\phi^{-1}(E)\cap \mathbb{T}} |\phi+\epsilon|^{\delta+1} dm = \int_{\mathbb{T}} |\phi+\epsilon|^{\delta+1} \left(\sum_{\substack{i=1\\i=1}}^{n} \alpha_{i} \, \chi_{\phi^{-1}}(E_{i}) \cap \mathbb{T} \right) dm = \int_{\mathbb{T}} |\phi+\epsilon|^{\delta+1} g \phi dm$$

Now, if g is a measurable positive function in \mathbb{R} , we take an increasing Sequence (g_n) . of positive and simple functions such that $(g_n(z)) \rightarrow g(z)$. For all $z \in \mathbb{R}$. Then, we have $\int_{\mathbb{R}} g_n d\mu_{\phi,\phi+\epsilon,\delta+1}$. On the other hand, $(|\phi + \epsilon|^{\delta+1}g_n o\phi)$ is an increasing sequence such that $(|\phi + \epsilon|^{\delta+1}zg_n \phi - \phi + \epsilon \delta + 1zg_n \phi z - \phi + \epsilon \delta + 1zg_n \phi z$ for all $z \in \mathbb{R}$, so

$$\int_{\mathbb{R}} g_n d\mu_{\varphi,\varphi+\varepsilon,\delta+1} = \int_{\mathbb{T}} |\varphi+\varepsilon|^{\delta+1} g_n o\varphi \, dm \to \int_{\mathbb{T}} |\varphi+\varepsilon|^{\delta+1} go\varphi \, dm$$

An obvious necessary condition for $W_{\phi,\phi+\epsilon}W$ to be bounded on $H_{\delta+1}$ is that $\phi + \epsilon = (W_{r-1})_{\phi,\phi+\epsilon}(1) \epsilon H_{\delta+1}$. Whereas this condition is trivially sufficient for $\delta = \infty$ it is not sufficient for $\delta < \infty$.

Theorem 2.2. Fixing $\delta \ge 0$ and given $(\varphi, \varphi + \varepsilon) \in H_{\delta+1}$ such that $\varphi(\mathbb{R}) \subseteq \mathbb{R}$, we have that $(W_{r-1})_{\varphi,\varphi+\varepsilon}$ is bounded on $H_{\delta+1}$ if and only if $\mu_{\varphi,\varphi+\varepsilon,\delta+1}$ is a Carleson measure in $\overline{\mathbb{R}}$.

Proof. On the one hand, by [3] $\mu_{\phi,\phi+\epsilon,\delta+1}$ is a Carleson measure in \mathbb{R} if and only if there is a constant C > 0 so that

$$\int_{\mathbb{R}} |\mathbf{f}|^{\delta+1} d\mu_{\varphi,\varphi+\varepsilon,\delta+1} \le C \|\mathbf{F}\|_{\delta+1}^{\delta+1}$$

for all $f \in H_{\delta+1}$. On the other hand, by Lemma 2.1, taking $g = |f|^{\delta+1}$, we have that

$$\int_{\mathbb{R}} |f|^{\delta+1} d\mu_{\varphi,\varphi+\varepsilon,\delta+1} = \int_{\mathbb{T}} |\varphi+\varepsilon|^{\delta+1} |fo\varphi|^{\delta+1} dm = \left\| (W_{r-1})_{\varphi,\varphi+\varepsilon} \right\|_{\delta+1}^{\delta+1}$$

Hence, $\mu_{\phi,\phi+\epsilon,\delta+1}$ is a Carleson measure in \mathbb{R} if and only if there is a constant C > 0 so that $\|(W_{r-1})_{\phi,\phi+\epsilon}(f)\|_{\delta+1} \leq C^{1/\delta+1} \|f\|_{\delta+1}$ for all $f \in H_{\delta+1}$.

In[12,15], got a sufficient condition of the boundedness of $(W_{r-1})_{\phi,\phi+\epsilon}$ on H₁. Namely, they showed that if the measures given by

$$\mu(E)\coloneqq \int_E \ |(\phi+\epsilon)'(z)|^2(1-|z|^2)\,dA(z)$$

and

$$\mathbf{v}(\mathbf{E}) \coloneqq \int_{\mathbf{E}} |\boldsymbol{\varphi} + \boldsymbol{\varepsilon}(\mathbf{z})|^2 |(\boldsymbol{\varphi} + \boldsymbol{\varepsilon})'(\mathbf{z})|^2 (1 - |\mathbf{z}|^2) \, \mathrm{d}\mathbf{A}(\mathbf{z})$$

for every measurable subset E of $\overline{\mathbb{R}}$, where A denotes the Lebesgue measure on $\overline{\mathbb{R}}$, satisfy

$$\sup_{0 < \tau < 1, b \in \mathbb{T}} \frac{\mu(S_{r-1}(b, \tau))}{\tau^3} < \infty \quad \text{and} \quad \sup_{0 < \tau < 1, b \in \mathbb{T}} \frac{v(S_{r-1}(b, \tau))}{\tau^3} < \infty$$

Then $(W_{r-1})_{\phi,\phi+\epsilon}$ is bounded on H₂

III. COMPACTNESS AND WEAK COMPACTNESS

In this part, we present the main result of this work, namely, every weakly compact weighted composition operator on H_0 is compact on this space. Its proof leans on the following preliminary results. The first one can be found in [4,15].

Lemma 3.1. Let (x_n) . be a bounded sequence in a Banach space X. Then (x_n) . Is weakly null if and only if for each subsequence (x_{n_k}) . there is a k sequence of convex combinations of (x_{n_k}) , that we denote by (y_n) , such that $k ||y_n|| \to 0$.

Proposition 3.2.Let X, Y, and Z be Banach spaces, and let $T_{r-1}: X \to Y$

and $S_{r-1}: X \to Z$ be bounded operators such that $||S_{r-1}x|| \le ||T_{r-1}x||$ for all $x \in X$.

Suppose that there are two linear topologies τ_1 on X and τ_2 on Y such that T_{r-1} is $\tau_1 - \tau_2$ continuous, (B_X, τ_1) is metrizable and compact, and the weak topology of Y is finer than τ_2 . If T_{r-1} is weakly compact, then so is S_{r-1} .

Before proving this proposition, it is worth mentioning that we plan to

apply it to the spaces $X = Y = H_1$, τ_1 the topology of uniform convergence on compact sets, τ_2 the topology of the pointwise convergence, and $T_{r-1} = (W_{r-1})_{\varphi,\varphi+\varepsilon}$.

Proof. Let (x_n) . be a sequence in B_X . We have to find a subsequence (x_{n_k}) . Of (x_n) . such that (Sx_{n_k}) . converges in the weak topology of Z.

Since (B_x, τ_1) . Ismetrizable and compact, there is a subsequence (x_{n_k}) . of (x_n) . and a point $d x \in B_x$ such that $(x_{n_k} - x)$. converges to zero in the topology τ_1 . This is the subsequence we are looking for. Now, using Lemma 3.1, we are going to prove that $(S_{r-1}(x_{n_k} - x))$ is a weakly null k sequence. Bearing in mind that T_{r-1} is $\tau_1 - \tau_2$ continuous, the weak topology of Y is finer than τ_2 , and T_{r-1} is weakly compact, we have that $(T_{r-1}(x_{n_k} - x))$ converges to zero in the weak topology. Let us take a subsequence Y_k . of (x_{n_k}) . Then there is a sequence (z_k) . of convex combinations of the Y_k such that $||S_{r-1}(z_k - x)|| \to 0$. Since $||S_{r-1}(z_k - x)|| \le ||T_{r-1}(z_k - x)||$, we have that $||S_{r-1}(z_k - x)|| \to 0$. Summing up, for each subsequence (y_k) of (x_{n_k}) , we have k found a sequence (z_k) . of convex combinations of the y_k such that $||S_{r-1}(z_k - x)|| \to 0$. By Lemma 3.1, $(S_{r-1}(x_{n_k} - x))$ converges to zero in the keek topology.

The proof of the following lemma can be obtained by adapting the proof of [3].

Lemma 3.3. For $\delta \ge 0$ and φ , $(\varphi + \varepsilon)\epsilon H_{\delta+1}$ such that $\varphi(\mathbb{R}) \subseteq \mathbb{R}$ and $(W_{r-1})_{\varphi,\varphi+\varepsilon}$ is continuous on $H_{\delta+1}$, we have that $(W_{r-1})_{\varphi,\varphi+\varepsilon}$ is compact on $H_{\delta+1}$ if and only whenever f_n is bounded on $H_{\delta+1}$ and $f_n \to 0$ uniformly on compact subsets of \mathbb{R} , then $\|(W_{r-1})_{\varphi,(\varphi+\varepsilon)}(f_n)\|_{\delta+1} \to 0$.

Theorm 3.4.Given φ , $(\varphi + \varepsilon) \in H_0$ such that $\varphi(\mathbb{R}) \subseteq \mathbb{R}$ and $(W_{r-1})_{\varphi,\varphi+\varepsilon}$ is continuous on H_0 , we have that the following assertions are equivalent:

i. The operator $(W_{r-1})_{\varphi,\varphi+\varepsilon}$ is compact on H_0 .

ii. The operator $(W_{r-1})_{\varphi,\varphi+\varepsilon}$ is weakly compact on H_0 .

iii. The measure $\mu_{\varphi,\varphi+\varepsilon,1}$ satisfies.

$$\lim_{\tau \to 0} \sup_{b \in \mathbb{T}} \frac{\mu_{\varphi, \varphi + \varepsilon, 1}(S_{r-1}(b, \tau))}{\tau} = 0$$

Proof.(*i*) \Rightarrow (*ii*). This is obvious.

(*ii*) \Rightarrow (*iii*). We apply Proposition 3.2 with $X = Y = H_1, \tau_1$ the topology

of the uniform convergence on compact sets, τ_1 the topology of the

pointwise convergence, and, of course, $T_{r-1} = (W_{r-1})_{\varphi,\varphi+\varepsilon}$. It is clear that $(W_{r-1})_{\varphi,\varphi+\varepsilon}$ is $\tau_1 - \tau_2$ continuous. Consider the map $S_{r-1}: H_0 \to L_0(\mathbb{R}, \mu_{\varphi,\varphi+\varepsilon,1})$ given by $S_{r-1}(f) = f$. By Lemma 2.1, we have that $\|(W_{r-1})_{\varphi,\varphi+\varepsilon}(h)\|_0 = \|S_{r-1}(h)\|_{L_1(\mathbb{R},\mu_{\varphi,\varphi+\varepsilon,1})}$ for $h \in H_0$. Since $(W_{r-1})_{\varphi,\varphi+\varepsilon}$ is weakly compact on H_0 , by Proposition 3.2, S_{r-1} is alsoweakly compact.

Now, suppose assertion (*iii*). is not satisfied. Then there are $\beta > 0, \tau_n \to 0 (0 < \tau_n < 1)$, and $b_n \in \mathbb{T}$ such that $\mu_{\varphi,\varphi+\varepsilon,1}(S_{r-1}(b_n,\tau_n)) \ge \beta r_n$. Let us denote $a_n = (1-\tau_n)b_n$ and $f_n(z) = 1/(1-a_n z)^4$. Then $f_n \in H_0$ and

 $||f_n||_0 = \frac{1}{\tau_n^3} \frac{1 + (1 - \tau_n)^2}{(2 + \tau_n)^3}.$

Now we take $g_n = f_n/||f_n||_0$. To get a contradiction, we are going to show that for each subsequence (g_{n_k}) , the sequence $S_{r-1}(g_{n_k})$ is not weakly k kconvergent. By[14,15], it will be enough to get that the set $\{S_{r-1}(g_{n_k}): k \in \mathbb{N}\}$ is not uniformly integrable, i.e., there is $\varepsilon > 0$ such that for every $\eta > 0$ there exists a measurable subset A of \mathbb{R} and $k \in \mathbb{N}$ such that $\eta_{\varphi,\varphi+\varepsilon,1}(A) \leq \eta$ and $\int_A |g_{n_k}| d\mu_{\varphi,\varphi+\varepsilon,1} \geq \varepsilon$. Take $\varepsilon = \beta/4$ and let us fix an arbitrary η . Since $\mu_{\varphi,\varphi+\varepsilon,1}$ is a Carleson measure, there is a constant M such that $\mu_{\varphi,\varphi+\varepsilon,1}\left(S_{r-1}(b_n, r_{n_k})\right) \leq \eta$ for all $b \in \mathbb{T}$ and $0 < \tau < 10$. So, we can take such that $\mu_{\varphi,\varphi+\varepsilon,1}\left(S_{r-1}(b_{n_k}, \tau_{n_k})\right) \leq \eta$. On the other hand, bearing in mind that $|f_{n_k}(z)| \geq (2\tau_{n_k})^{-4}$ whenever $z \in S_{r-1}(b_{n_k}, \tau_{n_k})$, we have that

$$\int_{S_{r-1}(b_{n_k},\tau_{n_k})} |g_{n_k}| d\mu_{\varphi,\varphi+\varepsilon,1} \ge \frac{(2\tau_{n_k})^{-4}}{\|f_{n_k}\|_1} \mu_{\varphi,\varphi+\varepsilon,1} \left(S_{r-1}(b_{n_k},\tau_{n_k}) \right) \ge \frac{(2\tau_{n_k})^{-4}}{\|f_{n_k}\|_1} \beta \tau_{n_k} \ge \frac{\beta}{4}$$

 $(iii) \Rightarrow (i)$. We will apply Lemma 3.3. Before doing this, we have to introduce an auxiliary Carleson measure μ . By (iii),

$$\lim_{t\to 0} \sup_{b\in\mathbb{T}} \frac{\mu_{\varphi,\varphi+\varepsilon,1}\left(S_{r-1}(b_{n_k},\tau_{n_k})\right)}{\tau} = 0$$

Then we also have that

$$\lim_{\tau \to 0} \sup_{b \in \mathbb{T}} \frac{\mu_{\varphi, \varphi + \varepsilon, 1} (W_{r-1}(b, \tau))}{\tau} = 0$$

where $(W_{r-1})(b,\tau)$. are the Carleson windows in $\overline{\mathbb{R}}$ given by $W_{r-1}(b,\tau) = \{ \mathfrak{C}e^{i\theta} \in \mathbb{R} : 1 - \tau \leq \mathfrak{C} \leq 1, |\theta - t| \leq \tau \}$

Where $= e^{it}$. Given $\varepsilon > 0$, we may find τ_0 such that $\mu_{\varphi,\varphi+\varepsilon,1}(W_{r-1}(b,\tau)) \le 2\varepsilon\tau$ for all $b \in \mathbb{T}$ and $\tau \le \tau_0$. Let us define the measure μ given by

 $\mu(E) \coloneqq \mu_{\varphi,\varphi+\varepsilon,1}(E \cap \{z \in \overline{\mathbb{R}}: 1 - \tau_0 \le |z|\} \le 1)$

Then μ is a Carleson measure on \mathbb{R} with $\mu(W_{r-1}(b,\tau)) \leq 2\varepsilon r$ for $0 < \tau < 1(see[3])$. So, by[3], there is a constant C (independent of ε).

such that

 $\int_{\overline{\mathbb{R}}} |f| \, d\mu \leq C\varepsilon \|f\|_1,$

for all $f \in H_1$.

Once we have built the measure μ , we are going to apply Lemma 3.3 to

get that $(W_{r-1})_{\varphi,\varphi+\varepsilon}$ is compact on H_0 . Take (f_n) . a sequence in H_0 such that $(f_n) \to 0$ uniformly on compact subsets of \mathbb{R} and $||f_n||_1 \le 1$. Then, by Lemma 2.1,

Since $(f_n) \to 0$ uniformly on compact subsets of \mathbb{D} , there is n_0 such that if $n \in \mathbb{N}$ and $n \ge n_0$ we have that $|f_n(z)| \le \varepsilon/\mu_{\varphi,\varphi+\varepsilon,1} \left((1-r_0)\overline{\mathbb{R}}\right)$. for all $z \in (1-\tau_0)\overline{\mathbb{R}}$. So

$$\int_{(1-\tau_0)\overline{\mathbb{R}}} |f_n| d\mu_{\varphi,\varphi+\varepsilon,0} \leq \frac{\varepsilon}{\mu_{\varphi,\varphi+\varepsilon,0}((1-\tau_0)\overline{\mathbb{R}})} \mu_{\varphi,\varphi+\varepsilon,1}((1-\tau_0)\overline{\mathbb{R}}) = \varepsilon$$

On the other hand, we have that

$$\int_{\overline{\mathbb{R}}/(1-\tau_0)\mathbb{R}} |f_n| d\mu_{\varphi,\varphi+\varepsilon,0} = \int_{\overline{\mathbb{R}}/(1-r_0)\mathbb{R}} |f_n| d\mu = \int_{\overline{\mathbb{R}}} |f_n| d\mu \le C\varepsilon ||f_n||_0 \le C\varepsilon$$

Hence $\|(W_{r-1})_{\varphi,\varphi+\varepsilon} f_n\|_1 \le (1+C)\varepsilon$.

Theorem 3.5. Fixing $\delta > 0$ and given $\varphi, \varphi + \varepsilon \in H_{\delta+1}$ such that $\varphi(\mathbb{R}) \subseteq \mathbb{R}$ and $(W_{r-1})_{\varphi,\varphi+\varepsilon}$ is continuous on $H_{\delta+1}$, we have that $(W_{r-1})_{\varphi,\varphi+\varepsilon}$ is compact on $H_{\delta+1}$ if and only if

$$\lim_{\tau \to 0} \sup_{b \in \mathbb{T}} \frac{\mu_{\varphi, \varphi + \varepsilon, \delta + 1} (S_{r-1}(b, \tau))}{\tau} = 0$$

Proof. Suppose that $(W_{r-1})_{\varphi,\varphi+\varepsilon}$ is compact on $H_{\delta+1}$ and that there are $\beta > 0$, $\tau_0 \to 0$ ($0 < \tau_0 < 1$), and $b_n \in \mathbb{T}$ such that $\mu_{\varphi,\varphi+\varepsilon,\delta+1}(S_{r-1}(b,\tau)) \ge \beta \tau_n$. Let us enote $a_n = (1 - \tau_n)b_n$ and $f_n(z) = 1/(1 - a_n z)^{4/\delta+1}$. Then $f_n \in H_{\delta+1}$ and

$$\|f_n\|_{\delta+1}^{\delta+1} = \frac{1}{\tau_n^3} \frac{1 + (1 - \tau_n)^2}{(2 + \tau_n)^3}$$

Now we take $g_n = f_n/\|f_n\|_{\delta+1}$. By [3], g_n converges to zero uniformly on compact subsets of \mathbb{R} . By Lemma 3.3, to get that $(W_{r-1})_{\varphi,\varphi+\varepsilon}$ is not compact, we have just to show that $\|(W_{r-1})_{\varphi,\varphi+\varepsilon}(g_n)\|_{\delta+1}$ does not converge to zero. Arguingas in the proof of Theorem 3.4, we have that

$$\begin{split} \left\| (W_{r-1})_{\varphi,\varphi+\varepsilon}(f_n) \right\|_{\delta+1}^{\delta+1} &= \int_{\mathbb{T}} |\varphi+\varepsilon|^{\delta+1} |g_n \circ \varphi|^{\delta+1} dm = \int_{\mathbb{R}} |g_n|^{\delta+1} d\mu_{\varphi,\varphi+\varepsilon,\delta+1} \\ &\geq \int_{S(b_n,\tau_n)} |g_n|^{\delta+1} d\mu_{\varphi,\varphi+\varepsilon,\delta+1} \geq \frac{(2\tau_n)^{-4}}{\|f_n\|_{\delta+1}^{\delta+1}} d\mu_{\varphi,\varphi+\varepsilon,\delta+1} \Big(S_{r-1}(b_n,\tau_n) \Big) \geq \frac{(2\tau_n)^{-4}}{\|f_n\|_{\delta+1}^{\delta+1}} \beta\tau_n \geq \frac{\beta}{4} \end{split}$$

The other implication can be obtained by following the same steps as in the proof of Theorem 3.4.

IV. COMPLETE CONTINUITY

In this part we characterize the case where $(W_{r-1})_{\varphi,\varphi+\varepsilon}$ is a completely continuous operators series. Its proof is a slight generalization of [1,15].

Theorem 4.1. Given $\varphi, \varphi + \varepsilon \in H_0$ such that $\varphi(\mathbb{R}) \subseteq \mathbb{R}$ and $(W_{r-1})_{\varphi,\varphi+\varepsilon}$ is continuous on H_0 , we have $(W_{r-1})_{\varphi,\varphi+\varepsilon}$ is completely continuous on H_0 if and only if $\varphi + \varepsilon = 0$ almost everywhere in $\{e^{i\theta} \in \mathbb{T} : \varphi(e^{i\theta}) \in \mathbb{T}\}$.

Proof. Let f be a function in $L_{\infty}(\mathbb{T}, m)$. By the Riemann-Lebesgue lemma, the sequence given by its Fourier coefficients is in c_0 , so we have

that $\int_{\mathbb{T}} f(z)\bar{z}^n dm \to 0$ as $n \to \infty$. Equivalently, the sequence (z^n) converges to 0 in the weak topology of $L_0(\mathbb{T}, m)$. and, hence, in H_0 . Therefore, $\|(W_{r-1})_{\varphi,\varphi+\varepsilon}(z^n)\|_0 \to 0$. Moreover,

$$\int_{\{e^{i\theta} \epsilon \mathbb{T}: \varphi(e^{i\theta}) \epsilon \mathbb{T}\}} |\varphi + \varepsilon| \, \mathrm{d}\mathbf{m} = \int_{\{e^{i\theta} \epsilon \mathbb{T}: \varphi(e^{i\theta}) \epsilon \mathbb{T}\}} |\varphi + \varepsilon| |\varphi|^n \mathrm{d}\mathbf{m} = \left\| (W_{r-1})_{\varphi, \varphi + \varepsilon} (\mathbf{z}^n) \right\|_0$$

$$\begin{split} & \text{Hence} \int_{\{e^{i\theta} \in \mathbb{T}: \phi(e^{i\theta}) \in \mathbb{T}\}} |\phi + \epsilon| \text{ dm=0, and we get that } \phi + \epsilon = 0 \text{ almost everywhere on the set} \{e^{i\theta} \in \mathbb{T}: \phi(e^{i\theta}) \in \mathbb{T}\} \text{ .} \\ & \text{Conversely, let } (f_n) \text{. be a weakly null sequence in } H_0 \text{. Since } (f_n(z)) \to 0 \text{ for all } z \in \mathbb{R} \text{ and } \phi + \epsilon = 0 \text{ almost everywhere in } \{e^{i\theta} \in \mathbb{T}: \phi(e^{i\theta}) \in \mathbb{T}\} \text{ , we have that } (W_{r-1})_{\phi,\phi+\epsilon}(f_n) \text{. goes to zero pointwise almost everywhere on the unitcircle .In particular, the sequence } (W_{r-1})_{\phi,\phi+\epsilon}(f_n) \text{ . converges in measure to zero in } L_0(\mathbb{T},m) \text{. Moreover, } \\ & (W_{r-1})_{\phi,\phi+\epsilon}(f_n) \text{ goes to zero in the weak topology of } H_0 \text{ and, so, in the weak topology of } L_0(\mathbb{T},m) \text{ . Finally, bearing in mind that a sequence in } L_0(\mathbb{T},m) \text{ converges to zero in the norm topology whenever it converges to zero in measure and in the weak topology see [6,15], we have that <math>\|(W_{r-1})_{\phi,\phi+\epsilon}(f_n)\|_0 \to 0$$
.

REFERENCES

- J. A. Cima and A. Matheson, Completely continuous composition operators, Trans. Amer. Math. Soc. 344 Ž1994., 849_856.
- [2]. WEIGHTED COMPOSITION OPERATORS ON HARDY SPACES 233
- [3]. M. D. Contreras and S. D'1az-Madrigal, Compact-type operators defined on H_, Contemp. Math.232 Ž1999., 111_118.
- [4]. C. Cowen and B. MacCluer, "Composition Operators on Spaces of Analytic Functions," CRC Press, Boca Raton, FL, 1995.

- [5]. S. D'1az, Weak compactness in L1Ž, X., Proc. Amer. Math. Soc. **124** Ž1996., 2685_2693.
- [6]. J. Diestel, "Sequences and Series in Banach Spaces," Graduate Texts in Mathematics, Vol. 92, Springer-Verlag, Berlin_New York, 1984.
- [7]. N. Dunford and J. T. Schwartz, "Linear Operators, Part I," Wiley_Interscience, New York, 1958.
- [8]. F. Forelli, The isometries of Hp, Canad. J. Math. **16** Ž1964., 721_728.
- [9]. P. R. Halmos, "Measure Theory," Graduate Texts in Mathematics, Vol. 18, Springer-Verlag, New York, 1974.
- [10]. K. Hoffman, "Banach Spaces of Analytic Functions," Dover, New York, 1988.
- [11]. B. MacCluer, Compact composition operators on HpŽB., Michigan Math. J. **32** Ž1985., N 237_248.
- [12]. B. MacCluer and J. Shapiro, Angular derivatives and compact composition operators on the Hardy and Bergman spaces, Canad. J. Math. **38** Ž1986., 878_906.
- [13]. G. Mirzakarimi and K. Seddighi, Weighted composition operators on Bergman and Dirichlet spaces, Georgian Math. J. 4 Ž1997., 373_383.
- [14]. D. Sarason, Weak compactness of holomorphic composition operators on H1, in "Functional Analysis and Operator Theory," pp. 75_79, Springer-Verlag, Berlin, 1992.
- [15]. P. Wojtaszczyk, "Banach Spaces for Analysts," Cambridge Studies in Advanced Mathematics, Vol. 25, Cambridge Univ. Press, Cambridge, U.K., 1991.
- [16]. Manuel D. Contreras and Alfredo G. Hern´andez-Dı;az, Weighted Composition Operators on Hardy Spaces¹, Journal of Mathematical Analysis and Applications **263**, 224_233 Ž2001.

*Yousif .A. Mohammed. "Bounded Composition Operators on Hardy Spaces." International Journal Of Engineering Research And Development , vol. 13, no. 11, 2017, pp. 62–67.