Properties Of Wgr-Closed Sets In Topological Spaces

¹Govindappa Navalagi And ^{*2}R G Charantimath

¹Department of Mathematics KIT Tiptur 572202 ,Karnataka India ^{*2}Department of Mathematics KIT Tiptur 572202 ,Karnataka India Corresponding Author: R G Charantimath

ABSTRACT: In this paper , we define and study the concept of weakly generalized regular closed (brifly.wgrclosed) sets, wgr-open functions, wgr-closed functions, wgr-Homeomorphism and wgr-Hausdorff spaces. Mathematics Subject Classification (2010) : 54A05,54B05,54C08,54D10 KEY WORDS: semipreopen sets, g-closed sets .gr-closed sets ,rg-closed sets ,gb-closed sets.

Date of Submission: 09-07-2018 Date of acceptance: 23-07-2018

I. INTRODUCTION

For the first time, N.Levine [9] has introduced the notion g-closed sets and g-open sets in topology. In 1993, N.Palaniappan [15] has defined and studied the notions of rg-closed sets ,rg-continuity and rg-irresoluteness in topological spaces.In 1995,1996, 1997, 1998, 2009, 2011 and 2014, resp., Dontchev [6], Dontchev et al [5], Gnanambal [7], Noiri et al [14], Al-Omari et al [1], S.Bhattacharya [4] and K.Indirani et al [8] have defined and studied the concepts of gsp-closed sets, δg -closed sets, gpr-closed sets, gp-closed sets, gp-closed sets and gr*-closed sets in topological spaces.In this paper, we define and study the concept of weakly generalized regular closed (brifly.wgr-closed) sets, wgr-open functions, wgr-closed functions, wgr-Homeomorphism and wgr-Hausdorff spaces.

II. PRELIMINARIES

Throughout this paper (X , τ) and ($Y,\,\sigma)$ (or simply X and Y) denote topological spaces on which no

separation axioms are assumed unless explicitly stated . If A be a subset of X, the Closure of A and Interior of

A denoted by Cl(A) and Int(A) respectivly.

We give the following define are useful in the sequel :

Definition 2.1: The subset of A of X is said to be :

(i) regular open (in brief, r-open) if A = IntCl(A).

(ii) regular closed (in brief,r-closed) if A = ClInt(A).

Definition 2.2: The subset of A of X is said to be.

(i) semi-open [10] set, if $A \subset Cl(Int(A))$

(ii) pre-open [11]set, if $A \subset Int(Cl(A))$

- (iii) semi-pre open[2]set, if $A \subset Cl(Int(Cl(A)))$
- (iv) b-open [3] if $A \subset ClInt(A) \cup IntCl(A)$.

(v) δ -closed [16] if A = δ Cl(A), where δ Cl(A) = {x \in X : IntCl(U) \cap A \neq \emptyset, U is open set

and $x \in U$

The complement of semipre-open(resp.b-open , δ -closed) set is called semipre-closed [2] (resp.b-closed [3], δ -open [16]) set of a space X.

Definition 2.3 [2]: The intersection of all semipre-closed sets of X containing subset A is called the semipre-closure of A and is denoted by spCl(A).

Definition 2.4 [14]: The intersection of all pre-closed sets of X containing subset A is called the semipreclosure of A and is denoted by pCl(A).

Definition 2.5 [15]: The intersection of all regular closed sets containing set A is called the regular closure of A and is denoted by $rCl(A)/\delta Cl(A)$.

Definition 2.6 [3]: The intersection of all b-closed sets containing set A is called the b- closure of A and is denoted by bCl(A).

Similarly, spInt(A), pInt(A), rInt(A), bInt(A), $\delta Int(A)$ can be defined.

Definition 2. 7: A subset A of a space (X, τ) is called:

- (i) generalized closed (briefly, g- closed) [9] set if $Cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open set in X
- (ii) generalized regular -closed (briefly, gr- closed) [4] set if $rCl(A) \subseteq U$ whenever $A \subset U$ and U is semi-open set in X
- (iii) regular generalized (briefly, rg- closed) [15] set if $Cl(A) \subseteq U$ whenever $A \subseteq U$ and U is r-open set in X
- (iv) generalized semi-preclosed (briefly, gsp- closed) [6] set if $spCl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X
- (v) generalized pre-closed (briefly, gp- closed) [14] set if $pCl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X
- (vi) generalized b-closed (brifly, gb-closed) [1] if $bCl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X

(vii) δ - generalized closed (brifly, δ g-closed) [5] if δ Cl(A) \subseteq U whenever A \subseteq U and U is open in X

The complement of a g-closed (resp, sg-closed, gs-closed, α g-closed, α g-closed, gs-closed, gp-closed) set in X is called g-open (resp. sg-open, gs- open, α g- open, α g- open, gs- open and gp- open) set in X.

III. PROPERTIES OF WGR-CLOSED SETS

We, define the following

Definition 3.1: A subset A of space X is called weakly generaralized regular closed (brifly,wgr-closed) set if $rCl(A) \subseteq U$ whenever $A \subseteq U$ and U is semipreopen in X

The complement of a wgr-closed set of X is called wgr-open set in X. The family of all wgr-open (resp, wgr-closed) sets a space X is denoted by WGRO(X) (resp, WGRF(X)).

Clearly, in view of Def.2.7 and Def. 3.1, we have the following .

Lemma 3.2 :

(i) Every r-closed set is wgr-closed set.

(ii) Every gr-closed set is wgr-closed set.

(iii)Every rb-closed set is wgr -closed set.

(iv)Every wgr-closed set is rg-closed set.

(v)Every wgr-closed set is g-closed set

(vi) Every wgr-closed set is gp-closed set.

(vii)Every wgr-closed set is gsp-closed set.

(viii) Every wgr-closed set is gpr-closed set .

 $(ix) \qquad Every \ wgr-closed \ set \ is \ \delta g\text{-closed set}.$

(x) Every wgr-closed set is gb-closed set.

Lemma 3.3: A subset A of space X is called wgr-open set if $U \subseteq rInt(A)$ whenever $U \subseteq A$ and U is semipreclosed set in X

We, define the following

Definition 3.4 : The union of all wgr-open sets which contained in A is called the wgr-interior of A and is denoted by wgrInt(A)

Definition 3.5: The intersection of all wgr-closed set containing set A is called the wgr-closure of A and is denoted wgrCl(A)

Lemma 3.6: Let $x \in X$, then $x \in wgr-Cl(A)$ if and only if $V \cap A \neq \phi$ for every wgr-open set V containing x

Properties of wgr-closure and wgr-interior operators

Theorem 3.7 : If A is wgr-closed set then, rCl(A) -A does not contain a non empty semipre-closed set.

 $\label{eq:proof: Suppose that A is wgr-closed . Let F be a semipre-closed subset of \ rCl(A) \ -A. Then$

 $F \subseteq rCl(A) \cap (X-A) \subseteq X-A$ and so $A \subseteq (X-F)$. but A is wgr-closed. Since X-F is semipre-open,

 $rCl(A) \subseteq (X-F)$ that implies $F \subseteq X$ - rCl(A). As we have already $F \subseteq rCl(A)$, it follows that

 $F \subseteq rCl(A) \cap (X-rCl(A)) = \phi$. Thus $F = \phi$. Therefore rCl(A) - A does not contain a non empty semipre-closed set.

Theorem 3.8: Let A be wgr-closed. Then A is regular closed if and only if $rCl(A) \setminus A$ is semipre-closed **Proof:** If A regular closed then rCl(A) = A and so $rCl(A) = \phi$ which semipre-closed

Conversely, suppose that rCl(A) is semipre-closed. Since A is wgr-closed, by Theorem 3.6, $rCl(A) - A = \phi$ That is rCl(A) = A and hence A is regular closed

Theorem 3.9 : If A is wgr-closed and if $A \subseteq B \subseteq rCl(A)$ then

(i) B is wgr-closed

(ii) rCl(B) - B contains no non empty semipre-closed set.

Proof: $A \subseteq B \subseteq rCl(A) \Longrightarrow rCl(B) = rCl(A)$. Now suppose $B \subseteq U$ and U is semipre-open. Since A is wgr-closed and since $A \subseteq B \subseteq U$, $rCl(A) \subseteq U$ that implies $rCl(B) \subseteq U$. This proves (i). Since B is wgr-closed, (ii) follows from Theorem 3.6.

Remark 3.10: wgr-closure of a set A is not always wgr-closed

Lemma 3.11: Let A and B be subsets of X. Then

(i) wgrCl(ϕ) = ϕ and wgrCl(X) = X

(ii) If $A \subseteq B$, wgrCl(A) \subseteq wgrCl(B).

(iii) $A \subseteq wgrCl(A)$

Lemma 3.12: Let $x \in X$. Then xwgrCl(A) if and only if $V \cap A \neq \phi$ for every wgr-open set V containing x.

Lemma 3.13: Let A and B be subsets of X. Then

(i) wgrCl(A) = wgrCl(wgrCl(A))

(ii) wgrCl(A) \bigcup wgrCl(B) \subseteq wgrCl(AUB)

(iii) wgrCl(A \cap B) \subseteq wgrCl(A) \cap wgrCl(B)

Theorem 3.14: A set A \subseteq X is wgr-open if and only if $F\subseteq$ rInt(A) whenever $F\subseteq$ A, F is semipre-closed.

Proof: Let $A \subseteq X$ be wgr-open. Let F be semipre-closed and $F \subseteq A$. Then X- $A \subseteq X$ - F where

X - F is semipre-open. Since X- A is wgr-closed,rCl(X-A) \subseteq X - F and hence X-rInt(A) \subseteq X - F that implies $F\subseteq$ rInt(A).

Conversely, assume that $F \subseteq rInt(A)$ whenever $F \subseteq A, F$ is semipre-closed. Suppose X- A $\subseteq U$ where U is semipre-open. Then X- U $\subseteq A$ where X- U is semipre-closed. By assumption, X- U $\subseteq rInt(A)$ that implies $rCl(X-A) \subseteq U$. This proves that X- A is wgr-closed and hence A is wgr-open.

Theorem3.15 : If $rInt(A) \subseteq B \subseteq A$ and A is wgr-open, then B is wgr-open.

Proof: Let A be wgr-open and rInt(A) $\subseteq B \subseteq A$. Then X - A \subseteq X- B \subseteq X - rInt(A) that implies X-A \subseteq X-BrCl(X-A). Theorem 3(i), X-B is wgr-closed. This oroves that B is wgr-open

Theorem 3.16 : If $A \subseteq X$ is wgr-closed and let F be a semipre -closed set such that $F \subseteq rCl(A)$ -A. Then by Theorem 1, $F = \phi$ that implies $F \subseteq rInt(rCl(A)$ -A). This proves that rCl(A)-A is wgr-open.

We, define the following.

Definition 3.17: A space X is said to be wgr-Hausdroff if whenever x and y are distinct points of X there exist disjoint wgr-open sets U and V such that $x \in U$ and $y \in V$.

Definition 3.18: A space X is said to be r-Hausdroff if whenever x and y are distinct points of X there exist disjoint r-open sets U and V such that $x \in U$ and $y \in V$.

Definition 3.19: A space X is said to be semipre-Hausdroff if whenever x and y are distinct points of X there exist disjoint wgr-open sets U and V such that $x \in U$ and $y \in V$.

We, recall the following from .

Definition 3.20[13]: A function $f: X \rightarrow Y$ is called wgr-continuous if $f^{(1)}(V)$ is wgr-closed in X for every closed subset V of Y.

Definition 3.21[13]: A function $f:X \rightarrow Y$ is called wgr-irresolute if $f^{(1)}(V)$ is wgr-closed in X for every wgr-closed subset V of Y.

Definition 3.22 [13]: A function $f: X \rightarrow Y$ is called strongly wgr-continuous if the inverse image of each wgr-open set of Y is open in X.

Definition 3.23[13]: A function $f: X \rightarrow Y$ is called spwgr-continuous if the inverse image of each semipreopen set of Y is wgr-open in X.

Next, we prove the following.

Theorem 3.24 : Let X be a space and Y be Hausdorff . If $f:X \rightarrow Y$ be wgr-continuous injective, then X is wgr-Hausdorff .

Proof : Easy

Theorem 3.25: Let X be a space and Y be r-Hausdorff. If $f:X \rightarrow Y$ be r- wgr-continuous injective, then X is wgr-Hausdorff.

Proof : Easy

Theorem 3.26 : Let X be a space and Y be semipre-Hausdorff. If $f:X \rightarrow Y$ be spwgr-continuous injective, then X is wgr-Hausdorff.

Proof : Easy

Theorem 3.27 : Let X be a space and Y be wgr-Hausdorff . If $f:X \rightarrow Y$ be spwgr-continuous injective, then X is Hausdorff .

Proof : Easy

Theorem 3.28 : Let X be a space and Y be wgr-Hausdorff . If $f:X \rightarrow Y$ be wgr-irresolute injective, then X is wgr-Hausdorff .

Proof : Easy

We define the following.

Definition 3.29: A function $f:X \rightarrow Y$ is said to be wgr-open if the image of each open set of X is wgr-open in Y. **Definition 3.30:** A function $f:X \rightarrow Y$ is said to be always -wgr-open if the image of each wgr-open set of X is wgr-open in Y.

Clearly, every always -wgr-open function is wgr-open.

Definition 3.31. A function $f:X \rightarrow Y$ is said to be wgr-closed if the image of each closed set of X is wgr-closed in Y

Definition 3.32: A function $f:X \rightarrow Y$ is said to be always -wgr-closed if the image of each wgr-closed set of X is wgr-closed in Y.

Clearly, every always -wgr-closed function is wgr-closed.

We ,prove the following.

Theorem 3.33: Let $f: X \rightarrow Y$ be a bijection. Then the following are equivalent.

(i) f is always- wgr-open.

(ii) f is always-wgr-closed.

(iii) f⁻¹ is wgr-irresolute.

Proof: (i) \rightarrow (ii).Suppose f is always wgr-open. Let F be wgr-closed in X. Then X-F is wgr-open. By definition 3.32, f(X-F) is wgr-open. Since f is a bijection. Y-f(F) is wgr-open in Y. Therefore f is always- wgr-closed.

(ii) \rightarrow (iii).Let g = f⁻¹. Suppose f is wgr-closed. Let V be wgr-open in X. Then X-V is wgr-closed in X. Since f is always wgr-closed, f(X-V) is wgr-closed. Since f is a bijection, Y-f(V) is wgr-closed that implies f(V) is wgr-open in Y. Since g = f⁻¹ and since g and f are bijection g⁻¹(V) = f(V) so that g⁻¹(V) is wgr-open in Y. Therefore f⁻¹ is wgr-irresolute.

(iii) \rightarrow (i).Suppose f⁻¹ is wgr-irresolute. Let V be wgr-open in X. Then X-V iswgr-closed in X. Since f⁻¹ is wgr-irresolute and (f⁻¹)⁻¹(X-V) = f(X-V) = Y-f(V) is wgr-closed in Y that implies f(V) is wgr-open in Y. Therefore f is wgr-open.

Theorem 3.34: Let $f:X \rightarrow Y$ and $g: Y \rightarrow Z$ be any two function. Suppose f and g are wgr-closed(resp, wgr-open). Then g.f is wgr-closed (resp,wgr-open).

Proof: Let U be any wgr-closed (resp,wgr-open) st in X. Since f is wgr-closed, using Definition 3.28, f(U) is wgr-closed (resp,wgr-open) in Y. again since g is wgr-closed (resp,wgr-open), using Definition 3.28, g(U) is wgr-closed (resp,wgr-open) in Z. This shows that g.f is wgr-closed (resp,wgr-open).

Definition 3.35 : A bijection $f:X \rightarrow Y$ is called regular weakly generalized regular homeomorphisms (brifly wgr-homeomorphisms) if f and f^1 are wgr-continuous

We say that the spaces x and y are wgr- homeomorphism from X onto Y

Theorem 3.36 : Every homeomorphism is an wgr- homeomorphism.

Proof: Let $f: X \rightarrow Y$ be a homeomorphism. Then f and f^{-1} are continuous and f is bijection.

Since every continuous function is wgr- continuouss, it follows that f is wgr- homeomorphism.

We, define the following.

Definition 3.37 : A bijection $f: X \to Y$ is said to be always wgr-homeomorphism if both f and f⁻¹ are wgr-irresolute

Theorem 3.38: Every always wgr- homeomorphism is an wgr- homeomorphism.

Proof: Let $f: X \to Y$ be an always wgr-homeomorphism. Then f and f⁻¹ are wgr-irresolute and f is bijection. By theorem 3.24, and f⁻¹ are wgr-convinuous. Therefore f is wgr-homeomorphism

REFERENCES

- [1]. A.Al-Omari and M.S.Noorani, On generalized b-closed sets, Bull.Malays.Sci.Soc., 32 (2009), 19-30.
- [2]. D.Andrijevic, Semi-preopen sets, Mat. Vesnik, 38 (1) (1986), 24-32.
- [3]. D.Andrijevic, On b-open sets. Mat. Vesnik, 48 (1996), 59-64.
- [4]. S. Bhattacharya "On Generalized Regular Closed Sets" Int.J.Contemp. Math.Science. Vol.6, No.3 (2011),145-152
- [5]. J.Dontchev and M.ganster, On δ -generalized closed sets and T_{3/4}-spaces, Mem, Fac.sei. Kochi Uni.Ser A math. 17(1996). 15-31.
- [6]. J.Dontchev ,On generalizing semipre open sets,Mem.Fac.Sci. Kochi.Univ. .Ser.A.Math. 16(1995), 35-48.
- [7]. Y.Gnanambal, On generalized pre regular closed sets in topological spaces . Indian J Pure Appl.Math, 28(3) (1997), 351-360
- [8]. K. Indirani, P. Sathishmohan and V.Rajendndran "On gr^{*}-closed sets in Topological spaces. International Journal of Mathematics Trends and Technology Vol-5 Feb-2014,pp 142-148.
- [9]. N.Levine, Generalized closed sets in Topology Rend.Cric.Math.Palermo,19(2)(1970), 89-96.
- [10]. N.Levine, Semi-open sets and semi-continuous in Topological spaces, Amer.Math, . Monthly 70(1963), 36-41.
- [11]. A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On pre-continuous and weak pre-continuous mappings, Proc.Math.Phys.Soc. Egypt, 53(1982), 47-53.
- [12]. A.Narmadha, N. Nagaveni and T. Noiri, On Regular b-open sets in Topological spaces, In. Journal of Math. Analysis, Vol.7,(2013) no 19. 937-948
- [13]. Govindappa Navalagi and R G Charantimath , wgr-continuous and wgr-irresolute functions inTopological spaces (submitted)
- [14]. T. Noiri, H. Maki and J. Umehara, Generalized pre-closed functions, Mem.Fac. Sci.Kochi. Univ. Ser.A, Math, 19(1998)13-24
- [15]. Palaniappan N and K C Rao (1993) Regular generalized closed sets Kyungpook .math. J 33. 211-219
- [16]. N. V. Velicko. H-closed Topological Spaces, Tran, Amer. Math, Soc. 78(1968),103-118

R G Charantimath"Properties Of Wgr-Closed Sets In Topological Spaces." International Journal Of Engineering Research And Development , vol. 14, no. 07, 2018, pp. 58-62