
International Journal Of Engineering Research And Development

e-ISSN: 2278-067X, p-ISSN: 2278-800X, www.ijerd.com

Volume 13, Issue 11 (November 2017), PP.32-36

32

Data Migration From SQL To Mongodb

*Nuzhat F. Shaikh
1
,Aditya Jadhav

2
,Chetan Raina

3
,Gaurav Nagoshe

4
,

Suraj Kale
5

1,2,3,4,5
Department of Computer Engineering , Modern Education Society's College of Engineering, Pune, India

Corresponding Author: *Nuzhat F. Shaikh

ABSTRACT:- As the Internet related technologies have emerged, a lot of changes were observed in the data

collected, stored and processed by the organizations. The new incoming data was unstructured, available from a

number of outside areas and accumulated in large volumes within a small time span. It was realized the

traditional system is inefficient to handle this data. Solution to that is NoSQL type database. The databases that

belong to this category are highly scalable, powerful and efficient. But the problem that occurs with these

databases is they don’t use the traditional SQL (Structured Query language) to query the data. Hence it is

difficult to migrate data from existing traditional databases to the NoSQL databases and develop efficient and

optimized functions to query the data under these NoSQL databases. Various tools are available which have the

capabilities to address this, but none of them actually provide a complete integrated system for efficiently doing

this. This paper proposes an architecture which will provide a GUI Application that will provide the users with

a click and use Querying feature with Data Migration and Automatic Query Conversion. MongoDB is the most

slanting database for NoSQL, therefore our proposed system focuses on these perspectives with reference to

MongoDB.

Keywords:- Schema, MongoDB, RDBMS, Migration, Query Syntax, Relational Model

Date of Submission: 07 -11-2017 Date of acceptance: 21-11-2017

--

I. INTRODUCTION
The recent increase in the use of the internet and social media sites has emerged as a problem for the

relational databases. It has been observed that the relational databases have not been able to scale up with the

increased use of databases. The various factors involved such as cost and performance help in determining how

the data should be stored and managed. The traditional SQL based databases are preferred for their availability

and fault tolerance. But these can be very expensive to maintain and difficult to scale. This has led to

corporations migrating from relational databases to NoSQL databases. Cheap hardware and easy scalability are

the factors that have favored the migration to these databases. Most of the data on social networking sites and

clouds is unstructured and may vary in nature. This data also takes up huge space and requires high availability

and scalability. These same tasks can still be accomplished with the traditional RDBMS databases but at a very

high cost which makes the NoSQL databases the popular choice as they are comparatively cheaper [10].

MongoDB is a Document based database of NoSQL type that provides us with increased availability

and scaling as its major features. It stores the data in JSON format and provides javascript functions to query

that data. The syntax as well as the data layout being completely different, it introduces the overhead of

acquiring efficiency in javaScript querying and converting queries from all web programs from SQL to

MongoDB. The proposed system focuses on 2 major aspects of the database world. Writing efficient queries can

be done only by individuals who have been working on databases from a sufficiently long time and have

developed a sense of eminence in the query language. This surely becomes more burdensome if the database to

be used does not support the conventional SQL for querying the data. In case of MongoDB, functions of

javascript are used for querying the data and further a lot of new functions are developed regularly by the

MongoDB community. These new functions surely help with the efficient querying of data but for only those

who are familiar with this database. The expectation that an entire stack of developers would be efficient in

optimized MongoDB querying is not an ideal situation. Hence this paper proposes a Graphical User Interface

Application which will eliminate the need to know syntaxes and available method. Moreover the system will

also provide us with automatic query correction that we use to minimize the errors by the user.

An essential focus area that prevents companies from switching to powerful databases like MongoDB

is the overhead involved in the process of migration. Migration is referred to as the process of transferring data

from a database from one server to another or from one database architecture to another.

Data Migration from SQL to MongoDB

33

There are various algorithms available for migrating an SQL database to MongoDB. But the user may find

difficulty in implementing the functionality of SQL queries on the MongoDB databases. If a large scale

company wants to migrate, it will have to invest a huge amount of money in the man power for query

conversion and the process may also take considerable time. We intend to solve this problem by automating this

process through our system. The web server will provide an interactive and graphical utility to convert SQL

queries to MongoDB queries. This helps a user to implement his operations on the database even if he is

unfamiliar with the MongoDB database.

II. LITERATURE SURVEY
Cloud suppliers offer their framework, stage and programming to clients who discovered distributed

computing as a fitting answer for their necessities. The organizations who need to pick a cloud supplier ought to

notice that subsequent to building up their own particular programming in a particular cloud condition, the

relocation to another cloud condition would be troublesome or it may be incomprehensible. Cloud databases are

in charge of putting away information in an adaptable and high accessible route in cloud situations [1]. NoSQL

databases have risen as the answer for handling substantial amounts of client created substance as yet ensuring

adaptation to internal failure, accessibility and versatility. Each NoSQL database offers separated properties and

qualities and additionally unique information models and structures. Thus, the advancement of users misusing

such sort of innovation is entirely reliant on the particular NoSQL arrangement being received, and the

relocation from a NoSQL to alternate requires the improvement of specially appointed code dealing with the

exchange of information. A relocation framework for columnar NoSQL databases helps to fulfill it. This

approach depends on an original meta-model, fit for saving both solid and feeble consistency between

information refreshes, auxiliary files and different information sorts. In addition, the approach enables designers

to effectively include bolster for new databases [2].

Qing Wang et al. [3] examine information relocation essentials from a hypothetical point of view.

Following the system of unique elucidation, we initially examine models and schemata at various levels of

reflection to build up a Galois association amongst theoretical and solid models. An inheritance piece is found at

an abnormal state deliberation which combines heterogeneous information sources in a heritage framework. At

that point it is demonstrated that relocation changes can be determined by means of the arrangement of two

subclasses of changes: property-safeguarding changes and property-improving changes. By characterizing the

thoughts of refinement accuracy for property-protecting and property-improving changes, a formal system is

built up for refining changes happening during the time spent in information movement.

Distributed computing has as of late developed as another figuring worldview empowering on-request

and versatile arrangement of assets, stages and programming as administrations. Keeping in mind the end goal

to fulfill distinctive capacity necessities, cloud applications typically need to get to and collaborate with various

social and NoSQL information sources having different APIs. This APIs heterogeneity incites two primary

issues. In the first place it binds cloud applications to particular information stores hampering along these lines

their relocation. Second, it expects designers to be comfortable with various interfaces. The paper proposes

bland assets characterizing the diverse idea utilized as a part of each kind of information store. These assets are

overseen by ODBAPI as a streamlined and a bound together REST API empowering to execute CRUD

operations on various NoSQL and social databases [4]. Rick Cattell [5] inspects various SQL and so called

"NoSQL" information stores intended to scale basic OLTP-style application stacks over numerous servers.

Initially persuaded by Web 2.0 applications, these frameworks are intended to scale to thousands or a great

many clients doing refreshes and in addition peruses, as opposed to customary DBMSs and information

stockrooms. The new frameworks are differentiated on their information show, consistency systems, stockpiling

components, solidness, accessibility, question bolster, and different measurements. These frameworks ordinarily

give up some of these measurements, e.g. extensive exchange consistency, to accomplish others, e.g. higher

accessibility and adaptability.

Mayuri Sadaphule et al. [6] present an interface to implement database queries in spreadsheets. A query

conversion tool is used for the translation of SQL queries. Querying data from databases can be difficult for

non-technical users. The interface helps such users to use spreadsheets for this purpose that is a more familiar

technology to them. This way the users can benefit from the scalability and availability provided by the

databases. The query conversion tool is used for translating SQL queries in the .xlsx format. The tool

automatically queries the data from the tables in the databases and outputs them in column form for

implementation in spreadsheets. First the query is translated into relational algebra expression. Then the

relational expression is translated into spreadsheets according to the operator [7].

The tool can also be used to perform the validation and correction of the queries entered by the user.

Then a parse tree is generated according to the database schema selected by the user. The system then identifies

the SQL Query and converts it into the form of a Relational Algebra Expression. The graph is implemented by

using BFS and DFS algorithms for traversal [8].

Data Migration from SQL to MongoDB

34

III. PROPOSED SYSTEM
The system that we propose can be subdivided into an online database application and a query

conversion utility. The client application acts as an environment that allows the users to select and convert the

databases from SQL to MongoDB. To fulfill this purpose, the process of querying is expected to be in a

hierarchical form starting from databases and ultimately lowering down to Collections, Documents, Criteria and

Projections. The structure and data types of the keys will also be considered. The query conversion utility

provides the user with graphical user interface that allows him to choose from some basic predefined SQL

queries or write his own SQL query. This way the user can implement his queries even if he is not familiar with

the MongoDB database.

Also, the system is expected to detect syntax errors in the queries before execution. These errors will be

automatically corrected by the utility after which the queries will be executed. Fig.1 shows the block diagram of

proposed system.

Fig. 1: Block Diagram

IV. MATHEMATICAL MODEL
Data migration is the process of transforming data modeled by schema of source database D1 into target

database D2,

Input = {D1, D2}

Where D1 = source database RDBMS

D2 = target database MongoDB

T = {T1, T2, T3……Tn}

Where T is the set of available tables in the database D1

M1 = {Pk, Fk, Row, Column, Records}

where M1 is the metadata of database D1

M2 = {id, Document, Collections, fields}

Where M2 is the metadata of database D2

f = M1->M2 this function is used to map the two sets of metadata

Data Migration from SQL to MongoDB

35

Collection->Tables

Document-> Row

Field->Column

Output = D1->D2

Query Conversion

Let S be the Whole System Consisting of

S = {I, P, O}

I = Input

O = output

I = {U, Q, D}

O= {Qm, Dm}

U = User

U = {u1, u2….un}

Where Q is the Query Entered by user

Q = {q1, q2, q3…qn}

D = {d1, d2, d3…dn}

Where D is the Dataset on which we perform the query conversion

Qm is the converted query in MongoDB

Output = Data retrieved from the MongoDB database

V. SYSTEM IMPLEMENTATION

 Data Migration:

The process of transferring data from the entire database of one server to another or from one database

architecture to another is known as data migration. Here we migrate RDBMS Database into MongoDB. First

step is to choose the data that we need to migrate and get the metadata of that database. Metadata is nothing but

the data which gives the information or describes the other data. Metadata has the information about the primary

key and foreign key information from which it generates the relationship of that RDBMS database and find the

joins that maintain the relationship of primary and foreign key. The second step is to convert the RDBMS data

into JSON format.

 Query Conversion:

Query conversion is the process of converting SQL queries into MongoDB format. Thus without

writing a MongoDB query we can fetch the data from MongoDB database. The benefit of this query conversion

utility is that user does not need to know about the MongoDB syntax. The conversion of queries is hosted on the

server containing the two databases.

VI. CONCLUSION
The demand of NoSQL databases is increasing rapidly because of their rapid scalability and distributed

architecture. Now we have a GUI that allows to implement SQL queries on migrated databases. SQL to

MongoDB query conversion is now possible and getting of data from MongoDB database through SQL query is

possible. The methods through which relational databases and NoSQL databases manage their information are

entirely different. In RDBMS, the schema is fixed and data is stored in the form of tables where relationships

may exist between multiple tables, while NoSQL databases do not follow a definite schema. In NoSQL, data is

stored in an unstructured form and in a varied format of databases that includes documents, key-value pairs,

columns and graphs [9].

Recently a lot of enterprises have started to migrate from SQL to NoSQL databases. The main aim of

our system is to provide an environment to these enterprises to migrate data from relational database to the

NoSQL data store. The data migration allows enterprise’s Online Analytical Processing (OLAP) which is a

significant part of the broader category of Business Intelligence [12]. The methods used by relational and

NoSQL databases to store data are absolutely different and this produces a challenging task for corporations to

migrate between the two databases.

The difference in the structure and nature of the RDBMS and NoSQL database make the migration process

difficult. From the different choices available we have selected migration from MySQL in the SQL group to

MongoDB in the NoSQL group as our test case.

Data Migration from SQL to MongoDB

36

REFERENCES
[1]. M. Shirazi, H. C. Kuan, and H. Dolatabadi, “Design patterns to enable data portability between clouds’

databases,” in ICCSA 2012. Salvador:

[2]. IEEE, Jun. 2012, pp. 117–120.

[3]. M. Scavuzzo, E. Di Nitto, and S. Ceri, “Interoperable data migration between NoSQL columnar

databases,” in EDOCW 2014. Ulm: IEEE,

[4]. Sep. 2014, pp. 154–162.

[5]. B. Thalheim and Q. Wang, “Data migration: A theoretical perspective,” Data and Knowledge

Engineering, vol. 87, pp. 260–278, 2013.

[6]. R. Sellami, S. Bhiri, and B. Defude, “ODBAPI: A unified REST API for relational and NoSQL data

stores,” in Big Data Congress 2014. Anchorage: IEEE, Jun. 2014, pp. 653–660.

[7]. R. Cattell, “Scalable SQL and NoSQL data stores,” SIGMOD Rec., vol. 39, no. 4, pp. 12–27, May

2011.

[8]. M. Sadaphule and N. F. Shaikh, "A Survey: A Tool for Database Query Translation into Spreadsheets”,

International Journal of Engineering Science and Technology (IJEST), Vol. 7 No.11, pp 401-406 ",

ISSN : 0975-5462, Nov 2015

[9]. M. Sadaphule and N. F. Shaikh, “An Application of Database Query Translation into Spreadsheets”,

IEEE International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT) -

2016, 2nd-4th March 2016

[10]. M. Sadaphule and N. F. Shaikh, “SQL Query Parser: An Automated Tool for Translating the Queries

into Spreadsheets ", IJCSIS International Journal of Computer Science and Information Security,

[11]. IJCSIS, Pittsburgh, PA, USA ESCI - IP & Science - Thomson Reuters - Web of Science. Impact

Factor 0.519

[12]. Vol. 14 No. 8ISSN 1947-5500August 2016

[13]. Z. Chen, S. Yang, H. Zhao, and H. Yin, “An objective function for dividing class family in NoSQL

database,” in CSSS 2012. Nanjing:

[14]. IEEE, Aug. 2012, pp. 2091–2094.

[15]. H. Dharmasiri and M. Goonetillake, “A federated approach on heterogeneous NoSQL data stores,” in

ICTer 2013. Colombo: IEEE, Dec

[16]. 2013, pp. 234–239.

[17]. L. Rocha, F. Vale, E. Cirilo, D. Barbosa, and F. Mourao, “A framework for migrating relational

datasets to NoSQL,” Procedia Computer

[18]. Science, vol. 51, pp. 2593–2602, 2015.

[19]. K. North, “The NoSQL alternative,” InformationWeek, no. 1268, pp. 33–35;38–39, May 2010.

*Nuzhat F. Shaikh. “Data Migration From SQL To Mongodb.” International Journal Of

Engineering Research And Development , vol. 13, no. 11, 2017, pp. 32–36.

