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  In its conventional form, relativistic quantum mechanics cannot provide the massless photon with a 

spatial wave function, the absolute square of which could form the probability density of photon locations (see, 

e.g., Ref.1). Actually, the deep cause of this drawback lies in the basic concepts of Newtonian mechanics, in 

which no top velocity is there, that is, for any motion however fast, a faster one exists. This is easily seen 

already in the „zero-mass puzzle‟: A massless body could still be accelerated. Since any force, however small, 

might cause this acceleration, the whole universe must be involved in this problem, so making it useless. 

Formalism of Top-Speed Signals (TSS) oscillations counting makes it possible to dispense with 

metrical concepts and to formulate experiments solely in terms of the numbers of such oscillations and ratios of 

these numbers ([2],[3]). In particular, slit experiments can be explained directly by means of probabilities rather 

than by introducing first a wave function and only then defining probability localization as its absolute square. 

Aiming at the prediction of final contacts, a relevant procedure to design trajectories by means of TSS 

oscillations counting had been developed ([3]).  In the conventional approach, contacts of the body that is in 

question in the problem are registered with special detectors: “material points” plus attached clocks plus rulers 

plus reference frames. At any moment one of such detectors must signal collision, otherwise it is decided that 

there is no body at all. Once applied to microscopic particles, the macroscopic detector scatters them (elastically, 

i.e., preserving absolute values of their momenta), and this scattering becomes important, if acting force is 

sufficiently small. Quantum mechanics describes such a situation probabilistically, still keeping the same 

variables as in macroscopic applications. 

In order to present physics in terms of TSS oscillations counting, the system of parallel trajectories 

([3]) allows for replacing “material points” with an alternative detector –order. A short description of this 

method in the Ref.3 will be presented below in more details and in the form relevant for application to the 

photon. In so doing we confine ourselves to non-relativistic cases, in which only one non-annihilating particle is 

in question. The centers of orders move like test or probe bodies ([3]).  

In a completely uniform order-detector moving in z-direction (Fig.1), top-speed signal (TSS) 

oscillations are equal in numbers and reciprocally synchronized over all columns and lines. If this order detects 

its contact with a particle then this particle is positioned somewhere inside, but neither its position there, nor the 

velocity is being so determined. It could be added however that also the number of these contacts is being 

determined; then the detection of only one contact would specify the smallest velocity with respect to the order, 

while the position of the particle inside the order remains uncertain. Yet, this order cannot define the value of 

this lowest velocity solely in terms of the top-speed signal oscillations, because it involves implicitly the size of 

the order to specify oscillation numbers; indeed the transparent for particles boundaries of the order make it 

possible to miss the particle. Being therefore irrelevant in experiments concerning particle trajectories, this type 

of non-local (analogous to crystal) detectors is however suitable for experiments, in which size is not important 

and might be regarded infinite as in diffraction or (two-slit) interference.   
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Fig.1 A uniform order.                               Fig.2 A non-uniform order keeping a 

                                                                                               particle inside. 
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An order relevant for trajectory measurements must therefore be limited in all directions still 

possessing the boundaries sealed for particles (Fig.2). Let its outermost intervals between the columns be 

covered by only one TSS oscillation, the number of oscillations increasing then toward the center of the order 

according to some law ([3]). The innermost interval with N oscillations corresponds to the scarcely detectable 

presence of a particle in the order. In the conventional terms, this particle should have some smallest momentum 

mv, with its mass m and velocity v. The particle will be detected there for sure, provided it moves faster than v 

 Since in the conventional formulation with the Planck constant h, mv~h, this relation defines the 

correspondence of the conventional units with our non-dimensional variable n≤N via the Compton wavelength 

λc=h/mc. In our analysis carried out here in conventional terms for the sake of visual clarity, we use λc as the 

measurement unit representing the fact of detecting the electron. 

In the conventional scheme the signal from the “material point” detector gives the position of the body 

there with the probability 1. Similarly, the probability of the particle to be found inside the order must equal 1, 

provided some of its bodies give signals; therefore, the probability for the contact of the particle with any of 

identical bodies within a line or column of the order should be N
-1

  Unlike measurements with the uniform 

order, even a single contact of the particle doesn‟t determine now the momentum of a particle with respect to 

the order this contact occurs with, so now both position and momentum of the particle become related by the 

uncertainty condition.  

 In the approximation of trajectories with linked chains ([2],[3]), particles should be replaced with 

containing them orders, moving along the same directions. Then only the number of columns k crossed by the 

particle in this direction is important, and the probability to find the particle in these columns is k/N. In a link of 

the chain approximating a trajectory ([3]), with which acceleration of the particle is being determined, only the 

center of the order takes part, hence the particle‟s position inside it enters the link only with some probability. 

This is the uncertainty principle in our non-local scheme. In the following, parts of the uniform order will 

approximate the central region of the non-uniform one, and we will use conventional terms clearly interpretable 

in the TSS oscillation language. 

 Suppose now that along with TSS oscillations this order is filled with a linear polarized in x-direction 

plane electromagnetic (EM) wave pulse propagating in z-direction. Let the (now charged) particle, e.g., an 

electron move inside the order, which is at rest, the electron being further on accelerated by this EM pulse 

having some limited spatial volume. It is this situation that reveals electromagnetism via its action on motion of 

charged bodies. 

 Unlike typical cases of accelerating electrons by given EM wave (see, for example, [4] and references 

therein), we consider single photon annihilation, in which all the energy of the wave is exhausted in its 

interaction with the electron. It is well known, that this is impossible in free space. Indeed, the initial EM pulse 

with energy Wω0 has the momentum Wω0/c, and momentum conservation fixes the momentum of the electron as 

pe=Wω0/c and the energy (for a small velocity) as pe
2
/2m, which is only the small (Wω0/2mc

2
) part of the initial 

Wω0 of the EM pulse. (Similar situation for any velocity is well known [1[.)              However inside the order, 

scattering of the electron on the detector‟s bodies serves as a „third body‟ to satisfy both momentum and energy 

conservation. Let us consider some sufficiently small central part of the non-uniform order (Fig.2) to be 

approximated with the uniform order (Fig.1), which, in conventional terms, consists of cells with the size λc. 

.The plane wave pulse polarized in x-direction and filling a volume V of this order with its Pointing vector in z-

direction has initial energy density (E=B): Wω0=E
2
/4π. The electron with the charge e and mass m is initially at 

rest at the center of the order. When the head of the pulse enters the first central cell of the order the electron 

starts oscillating along the x-axis with the velocity vx=(eE/mω)cosωt and moves along z-axis with the velocity 

vz=[(eE/mω)cosωt]vx/c (neglecting the term of vz/c order in vx). 

 If no scattering were there, the x-coordinate of the electron would reach over the half-period of the 

wave its maximum ½eE/mω
2
. Starting with the EM pulse head, elastically scattered on the heavy bodies of the 

order electron changes only the direction of its velocity and over S (many) periods of the pulse this random 

process is symmetrical around the x-axis. Hence it has no contribution to the momentum of the electron in z-

direction, which comes solely from the average value of vx given B. Transverse to the x-axis component of the 

electron velocity doesn‟t return its energy back to the wave over the whole cycle to be therefore responsible for 

its losses. The energy loss of the EM pulse due to this scattering dominates the total decrement in Wω, whereas 

in the absence of this loss the only source of losses would be due to longitudinal acceleration of the electron: 

Were the phase of B with respect to E equal π/2 (no propagation) the kinetic energy of the oscillating electron 

would be returned to the wave. The electron-wave interaction losses come also from scattering, that generates 

additional set of random velocities around the z-axis, however this secondary effect on the total energy is small 

as compared to the direct scattering, which is multiple over all S periods λ/c of the EM pulse, and it might be 

decreased, if needed, by varying the inter-column distribution in z-direction. 
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The electron is accelerated first by E, neglecting the B-term (small as v/c): 

 

            dvx/dt ≈ (e/m)Esin(ωt-kz)                                                                   (1a) , 

 

and then rotated by B to give: 

 

           dvz/dt=(e/m)(vx/c)Bsin(ωt-kz)                                                              (1b) 

 

 On average, the energy of the wave after its interaction with radial motion of the scattering electron is: 

 

        Wω = Wω0 - We ;                                                                                                                                            (2a) 

             

            Wω0 = ¼E
2
(Mλc)

2
λS;                                                                                      (2b) 

         

        We = ½m2(eE/mω)
2
S - eE(Mλc)S = (1/4π

2
)E

2
reλ

2
S - eE(Mλc)S                      (2c) 

 

where M is the mean number of the order lines over which the electron scatters on the angle about π/2; re is the 

classical electron radius; λ is the wave length. The cylinder-shaped wave radius is of the order Mλc. 

 

In the absence of scattering the relevant wave radius should be > ½eE/mω
2
; First term in (2) stands for 

this range, whereas the second accounts for the part of electron energy returned to the wave. The difference 

gives the corresponding decrease in the wave energy, another part of which comes from acceleration of the 

electron along the Pointing vector, i.e. in z-direction.    

  According to (1b) the mean value of vz is: 

 

          vz == (2eE/mc) (Mλc)S                                                                                     (3) 

 

and this part of energy to be further subtracted from Wω0 is: 

 

           ½mvz
2
 = 2reE

2
(Mλc)

2
S

2
                                                                                  (4)          

 

Then momentum conservation for complete annihilation of the initial wave in its interaction with the electron 

Wω0/c = mvz gives:  

 

          S = {¼λ[1 – reλ/π
2
(Mλc)

2
] - e/E(Mλc)}/2re                                                      (5)    

 

   With (2b) and (5): 

 

      Wω0 = ¼E
2
(Mλc)

2
λ{¼ λ [(1 – reλ/π

2
(Mλc)

2
] – e/(Mλc)E}/2re                               (6) 

Upon varying E and/or M, we obtain different values of Wω0. It is expected that wave-electron interaction should 

be effective, provided the own field of the electron e/r
2
 will be comparable with that of the wave. In particular, 

choosing E = 2
3
e/M λ

2
 and substituting this value of E in (6), we obtain: 

                                                                                                                                              Wω0 = 

mc
2
(λc

2
/λ

2
){2(λc

2
/λ

2
)[1 – reλ/π

2
(Mλc)

2
] + λ/λc}                                         (7) 

 

For typical values of λ>10
-9

cm in current experiments, (7) should be reduced to Wω0 = mc
2
λc/λ = ћω, i.e., to the 

Compton-Einstein formula. 

With the chosen E and similar approximation (5) becomes: 

 

        S = λ
2
/16reλc                                                                                                  (8a) 

 

        L = Sλ = λ
3
/16reλc                                                                                                                                       (8b)  

 

In the representation of trajectories via orders, L is the length of the EM pulse corresponding to a λ-

photon. As an example, for λ about 10
-9

cm, L is about 10
-6

cm, hence self-interference experiments should use 

interferometers of appropriate size. 

The presented measurement procedure starts with mere detecting the fact of presence of a particle 

inside the order. In conventional terms this fact is determined via λc , whereas in TSS variables it corresponds to 

maximal oscillation numbers within orders, required for this fact to be stated unambiguously. Contrary to 
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standard quantum theory, no wave-particle duality is needed with non-local detectors, since probability is 

introduced now without intermediate “wave function”, and regular structures of appropriate detectors are 

responsible for wave-like behavior in interference or diffraction all of their own. Also entanglement (the EPR 

„gedanken‟ experiment) naturally involves extended detectors.  

Complete regularity of detectors (fig.1) makes it possible to split probability distributions into complex 

wave functions of quantum mechanics, just like the usual wave equation as directly defined with TSS [3] can be 

split into anti-symmetric (in their complex tensor form) Maxwell equations. This
 
anti-symmetry, in turn, results 

from conservation of TSS oscillations ratios under any allowed field ([3],[5]).    

 

REFERENCES 
[1]. Berestetskii V.B., Lifshitz E.M., Pitaevskii L.P., Pelativistic Quantum Theory (2012), Pergamon Press. 

[2]. Tselnik F., Progress in Physics, 16, is.1 (2020).  

[3]. Tselnik F., Progress in Physics, 12, is.2 (2016). 
[4]. Yang J-H, Craxton R S, Haines M G, Plasma Phys. Control Fusion, 53 (2011). 

[5]. Tselnik F., Progress in Physics, 11, is.1 (2015). 

 

                      

   

F. Tselnik.. “Localized States for the Photon." International Journal of Engineering Research 

And Development, vol. 16(8), 2020, pp 09-12. 


