
International Journal Of Engineering Research And Development

e- ISSN: 2278-067X, p-ISSN: 2278-800X, www.ijerd.com

Volume 20, Issue 10 (October, 2024), PP 141-168

141

Consolidating Categories of Resource Leaks in Mobile

Applications from Secondary Studies

Josias Gomes Lima 1,*, Joethe Moraes de Carvalho 1,, Oswald Mesumbe

Ekwoge 2,, Rafael Giusti 1, and Arilo Claudio Dias Neto 1
1
Federal University of Amazonas, Amazonas, Brazil; josias@icomp.ufam.edu.br, joethe@icomp.ufam.edu.br,

rgiusti@icomp.ufam.edu.br and ariloclaudio@gmail.com
2 Sidia Institute of Science and Technology, Amazonas, Brazil; ome@icomp.ufam.edu.br

*Correspondence: josias@icomp.ufam.edu.br

Abstract: Context Resource leak occurs when a developer does not correctly release the resources acquired

(e.g., camera and sensors) by the mobile application. This error can lead to performance degradation or

crashes. Objective To identify, analyze, and synthesize categories of leak causes. Method A systematic mapping

study on resource leak in applications was carried out based on a collection of 57 papers (from the 1760

papers). Results We identified 10 categories of leak causes, and some observed trends were derived, for

example, in terms of types of research and types of resources. In addition, an opinion survey with developers

was carried out in order to assess the perceived relevance of the 10 categories of leak causes identified in the

mapping. Conclusions The results show categories of leak causes in applications that can serve as a guide to

areas that require more attention from developers and the research community.

Keywords: systematic mapping, mobile apps, resource leak, opinion survey

--- ----------

Date of Submission: 11-10-2024 Date of Acceptance: 22-10-2024

--- ----------

I. Introduction

Mobile devices have become an important part of the daily lives of many people around the world. The

number of smartphone subscriptions worldwide is expected to surpass 7.2 billion in 2024 and that number is

expected to grow in coming years [1]. In 2023, users downloaded nearly 257 billion mobile applications on their

devices, compared to

104.7 billion in 2016 [2]. The growth in the number of devices with different configurations presents

numerous challenges for the correction and good performance of the applications. This is because, in addition to

the traditional defects, there are defects related to the use of the limited resources of the devices.

Mobile devices have several resources such as microphone, GPS, memory, camera, NFC (Near Field

Communication), sensors, and bluetooth. When developers do not correctly manage these resources in their

applications, for example, not releasing the resource after its use, it may cause a failure known as resource leak.

This error may lead to crashes, poor responsiveness, unnecessary battery consumption, and overall negative user

experience [3].

This paper aims to explore and synthesize categories of leak causes in mobile applica- tions. For this

purpose, a systematic mapping study was carried out, where 1760 papers (primary studies) were analyzed. After

the first and second filters, 57 papers remained, which were synthesized based on 5 facets, including types of

contributions, of research, of resource leakage that the study can identify, the categories of causes of resource

leaks, and the input artifact. To analyze the relevance of the 10 categories of causes of resource leak identified

in the mapping, we conducted an opinion survey with developers. The 6 categories perceived as the most

relevant and a new category were identified. Main contributions of this work is the identification and

evaluation of categories of causes of resource leaks in mobile applications.

The remainder of this paper is organized as follows: related works are presented in Section 2.

Section 3 provides an overview of the basics of resource leaks in mobile applications. Section 4 details the main

procedures we followed to carry out a systematic mapping study, as well as showing the results obtained.

Section 5 presents the planning, execution and results of the survey with the developers. Finally, Section 6

presents the conclusion and future work.

http://www.ijerd.com/
mailto:josias@icomp.ufam.edu.br
mailto:joethe@icomp.ufam.edu.br
mailto:rgiusti@icomp.ufam.edu.br
mailto:ariloclaudio@gmail.com
mailto:ome@icomp.ufam.edu.br
mailto:josias@icomp.ufam.edu.br

Consolidating Categories of Resource Leaks in Mobile Applications from Secondary Studies

142

II. Related Works

There are different research studies on resource leaks. This section will show some of the recent research.

[4] present 11 categories of memory leaks in C programs from the perspectives of heap memory behavior and

program structures. As well, they designed and implemented a standards-based system for generating a set of

program data called HPMD (Heap Program Memory Dataset) that contains a variety of memory leaks.

Memory leaks were the subject of research by [5], who carried out a systematic map- ping study over a

stipulated period of 35 years, from which 105 papers were selected. Among the results, we highlight the 3 types

of memory leak detection techniques found: Dynamic, Static and Dyn-stat, which is a technique that implements

the 2 previous char- acteristics. The types of studies detected were analytical, empirical and hybrid, the latter

being the most used throughout the research period. The authors also listed the motivations and areas related to the

study of the subject in categories, evidencing the search for new algorithms and areas related to Computer

Science.

[6] analyze different types of power leaks in Android apps and how these leaks affect device power

consumption. As well as discussing how these energy leaks can be avoided in the development phase.

[7] discuss static analysis methods for memory leak detection in C and C++ languages. They noted that

these methods often have two stages. First, they use different types of graphs to find memory leaks faster but

less accurately. Then, for detected cases, they use path-sensitive analysis to increase accuracy. The authors also

listed 9 methods to detect the leaks, namely, SMOKE, PCA, SVF, Pinpoint, Sparrow, Fastcheck, CSA, PML

Checker and Infer. Each method has its characteristics and applicability, which were individually tested to find

bugs, where false positive and false negative results were found. As a result, SMOKE and CSA have the best false

positive rate for C language, CSA has the best false positive for C++ language. As for false negatives, it was

mentioned that SMOKE and PCA were better in C and SMOKE for C++.

Our paper differs from related works because it carried out a systematic mapping in order to identify categories

of leak causes in mobile applications.

III. Resource Leak in Mobile Applications

Resource leak is caused when an application does not release resources that it acquired during its execution

[8]. Properly managing resources is not a trivial task for developers [9]. This becomes more significant as the

capabilities of Android devices and the complexity of their software continue to grow rapidly. This growth

presents significant challenges for the software correctness and performance [10]. For a better understanding,

14 types of resources were identified, based on the systematic mapping performed. Below are some examples of

resources and types.

Concurrency: are the classes of resources that allow the execution of tasks in an interleaved way in the same

time interval. Some examples of classes of this type of resource are: java.lang.Thread,

java.util.concurrent.Semaphore and android.os.Binder.

Connectivity: are the resource classes related to connecting to other devices, for example, bluetooth

(android.bluetooth.BluetoothAdapter), USB (android.hardware.usb) and Wifi (android.net.wifi.WifiManager).

Database: are resource classes that manipulate application data, such as android

.database.DatabaseUtils and android.database.sqlite.SQLiteDatabase.Cursor.

Files: are resource classes related to writing and reading files, for example, java.io.InputStream, java.util.Scanner

and java.io.FileOutputStream.

Localization: are the resource classes that manipulate the user’s location, for exam- ple,

android.location.LocationProvider, android.location.LocationListener and android.location

.LocationManager.

Memory: are the resource classes related to memory consumption, for example,

android.app.Activity, android.app.Fragment and android.content.Context.

Multimedia: are the classes of resources that manipulate the device media, for exam- ple,

android.media.MediaPlayer, android.media.AudioManager and android.hardware.Camera.

Network: are the classes of resources related to internet connection, for example, org

.apache.http.impl.client.AndroidHttpClient, java.net.Socket and java.net.Network.

Screen: are the classes of resources that relate to what is displayed on the user’s screen, for example,

android.view.MotionEvent, android.text.TextUtils and android.appwidget.

Security: are the resource classes that deal with application security, for example, the package classes

android.security.

Sensor: are the resource classes related to the device’s sensors, for example, android

.hardware.SensorManager, android.hardware.Sensor and android.os.Vibrator.

Service: are the classes of resources that help the application run as a service, for example,

android.app.Service.

Consolidating Categories of Resource Leaks in Mobile Applications from Secondary Studies

143

WakeLock: are the resource classes that help the application to run even with the cell phone blocked, for

example, the class android.os.PowerManager.WakeLock.

Energy: are the resources related to power consumption.

Unfortunately, resource management bugs are common in Android programs [11]. It should be noted that, in

addition to the traditional defects, it is also important to consider defects that cause excessive consumption of the

limited resources available on mobile devices [10], such as media players, memory, camera and sensors. An

advantage would be, if developers understood all the relevant API contracts, but even the most experienced de-

velopers may fail to free up all resources over the term of all possible invocation sequences from event handlers

[11].

IV. Systematic Mapping

In the technical literature, no analysis was found on this topic, so it was decided to perform this Systematic

Mapping Study (SMS), which was conducted according to the guidelines outlined in [12] and [13]. The SMS is

composed of the following main steps:

• Definition of research questions;

• Identification of studies;

• Definition of data extraction strategy;

• Execution of systematic mapping.

4.1 Methods

4.1.1 Goal and Research Questions

The objective of this study is to identify, analyze, and synthesize categories of leak causes in scientific

publications related to the identification of resource leaks in mobile applications. Based on the research

objective, the main research question (RQ 1) was formulated. To extract detailed information, the question was

divided into several sub- questions, as described below.

RQ 1 - systematic mapping: What is the space for research of the technical literature in identifying resource leak

in mobile applications? To answer this question, the following research subquestions have been proposed:

RQ 1.1 - contribution types: How many papers present methods/techniques, tools, models, metrics, or

processes for identifying resource leaks? The SMS guidance document described in [14] proposes the types of

contributions mentioned above. The response to this RQ will allow us to assess whether the community, as a

whole, was more focused on developing new identification techniques or more focused on developing new

identification tools;

RQ 1.2 - research types: What types of research are used in studies in this area? The SMS guidance document

described in [14] proposes the following types of research: solution proposal, validation research, evaluation

research, and experience reports. The logic behind this RQ is to understand the maturity of the field in the use of

empirical approaches;

RQ 1.3 - resource types: What types of resources are identified as having leaks? Some papers detect a leak in only

one resource, such as WakeLock. Others detect in various resources like camera, sensor and location;

RQ 1.4 – category of leak causes: What are the categories of leak causes? This RQ helps understand the

causes of resource leak;

RQ 1.5 - input artifact: Which artifact do methods/techniques receive as input? Some examples of input artifacts

are apk, source code, and running application.

4.1.2 Identification of Studies

The search string was modeled after the PICO analytical structure (Population, Inter- vention, Comparison and

Outcomes), according to the recommendations described by [12]. In order to improve the string, 8 control papers

[3,11,15–20] were used, with keyword synonyms identified. Execution cycles of the search string for

refinements in the Scopus1 digital library were also carried out. The referred string is shown in Table 1.

Consolidating Categories of Resource Leaks in Mobile Applications from Secondary Studies

144

Table 1. The string in the PICO structure for the mapping study performed

The search for studies, using the string, was carried out in the following digital libraries: Scopus, IEEE Xplore2,

Science Direct3, Engineering Village4, Web of Science5 e ACM DL6. These digital libraries were selected

based on the experience report by [12]. The studies returned by the digital libraries will be evaluated and/or

analyzed only if they meet all the inclusion criteria, which are:

 Studies related to the identification of resource leaks in mobile applications;

 Papers available on the web or by contacting the authors. The following exclusion criteria are used:

 Non-English papers;

 Duplicate papers.

1 https://www.scopus.com/search/form.uri?display=basic

2 https://ieeexplore.ieee.org/Xplore/home.jsp

3 https://www.sciencedirect.com/

4 https://www.engineeringvillage.com/search/quick.url

5 http://www.webofknowledge.com

6 https://dl.acm.org

4.1.3 Classification Scheme

A classification scheme is derived from a careful analysis of the primary studies in order to help with

the categorization of papers. The classification for RQ 1.1 was based on [21], where a framework is a detailed

method that has a wide purpose and focuses on multiple questions or areas of research, a method usually has a

more specific goal and a narrow research question or purpose, a model provides an abstract classification or

model of a topic and problem, rather than a specific, tangible way to solve a specific problem, the tool is when

the study provides a tool, evaluation which includes papers that evaluate an already published concept and do

not introduce new concepts or solutions, the metric provides guidelines on how to measure aspects of the

application. The database category was also added, which refers to an organized collection of information

composed of related records.

RQ 1.2 (types of research) was organized according to [14], where papers that have only examples and

a good line of argument are categorized as Solution Proposal; papers whose techniques have not yet been

implemented in practice, that is, only with experiments carried out in laboratory are classified as Validation

Research; if the technique is implemented in practice and has a technical evaluation showing how the study was

conducted, what are the benefits and disadvantages (including the identification of problems in the industry), it is

classified as Evaluation Research; papers that only report applications or experiences in practice, based on the

author’s personal experience, are classified as Experience Reports.

RQ 1.3 (resource types) was structured in 14 resource types (concurrency, connectiv- ity, database,

files, localization, memory, multimedia, network, screen, security, sensor, service, wakeLock, energy) based on

[9–11], which are described in Section 3.

For the construction of the RQ 1.4 classification scheme, an initial version was created from the control

studies, then evolved during data extraction, through the extracted at- tributes and iterative refinement steps.

Adding new categories or merging existing ones. Therefore, the following 10 categories were defined: Complete

leak, Leak on normal paths, Leak on exceptional paths, Leak on irregular paths, Leak caused by race condition,

Leak caused by unused resource, Leak caused by complex application lifecycle, Leak caused by improper

http://www.scopus.com/search/form.uri?display=basic
http://www.sciencedirect.com/
http://www.engineeringvillage.com/search/quick.url
http://www.webofknowledge.com/

Consolidating Categories of Resource Leaks in Mobile Applications from Secondary Studies

145

allocation and deallocation, Leak caused by improper resource liberation in loop and Leak caused by Android

SDK.

RQ 1.5 (input artifacts) was organized into 4 categories: source code referring to the source code of the

mobile application, APK which is generated when compiling the source code, App in Runtime being the

application running on the device and UI Test which is a test that simulates the user using the graphical interface

of the application.

4.1.4 Data Extraction Strategy

For each selected paper, the necessary data was extracted to answer the research questions proposed for this

study. The data extracted are described in Table 2.

Table 2. Data Extraction Form

4.1.5 Execution of the Systematic Mapping Study

The search was performed in the selected digital libraries using the string, returning 1760 papers, as shown in the

Table 3. After that, duplicate papers were removed and filter 1 (selection based on title, abstract and keywords) was

applied. Then, filter 2 (complete paper analysis) was conducted. In the papers selected in filter 2, the information

is described in Table 2. The papers remaining after filter 2 were summarized and analyzed.

Table 3. Number of selected papers
Digital Library Papers Returned 1º Filter 2º Filter

Scopus 427 25 14

IEEE Xplore 337 9 1

Science Direct 34 1 0

ACM DL 217 13 3

Web of Science 258 26 13

Engineering Village 487 48 26

Total 1760 122 57

4.2 Results of the Systematic Mapping

The 57 selected papers were published between 2012 and 2024. In Figure 1, it can be seen that in 2013 (second

year with publications) there was an increase in the number of papers, followed by a decline in the years 2014

and 2015. It is also noted that the same number of papers published in 2013 was reached in 2018 and was

increased in 2019. It is worth remembering that the search for papers in digital libraries occurred in July 2024, so it

is possible that some 2024 papers have not been included.

Figure 1. Publications per Year

Consolidating Categories of Resource Leaks in Mobile Applications from Secondary Studies

146

Figure 2 show the number of papers by type of publication location. It can be seen that the majority of authors

(59.6%) published their papers in conferences, 35.1% in journals and, lastly, 5.3% in workshops.

To classify the places of publication, the number of papers published in each place was used as a metric. The

ranking of the main sites with at least two papers is shown in Table

4. There are nine publication venues on this list: five journals and six conferences, among which are some of the

main means of publication in the area of software engineering. For example, the two conferences with the most

articles (three articles, 5.3%) are ICSE and ASE, which are one of the two main events in the area.

Figure 2. Publications by location type

Table 4. Main places of publication

Publication Venue Acronym Qty

International Conference on Software Engineering ICSE 3

Lecture Notes in Computer Science (including subseries Lec- LNCS 3

ture Notes in Artificial Intelligence and Lecture Notes in Bioin-

formatics)

International Conference on Automated Software Engineering ASE 3

International Computer Software and Applications Conference COMPSAC 2

ACM Joint Meeting on European Software Engineering Con- ESEC/FSE 2

ference and Symposium on the Foundations of Software Engi-

neering

IEEE Access IEEE Access 2

Journal of Computer Science and Technology JCST 2

International Conference on Mobile Systems, Applications, MobiSys 2

and Services

Software - Practice and Experience SPE 2

IEEE Transactions on Software Engineering TSE 2

International Symposium on Software Testing and Analysis ISSTA 2

The results obtained from the systematic mapping provide answers for RQ 1: "What is the space for research of

the technical literature in identifying resource leak in mobile applications?"

4.2.1 RQ 1.1 - Contribution Types

Figure 3 shows the distribution by contribution type for all the 57 papers analyzed in this study. Based on their

contributions, some studies were classified into more than one type. For example, [22] presented two

contributions: (1) they developed a static analysis technique which encounters inefficiency errors in the use of

services, and (2) implemented this technique as a tool called ServDroid. Figure 3 also shows that method

proposing was the item that attracted more publications, with 47 papers (about 82.5%) focused on this aspect.

Then, about 63.2% of the selected papers (36 of 57) proposed new tools.

4.2.2 RQ 1.2 - Research Types

Figure 4 shows the distribution of selected papers by type of research. It can be seen that the papers on the

identification of resource leak are mostly related to validation research with 26 papers (45.6%), which indicates

the relatively high level of maturity of that community. Next are the studies that focus on evaluation research with

19 papers (33.3%), which suggests that the community has a special attention to empirical approaches, such as

the referred species of research. The surveys that describe proposed solutions total 12 papers (21.1%).

Consolidating Categories of Resource Leaks in Mobile Applications from Secondary Studies

147

Evaluation: [9], [23], [24], [25]

Tool: [26], [17], [27], [11], [28], [29], [30], [31], [32], [16], [33], [18], [34], [22], [35], [36], [15],

[37], [38], [10], [19], [20], [39], [40], [41], [42], [43], [44], [45], [8], [46], [47], [48]

Method: [49], [50], [30], [18], [34], [35], [15], [37], [51], [38], [52], [40], [53], [44], [46], [47],

[48], [26], [17], [27], [28], [29], [31], [33], [22], [36], [3], [54], [10], [41], [42], [43], [55], [56],

[45], [8], [57], [11], [32], [58], [19], [59], [60]

Framework: [16], [20], [39], [61], [62]

Database: [9], [63], [61], [62], [24], [25], [48]

Metric: [27]

Figure 3. Contribution types (see above mentioned references for more information)

Evaluation Research: [26], [9], [64], [27], [11], [28], [30], [31], [16], [33], [18], [34], [22], [35],

[36], [15], [19], [20]

Validation Research: [50], [17], [29], [32], [3], [37], [54], [51], [38], [52], [10], [59], [39], [40],

[41], [42], [53], [43], [55], [44], [45], [8], [46], [47], [48]

Solution Proposal: [49], [57], [63], [58], [60], [23], [61], [56], [62], [24], [25]

Figure 4. Research types (see the references mentioned above for more information)

4.2.3 RQ 1.3 - Resource Types

During the analysis of the 57 papers, 14 types of resources were identified. These resources are listed in the

columns of Table 5, where the types of resources identified for each paper are shown. The paper that worked

with the largest number of resource types was [9] with 9 (64.3%) resources, followed by the work of [11] with 8

(57.1%) resource types. The type of resource most worked on in the papers was Energy, with 29 (50.9%) papers.

Then there is the resource WakeLock with 21 (36.8%) papers.

4.2.4 RQ 1.4 – Category of Leak Causes

The extracted leak causes from each study were grouped for the purpose of identifying categories, which were

defined in 10, which are: Complete leak, Leak on normal paths, Leak on exceptional paths, Leak on irregular

Consolidating Categories of Resource Leaks in Mobile Applications from Secondary Studies

148

paths, Leak caused by race condition, Leak caused by unused resource, Leak caused by complex application

lifecycle, Leak caused by improper allocation and deallocation, Leak caused by improper resource liberation in

loop and Leak caused by Android SDK. Table 6 shows the list of papers that cited or can identify leaks in the

mapped categories, where it is possible to see that the most cited category of leak was Leak caused by complex

application lifecycle with 34 papers (59.6%), followed by the category Leak on normal paths with 22 papers

(38.6%). Regarding which categories the works could identify the leaks, the work that it is able to find leaks in

more categories was [26], being able to find in 7 of the 10 categories. Each of the categories of leak will be

explained below.

Code 1. Exemplo de vazamento completo (com defeito)

Complete leak: Developers completely fail to release the resources acquired after their use. For example, in

Code 1 a code snippet of the application Google Authenticator, where in line 2 an object of type Cursor is

initialized. In lines 5 and 6, this is used but then it is not released. The code with the correct release of the

resource, implemented by one of the application’s developers, is shown in Code 2. In this case, the resource

usage code was placed in the try block and the method call (line 10), which releases the resource, was included in

the finally clause, so that the even be released both when the code runs without error and when an error occurs.

Code 2. Exemplo de vazamento completo (correto)

Consolidating Categories of Resource Leaks in Mobile Applications from Secondary Studies

149

Table 5. Resource types

Consolidating Categories of Resource Leaks in Mobile Applications from Secondary Studies

150

Table 6. List of papers that cited or can identify leaks in categories

Consolidating Categories of Resource Leaks in Mobile Applications from Secondary Studies

151

Leak on normal paths: Resources are released only in a few paths in the code. For example, Code 3 shows the

code snippet extracted from the application CSipSimple7, in which the resource in the sipWakeLock object is

released in line 11. However, if the condition in line 3 is true, the resource will not be released, as there is a

return statement that ends the execution of the current function. Code 4 shows the code correction implemented

by the author of the application8, where the resource release statement is implemented within if on line 5, while

the other release statement remains on line 12.

Leak on exceptional paths: System resources are not released if exceptions occur. For example, in the code

snippet extracted from the application k-9 mail9, shown in Code 5, there is no release of InputStream in case of

error. The correct version of the application is implemented in the code shown in Code 610, where the use of the

resource was placed in the block try and the release of the resource was included in the finally clause, thus

ensuring the release of the resource, whether an error occurs or not.

Consolidating Categories of Resource Leaks in Mobile Applications from Secondary Studies

152

Consolidating Categories of Resource Leaks in Mobile Applications from Secondary Studies

153

Consolidating Categories of Resource Leaks in Mobile Applications from Secondary Studies

154

Consolidating Categories of Resource Leaks in Mobile Applications from Secondary Studies

155

Consolidating Categories of Resource Leaks in Mobile Applications from Secondary Studies

156

Consolidating Categories of Resource Leaks in Mobile Applications from Secondary Studies

157

Consolidating Categories of Resource Leaks in Mobile Applications from Secondary Studies

158

Consolidating Categories of Resource Leaks in Mobile Applications from Secondary Studies

159

Consolidating Categories of Resource Leaks in Mobile Applications from Secondary Studies

160

Source Code: [49], [9], [63], [50], [30], [32], [16], [35], [58], [3], [37], [54], [38], [10], [59], [40],

[60], [41], [53], [61], [56], [62], [47], [24], [25], [48], [65], [66], [67], [68]

APK: [26], [64], [17], [11], [28], [33], [18], [34], [22], [36], [15], [51], [9], [37], [42], [23], [53],

[43], [55], [44], [45], [8], [46], [24]

App in Runtime: [57], [27], [29], [31], [52], [19], [39]

UI Test: [32]

Figure 5. Input artifact

4.3 Discussions

The main purpose of this systematic mapping was to identify categories of leak causes in mobile applications.

Currently, to the best of our knowledge, there is no systematic mapping with this objective in this important and

current area. As a result, a systematic mapping on the area can contribute to software developers by helping them

understand the categories of leak causes and consequently avoid leaks in their applications. Furthermore, it can

assist researchers focus their efforts on categories that have not yet been explored much; for example, the Leak

caused by Android SDK category has only one method that can identify leaks and the Leak caused by improper

resource release in loop has only four.

Regarding the most critical categories, we can highlight two, Complete leak and Leak caused by complex

application lifecycle. The Complete leak category, which is cited by 18 studies (31.6%), is the most critical, as the

resource is acquired and never released, which means the application will probably present some inconsistency

due to this leak. The Leak caused by complex application lifecycle, which is cited by 34 studies (59.6%), is the

second most critical category, as many resources need to be acquired and released in the lifecycle callbacks, as

these callbacks are called several times during the use of the application and if the developer has not correctly

implemented acquisition and release in these callbacks, the probability of an application failure is high.

Regarding the problems that can occur when there is a resource leak, we can mention the following:

• Huge battery drain according to Naseer et al. [53] and Banerjee et al. [69] can be categorized into

energy-bugs and energy-hotspots. An application is energy inefficient due to an energy-bug when it prevents the

device from being idle even after its execution is complete and there is no user activity. An application is energy

inefficient due to energy-hotspot access in a scenario where the application is running on a device and starts

consuming a large amount of battery power;

• Degradation of usability and responsiveness can happen when a resource becomes partially

Consolidating Categories of Resource Leaks in Mobile Applications from Secondary Studies

161

or completely unavailable to the user, preventing the use of a certain func- tionality of the application and/or

mobile device [8];

• Huge memory consumption is when the application allocates resources in the de- vice’s memory and

does not release them, which can cause a memory overflow, and consequently failure to use the mobile device

[44];

• Performance degradation through the gradual depletion of the finite computational resources of the

mobile device at runtime, causing slowdowns when using the device and the mobile application [9];

• Application crash can occur when the application terminates unexpectedly due to the use of a

mismanaged resource [43];

• Problem in another application can occur when a resource that can only be used in one application at

a time is not released and another application tries to access it. For example, an application allocates the camera

and when exiting the application the resource has not been released, so another application tries to use it, but

cannot use the camera [47].

4.4 Threats to Validity

In this section, the main threats to the validity of systematic mapping are discussed, organized into four

categories: construct, internal, external, and conclusion.

Construct validity: a well-defined search string is important for returning consistent results. To minimize this

threat, a control group of 8 papers related to identifying resource leaks in mobile applications was used. To

improve the search string, execution cycles of the search string were performed for refinements in Scopus and we

extracted synonyms of previously identified keywords.

Internal validity: during the execution of the study, some subjective decisions may be made, such as the selection

of primary studies and data extraction. To minimize this threat, the inclusion and exclusion criteria informed in the

planning were followed. As well as the systematic mapping protocol, it was reviewed by researchers with

extensive experience in Experimental Software Engineering and planning/execution of systematic mappings.

External validity: it is important that the study can be reproduced. This threat was minimized, due to the

systematic procedure followed during the mapping study, therefore, it is believed that this study can be repeated.

Conclusion validity: the results found need to be related to the data extracted from the primary studies. To

lessen this threat, we included papers references in each of the analyzes that were performed.

4.5 Conclusions of Systematic Mapping

This section presented the study of the systematic mapping of scientific publications on the identification of

resource leaks in mobile applications. In the study, a total of 57 papers published between 2012 and 2024 were

included. From the analysis of the papers it was possible to identify 10 categories of leak causes, which can help

developers avoid these problems in their applications. The results also showed 14 types of resources in which the

papers acted, with the types of resources Energy (50.9%) and WakeLock (36.8%) were the two most explored in

the papers. In the next section, a study will be presented that will analyze the categories of causes of leaks

identified in the systematic mapping.

V. Survey with Experts

In the systematic mapping study previously presented, we extracted 10 categories of causes of leaks in mobile

applications. In order to validate these categories, an opinion survey was planned whose details are presented

below.

5.1 Methods

5.1.1 Goal

The objective of this study is outlined from the GQM paradigm (Goal, Question, and Metric) [70], which is

presented in Table 7. The execution of this opinion poll had as main objective to characterize the relevance of the

categories of causes of leaks identified in the systematic mapping.

Table 7. Objective of the survey according to the GQM paradigm

Leak cause categories Characterize Relevance

Development profession- als

Consolidating Categories of Resource Leaks in Mobile Applications from Secondary Studies

162

Mobile applications

5.1.2 Research Question

Based on the objective, the following research question was formulated:

What is the relevance of each of the categories to represent causes of resources leak for mobile applications?

Metrics: Likert scale value attributed by the participant and the participant’s weight.

5.1.3 Instrumentation

Questions were proposed to the participants in order to identify their profile with regard to their experience with

resource leaks in mobile applications, in addition to the Free and Informed Consent Term - FICT. In addition, a

questionnaire was prepared to assess the relevance of the categories of causes of leaks in mobile applications

according to the research question mentioned in the previous subsection.

The Likert ordinal scale will be used, offering the options: (0) No relevance, (1) Very low relevance, (2) Low

relevance, (3) Medium relevance, (4) High relevance and (5) Very high relevance. In addition, there are the

following open questions: “What is your opinion about the categories presented? Are there any other categories

of causes of leaks? ”. The evaluation questionnaire is available at: https://drive.google.com/drive/folders/12zC6

TUQhtm-KU1DGsnfuYvLyzAETfrln.

5.1.4 Procedure for Analysis of Relevance

To define the level of relevance of each category, the participant’s years of experience and the mobile platforms

on which he works or worked were based. According to [71] it is necessary to differentiate the responses of the

participants by associating a weight to each of them, considering, for example, years of experience. The weight of

each participant for this study is calculated according to Equation 1.

After this step, the values will be sorted in descending order. The most relevant categories will be those whose

variable Relevance(c) has the highest values.

5.1.5 Study Execution

To participate in this study, developers with experience in resource leakages in mobile applications were invited.

The developer base was obtained from a search on the social network Linkedin24, as well as in development

communities on Facebook25. To participate in the study, the professionals had to express interest, agreeing with

a Free and Informed Consent Term and, after that, answered the proposed questionnaire.

The questionnaire was active for a period of 2 months and 12 days. The form, which was sent to 147 developers,

received responses from 22 of them, reaching an 81% confidence level in the number of participants, according to

the formula of [72] and a response rate of 15%.

https://drive.google.com/drive/folders/12zC6TUQhtm-KU1DGsnfuYvLyzAETfrln
https://drive.google.com/drive/folders/12zC6TUQhtm-KU1DGsnfuYvLyzAETfrln

Consolidating Categories of Resource Leaks in Mobile Applications from Secondary Studies

163

Table 8. Opinion Survey participants

ID Platforms Years of Ex-

perience

Country Weight

P01 Android 4 Pakistan 2

P02 Android, 5 India 3,25

 iOS

P03 Android 6 India 2,5

P04 Android, 5 Brazil 3,25

 iOS

P05 Android, 2 Brazil 2,5

 iOS

P06 Windows 7 Brazil 2,75

P07 Android, 6 Brazil 3,5

 iOS

P08 Android 5 Pakistan 2,25

P09 Android 2 Brazil 1,5

P10 Android, 2 Brazil 2,5

 iOS

P11 Android 3 Brazil 1,75

P12 Android 3 Brazil 1,75

P13 Android 3 Brazil 1,75

P14 Android, 8 Brazil 4

 iOS

P15 Android 4 Brazil 2

P16 Android, 10 Brazil 4,5

 Windows

P17 Android, 5 Brazil 3,25

 iOS

P18 Android, 1 Brazil 2,25

 iOS

P19 Android, 4 Brazil 3

 iOS

P20 Android 1 Brazil 1,25

P21 Android 5 Brazil 2,25

P22 Android, 2 Brazil 2,5

 iOS

24 http://linkedin.com

25 https://www.facebook.com

Due to privacy concerns, the personal data of the participants will not be presented. Table 8 presents the

characterization information of the developers, including the weight already calculated for each one. It can be

seen that they work or have worked on at least one of the following platforms: Android, iOS or Windows.

Participants also live in different countries like Brazil, India or Pakistan. The median time of experience with

resource leaks in mobile applications from the developers in this study is 4 years.

http://linkedin.com/
http://www.facebook.com/

Consolidating Categories of Resource Leaks in Mobile Applications from Secondary Studies

164

Table 9. Relevance of leak categories Results Analysis

The data obtained, according to the opinion of the study participants, indicate 6 cat- egories (C01, C02, C03,

C04, C05 and C06) as the most relevant (with a value equal to or greater than the calculated median of 70%)

to represent leak causes in mobile applica- tions, as shown in Table 9. The two most relevant categories were

C01 and C02, which indicates that developers should be concerned with releasing resources both in the appli-

cation’s exception possibilities and within the callback methods (for example, onStop() or viewWillDisappear())

of the application lifecycle.

In relation to the answers to the question "What is your opinion on the categories presented? Are there any other

categories of causes of leaks?", below is the full literal response of the participants who answered this optional

question. Some observations can be highlighted, for example, participant P05 confirmed that developers may

completely fail to release application resources.

"Well, I agree with C08 (developers completely fail to release the resources acquired after use), that’s true, we

don’t usually look at these things." P05

Looking at the response of participant P07, it can be inferred that the Android docu- mentation needs to better

highlight the need for developers to explicitly release resources so as not to leak resources.

"I think the Android platform documentation assumes developers that the operating system will take care of the

leak, and this may lead the developer to think that resource leakage will not be an issue for their applications."

P07

Participants P02, P10 and P19 consider the categories presented in this research to be satisfactory.

"Good." P02

"No, all of this is represented in the research." P10

"I think the categories presented summarize the most important ones very well." P19

Participant P12 considers that some of these categories are not common to occur, as he believes that some are easy

to be detected. However, based on the response of participants P05 and P07, it is possible to infer that some

developers are still unaware of the importance of the correct release of application resources and, consequently,

fail to do so.

"Some of them are not so common, for example, it is easy to capture when the resource is not "closed", even the

code analyst can check and suggest. The race condition is really common and complicated, it takes time to

identify and it is not so easy to debug. I think this is the most common in the projects I worked on." P12

In addition to the categories present in the initial set, a new category proposed by participant P06 was added with

the name "Leak memory due to poorly constructed third-party APIs". The same argued: "And something that is

very common is the choice of third-party APIs (Android-Arsenal has thousands) without many criteria ... and

these have a considerable amount of problems like Memory leak. Incidentally, I dare say that this is the main

source of memory leaks." Although participant P06 only worked with Windows, this new category also applies

to Android and iOS. In the Table 10 is shown the final list of categories, including the added category.

Consolidating Categories of Resource Leaks in Mobile Applications from Secondary Studies

165

Table 10. Final list of categories of leak causes

Based on the responses obtained from the study, it is possible to state that the relevance ranking helped to establish a

more comprehensive view of the leak causes in mobile applications.

5.2 Threats to Validity

The threats to the validity of the study were organized into 3 categories: construct validity, internal and external.

Construct validity: the study is characterized by analyzing the relevance of the categories of leak causes in the

context of mobile applications. The categories were extracted from primary studies, through a systematic mapping

study, involving experiments with mobile applications.

Internal validity: it was proposed to select development professionals who work in the development of mobile

applications and who have experience in resource leaks. Thus, it was assumed that they are representative for the

study population and that they can give the developers perspective on the categories of leak causes.

The instrument to be used (online form) went through a review and was submitted to a pilot study that pointed out

improvements that were implemented.

External validity: study participants in general can be considered representative for the population of

development professionals, as the questionnaire data on the participants’ experience was used to filter only

participants with the profile expected for this study.

5.3 Conclusions from the Study

The relevance analysis of each of the 10 categories, extracted by means of systematic mapping, by the

participants of the opinion survey allowed to obtain a base set of 6 categories (Leak in exceptional paths, Leak

caused by the complexity of the life cycle of application, Leak caused by improper release of resources in loop,

Leak on irregular paths, Leak caused by improper allocation and deallocation and Leak caused by race condition)

most relevant to the representation of leaks causes in mobile applications. It was also possible to add a new

category (Leak memory due to poorly constructed third-party APIs) of leaks causes. This information is

important for a better understanding of the origins of leaks, which allows us to propose an effective strategy to

detect the majority of resource leaks.

VI. Conclusions and future work
In this paper, we explored and synthesized categories of leak causes in mobile applica- tions through a

systematic mapping study. We characterize the studies we found based on 5 facets: (1) the types of

contributions; (2) the types of research (proposal, validation, evaluation and report); (3) the types of resource

leak that the study can identify; (4) the categories of causes of resource leaks; and (5) the input artifacts. These 5

facets belong to our research question RQ 1: What is the space for research of the technical literature in

identifying resource leak in mobile applications?

To collect all relevant studies in our research scope, we searched six digital libraries, namely, Scopus,

IEEE Xplore, Science Direct, Engineering Village, Web of Science and ACM DL. 1760 papers were found, and

after the first filter (having read the title, abstract and keywords), 122 papers were left. After that, we performed

the second filter (reading the entire paper) and as a result there were 57 papers. Through a detailed reading

of this body of research, we derive a framework of attributes that, consequently, were used to characterize the

studies in a structured way. The resulting systematic mapping study can be beneficial both for researchers in the

area of resource leaks and for mobile application developers. We can highlight that the papers work with 14

Consolidating Categories of Resource Leaks in Mobile Applications from Secondary Studies

166

different types of resources, with Energy (50.9%) and WakeLock (36.8%) being the most explored. We also point

out that 10 categories of leak causes have been identified, which can serve as a guide for developers.

In order to analyze the relevance of these 10 categories, an opinion survey study was carried out with

developers, who were found through searches on Linkedin social network as well as in development

communities on Facebook. The survey was sent to 147 developers, and 22 of them responded. As a result, 6

most relevant categories were identified, namely, Leak on exceptional paths, Leak caused by complex application

lifecycle, Leak caused by improper resource liberation in loop, Leak on irregular paths, Leak caused by improper

allocation and deallocation and Leak caused by race condition. We also note that a new category (Leak memory

due to poorly constructed third-party APIs) has been identified.

These results provide a basis to assist researchers in planning future work, identifying areas of research that need

more attention, as well as helping developers to avoid resource leaks in their applications.

As future work, it is intended to extend the systematic mapping to include more digital libraries, as well as to

extend the survey to include a greater number of developers.

Author Contributions: Josias Gomes Lima: Contributing to the conceptualization of the research, developing

the methodology, analyzing the results and to the writing of the manuscript. Joethe Moraes de Carvalho and

Oswald Mesumbe Ekwoge: Worked on most of the parts, introduction and empirical studies and to the writing of

the manuscript. Rafael Giusti and Arilo Claudio Dias-Neto: Supervising the research.

Funding: This research was funded by CAPES (Coordination for the Improvement of Higher Edu- cation

Personnel), Brazil, Finance Code 001; and Research Support Foundation State of Amazonas (FAPEAM) -

PAPAC Project (Edital 005/2019).

Informed Consent Statement: According to the authors who collected and made the data publicly available,

informed consent was obtained from all subjects involved in the study.

Data Availability Statement: Data will be made available on request.

Conflicts of Interest: The authors declare no conflict of interest.

References
[1]. Statista. Number of smartphone mobile network subscriptions worldwide from 2016 to 2023, with forecasts from 2023 to 2028,

2024. https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/ (Accessed 19 July 2024).

[2]. Statista. Number of mobile app downloads worldwide from 2016 to 2023, 2024. https://www.statista.com/statistics/271644
[3]. /worldwide-free-and-paid-mobile-app-store-downloads/ (Accessed 19 July 2024).

[4]. Zhang, H.; Wu, H.; Rountev, A. Automated test generation for detection of leaks in Android applications. In Proceedings of the

Proceedings of the 11th International Workshop on Automation of Software Test, 2016, pp. 64–70.
[5]. Zhang, S.; Zhu, J.; Liu, A.; Wang, W.; Guo, C.; Xu, J. A novel memory leak classification for evaluating the applicability of static

analysis tools. In Proceedings of the 2018 IEEE International Conference on Progress in Informatics and Computing (PIC). IEEE,

2018, pp. 351–356.
[6]. de Sena, G.O.; Matias, R. A Systematic Mapping Review of Memory Leak Detection Techniques. In Proceedings of the 2018 IEEE

International Symposium on Software Reliability Engineering Workshops (ISSREW). IEEE, 2018, pp. 264–270.

[7]. Khan, M.U.; Abbas, S.; Lee, S.; Abbas, A. Energy-leaks in android application development: Perspective and challenges. Journal of
Theoretical and Applied Information Technology 2020, 98, 3591–3601.

[8]. Aslanyan, H.; Gevorgyan, Z.; Mkoyan, R.; Movsisyan, H.; Sahakyan, V.; Sargsyan, S. Static analysis methods for memory leak

detection: A survey. In Proceedings of the 2022 Ivannikov Memorial Workshop (IVMEM). IEEE, 2022, pp. 1–6.
[9]. Bhatt, B.N.; Furia, C.A. Automated repair of resource leaks in android applications. Journal of Systems and Software 2022,

[10]. 192, 111417.

[11]. Liu, Y.; Wang, J.; Wei, L.; Xu, C.; Cheung, S.C.; Wu, T.; Yan, J.; Zhang, J. DroidLeaks: a comprehensive database of resource leaks in
Android apps. Empirical Software Engineering 2019, 24, 3435–3483.

[12]. Yan, D.; Yang, S.; Rountev, A. Systematic testing for resource leaks in Android applications. In Proceedings of the 2013 IEEE 24th

International Symposium on Software Reliability Engineering (ISSRE). IEEE, 2013, pp. 411–420.
[13]. Guo, C.; Zhang, J.; Yan, J.; Zhang, Z.; Zhang, Y. Characterizing and detecting resource leaks in Android applications. In

Proceedings of the 2013 28th IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE, 2013, pp.

389–398.
[14]. Petersen, K.; Vakkalanka, S.; Kuzniarz, L. Guidelines for conducting systematic mapping studies in software engineering: An

update. Information and Software Technology 2015, 64, 1–18.

[15]. Kitchenham, B.; Charters, S. Guidelines for performing systematic literature reviews in software engineering 2007.
[16]. Petersen, K.; Feldt, R.; Mujtaba, S.; Mattsson, M. Systematic mapping studies in software engineering. In Proceedings of the 12th

International Conference on Evaluation and Assessment in Software Engineering (EASE) 12, 2008, pp. 1–10.
[17]. Xu, Z.; Wen, C.; Qin, S. State-taint analysis for detecting resource bugs. Science of Computer Programming 2018, 162, 93–109.

[18]. Banerjee, A.; Chong, L.K.; Ballabriga, C.; Roychoudhury, A. Energypatch: Repairing resource leaks to improve energy-efficiency of

android apps. IEEE Transactions on Software Engineering 2017, 44, 470–490.
[19]. Jiang, H.; Yang, H.; Qin, S.; Su, Z.; Zhang, J.; Yan, J. Detecting energy bugs in Android apps using static analysis. In Proceedings of

the International Conference on Formal Engineering Methods. Springer, 2017, pp. 192–208.

[20]. Wu, T.; Liu, J.; Xu, Z.; Guo, C.; Zhang, Y.; Yan, J.; Zhang, J. Light-weight, inter-procedural and callback-aware resource leak
detection for android apps. IEEE Transactions on Software Engineering 2016, 42, 1054–1076.

[21]. Kim, K.; Cha, H. WakeScope: runtime WakeLock anomaly management scheme for Android platform. In Proceedings of the 2013

Proceedings of the International Conference on Embedded Software (EMSOFT). IEEE, 2013, pp. 1–10.
[22]. Liu, Y.; Xu, C. Veridroid: Automating android application verification. In Proceedings of the Proceedings of the 2013 Middleware

Doctoral Symposium, 2013, pp. 1–6.

https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/271644/worldwide-free-and-paid-mobile-app-store-downloads/
https://www.statista.com/statistics/271644/worldwide-free-and-paid-mobile-app-store-downloads/

Consolidating Categories of Resource Leaks in Mobile Applications from Secondary Studies

167

[23]. Shahrokni, A.; Feldt, R. A systematic review of software robustness. Information and Software Technology 2013, 55, 1–17.

[24]. Song, W.; Zhang, J.; Huang, J. ServDroid: detecting service usage inefficiencies in Android applications. In Proceedings of the
Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the

Foundations of Software Engineering, 2019, pp. 362–373.

[25]. Song, S.; Wedyan, F.; Jararweh, Y. Empirical Evaluation of Energy Consumption for Mobile Applications. In Proceedings of the
2021 12th International Conference on Information and Communication Systems (ICICS). IEEE, 2021, pp. 352–357.

[26]. Palomba, F.; Di Nucci, D.; Panichella, A.; Zaidman, A.; De Lucia, A. On the impact of code smells on the energy consumption of

mobile applications. Information and Software Technology 2019, 105, 43–55.
[27]. Nguyen, T.T.; Vu, P.M.; Nguyen, T.T. An empirical study of exception handling bugs and fixes. In Proceedings of the Proceedings of

the 2019 ACM Southeast Conference, 2019, pp. 257–260.

[28]. Pathak, A.; Jindal, A.; Hu, Y.C.; Midkiff, S.P. What is keeping my phone awake? Characterizing and detecting no-sleep energy
bugs in smartphone apps. In Proceedings of the Proceedings of the 10th international conference on Mobile systems, applications, and

services, 2012, pp. 267–280.

[29]. Vilk, J.; Berger, E.D. BLeak: automatically debugging memory leaks in web applications. ACM SIGPLAN Notices 2018, 53, 15–29.
[30]. Ma, J.; Liu, S.; Jiang, Y.; Tao, X.; Xu, C.; Lu, J. LESdroid: a tool for detecting exported service leaks of Android applications. In

Proceedings of the Proceedings of the 26th Conference on Program Comprehension, 2018, pp. 244–254.

[31]. Ferrari, A.; Gallucci, D.; Puccinelli, D.; Giordano, S. Detecting energy leaks in Android app with POEM. In Proceedings of the
2015 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops). IEEE, 2015,

[32]. pp. 421–426.

[33]. Zein, S.; Salleh, N.; Grundy, J. Static analysis of android apps for lifecycle conformance. In Proceedings of the 2017 8th

International Conference on Information Technology (ICIT). IEEE, 2017, pp. 102–109.

[34]. Zhang, L.; Gordon, M.S.; Dick, R.P.; Mao, Z.M.; Dinda, P.; Yang, L. Adel: An automatic detector of energy leaks for smartphone

applications. In Proceedings of the Proceedings of the eighth IEEE/ACM/IFIP international conference on Hardware/software
codesign and system synthesis, 2012, pp. 363–372.

[35]. Wu, L.; Lu, Y.; Qi, J.; Cai, S.; Deng, B.; Ming, Z. Bug Analysis of Android Applications Based on JPF. In Proceedings of the

International Conference on Smart Computing and Communication. Springer, 2016, pp. 173–182.
[36]. Jun, M.; Sheng, L.; Shengtao, Y.; Xianping, T.; Jian, L. LeakDAF: An automated tool for detecting leaked activities and fragments of

Android applications. In Proceedings of the 2017 IEEE 41st Annual Computer Software and Applications Conference

(COMPSAC). IEEE, 2017, Vol. 1, pp. 23–32.
[37]. Vekris, P.; Jhala, R.; Lerner, S.; Agarwal, Y. Towards verifying android apps for the absence of no-sleep energy bugs. In

Proceedings of the Presented as part of the 2012 Workshop on Power-Aware Computing and Systems, 2012.

[38]. Hoshieah, N.; Zein, S.; Salleh, N.; Grundy, J. A static analysis of android source code for lifecycle development usage patterns.
[39]. Journal of Computer Science 2019, 15, 92–107.

[40]. Toffalini, F.; Sun, J.; Ochoa, M. Practical static analysis of context leaks in Android applications. Software: Practice and Experience

2019, 49, 233–251.
[41]. Wu, H.; Yang, S.; Rountev, A. Static detection of energy defect patterns in Android applications. In Proceedings of the Proceedings of the

25th International Conference on Compiler Construction, 2016, pp. 185–195.
[42]. Chang, B.Y.E. Refuting Heap Reachability. In Proceedings of the International Conference on Verification, Model Checking, and

Abstract Interpretation. Springer, 2014, pp. 137–141.

[43]. Chen, B.; Li, X.; Zhou, X. PowerSensor: A method for power optimization of smartphone through sensing wakelock application. In
Proceedings of the 2017 9th International Conference on Wireless Communications and Signal Processing (WCSP). IEEE, 2017,

[44]. pp. 1–6.

[45]. Ghanem, T.; Zein, S. A Model-based approach to assist Android Activity Lifecycle Development. In Proceedings of the 2020 4th
International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT). IEEE, 2020, pp. 1–12.

[46]. Pereira, R.B.; Ferreira, J.F.; Mendes, A.; Abreu, R. Extending EcoAndroid with Automated Detection of Resource Leaks 2022.

[47]. Lu, Y.; Pan, M.; Pei, Y.; Li, X. Detecting resource utilization bugs induced by variant lifecycles in Android. In Proceedings of the
Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis, 2022, pp. 642–653.

[48]. Liu, Q.; Pan, L.; Cui, B.; Yan, J.; Zhang, J. Dynamic Detection of AsyncTask Related Defects. In Proceedings of the 2021 IEEE 21st

International Conference on Software Quality, Reliability and Security (QRS). IEEE, 2021, pp. 357–366.
[49]. Amalfitano, D.; Riccio, V.; Tramontana, P.; Fasolino, A.R. Do memories haunt you? An automated black box testing approach for

detecting memory leaks in android apps. IEEE Access 2020, 8, 12217–12231.

[50]. Wu, H.; Zhang, H.; Wang, Y.; Rountev, A. Sentinel: generating GUI tests for sensor leaks in Android and Android wear apps.
[51]. Software Quality Journal 2020, 28, 335–367.

[52]. Khan, M.U.; Lee, S.U.J.; Wu, Z.; Abbas, S. Wake Lock Leak Detection in Android Apps Using Multi-Layer Perceptron. Electronics

2021, 10, 2211.
[53]. Riganelli, O.; Micucci, D.; Mariani, L. Controlling interactions with libraries in android apps through runtime enforcement. ACM

Transactions on Autonomous and Adaptive Systems (TAAS) 2019, 14, 1–29.

[54]. Nguyen, T.; Vu, P.; Nguyen, T. Code recommendation for exception handling. In Proceedings of the Proceedings of the 28th ACM

Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, 2020, pp.

1027–1038.

[55]. Hall, S.; Nataraj, S.; Kim, D.K. Detecting no-sleep energy bugs using reference counted variables. In Proceedings of the
Proceedings of the 5th International Conference on Mobile Software Engineering and Systems, 2018, pp. 161–165.

[56]. Qian, J.; Zhou, D. Prioritizing test cases for memory leaks in android applications. Journal of Computer Science and Technology 2016,

[57]. 31, 869–882.
[58]. Shahriar, H.; North, S.; Mawangi, E. Testing of memory leak in Android applications. In Proceedings of the 2014 IEEE 15th

International Symposium on High-Assurance Systems Engineering. IEEE, 2014, pp. 176–183.

[59]. Araujo, J.; Alves, V.; Oliveira, D.; Dias, P.; Silva, B.; Maciel, P. An investigative approach to software aging in android applications. In
Proceedings of the 2013 IEEE international conference on systems, man, and cybernetics. IEEE, 2013, pp. 1229–1234.

[60]. Naseer, A.; Nadeem, A.; Zaman, Q.U. A GUI Based Approach to Detect Energy Bugs in Android Applications. In Proceedings of the

2021 16th International Conference on Emerging Technologies (ICET). IEEE, 2021, pp. 1–6.
[61]. Alam, F.; Panda, P.R.; Tripathi, N.; Sharma, N.; Narayan, S. Energy optimization in Android applications through wakelock

placement. In Proceedings of the 2014 Design, Automation & Test in Europe Conference & Exhibition (DATE). IEEE, 2014, pp.

1–4.
[62]. Khan, M.U.; Lee, S.U.J.; Abbas, S.; Abbas, A.; Bashir, A.K. Detecting Wake Lock Leaks in Android Apps Using Machine Learning.

Consolidating Categories of Resource Leaks in Mobile Applications from Secondary Studies

168

IEEE Access 2021, 9, 125753–125767.

[63]. Sakhare, P.B.; Kim, D.K.; Hamdi, M. Detecting No-Sleep Bugs Using Sequential Reference Counts. In Proceedings of the 2019
IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC). IEEE, 2019, Vol. 1, pp. 940–941.

[64]. Xia, M.; He, W.; Liu, X.; Liu, J. Why application errors drain battery easily? A study of memory leaks in smartphone apps. In

Proceedings of the Proceedings of the Workshop on Power-Aware Computing and Systems, 2013, pp. 1–5.
[65]. Santhanakrishnan, G.; Cargile, C.; Olmsted, A. Memory leak detection in android applications based on code patterns. In

Proceedings of the 2016 International Conference on Information Society (i-Society). IEEE, 2016, pp. 133–134.

[66]. Ahn, S. Automation of Memory Leak Detection and Correction on Android JNI (poster). In Proceedings of the Proceedings of the 17th
Annual International Conference on Mobile Systems, Applications, and Services, 2019, pp. 533–534.

[67]. Le, H.A. Analyzing energy leaks of android applications using event-b. Mobile Networks and Applications 2021, 26, 1329–1338.

[68]. Saju, N.; Garg, J.; Sehgal, R.; Nagpal, R. Green Mining for Android Based Applications Using Refactoring Approach. In
Proceedings of the 2021 9th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future

Directions)(ICRITO). IEEE, 2021, pp. 1–6.

[69]. Sehgal, R.; Mehrotra, D.; Nagpal, R.; Sharma, R. Green software: Refactoring approach. Journal of King Saud University-Computer
and Information Sciences 2020.

[70]. Riganelli, O.; Micucci, D.; Mariani, L. From source code to test cases: A comprehensive benchmark for resource leak detection in

android apps. Software: Practice and Experience 2019, 49, 540–548.
[71]. Wu, H.; Wang, Y.; Rountev, A. Sentinel: Generating GUI tests for Android sensor leaks. In Proceedings of the 2018 IEEE/ACM

13th International Workshop on Automation of Software Test (AST). IEEE, 2018, pp. 27–33.

[72]. Wang, C.; Liu, J.; Peng, X.; Liu, Y.; Lou, Y. LLM-based Resource-Oriented Intention Inference for Static Resource Leak Detection,

2024, [arXiv:cs.SE/2311.04448].

[73]. Cui, B.; Wang, M.; Zhang, C.; Yan, J.; Yan, J.; Zhang, J. Detection of Java Basic Thread Misuses Based on Static Event Analysis. In

Proceedings of the 2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE, 2023, pp.
1049–1060.

[74]. Nanavati, J.; Patel, S.; Patel, U.; Patel, A. Critical Review and Fine-Tuning Performance of Flutter Applications. In Proceedings of the

2024 5th International Conference on Mobile Computing and Sustainable Informatics (ICMCSI). IEEE, 2024, pp. 838–841.
[75]. Shahoor, A.; Khamit, A.Y.; Yi, J.; Kim, D. LeakPair: Proactive repairing of memory leaks in single page web applications. In

Proceedings of the 2023 38th IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE, 2023, pp.

1175–1187.
[76]. Banerjee, A.; Chong, L.K.; Chattopadhyay, S.; Roychoudhury, A. Detecting energy bugs and hotspots in mobile apps. In

Proceedings of the Proceedings of the 22nd ACM SIGSOFT international symposium on foundations of software engineering,

2014, pp. 588–598.
[77]. Basili, V.R.; Caldiera, G.; Rombach, H.D. The experience factory. Encyclopedia of Software Eng.: Vol 1994, 1, 469–476.

[78]. Dias-Neto, A.C.; Travassos, G.H. Surveying model based testing approaches characterization attributes. In Proceedings of the

Proceedings of the Second ACM-IEEE international symposium on Empirical software engineering and measurement, 2008, pp. 324–
326.

[79]. Hamburg, M. Basic Statistics: A Modern Approach. Journal of the Royal Statistical Society 1980, 143.

http://xxx.lanl.gov/abs/2311.04448

