
International Journal Of Engineering Research And Development

e- ISSN: 2278-067X, p-ISSN: 2278-800X, www.ijerd.com

Volume 20, Issue 11 (November, 2024), PP 608-618

608

Development of a Serious Game to Assist in Teaching

Programming in Introductory Courses

Rafael Aparecido Marinho Capodeferro, Carlos Eduardo do Amaral, Lucas de

Morais Pereira, Flávio Cezar Amate*

Department of Informatic – Instituto Federal of São Paulo - IFSP

*Corresponding Author

ABSTRACT

The increasing difficulty students face when learning programming logic has led to high rates of retention and

dropout in introductory technology courses. To address this challenge, we developed a serious game designed

to facilitate the learning of programming logic through an engaging, immersive experience. The game

incorporates a non-linear learning approach, allowing students to progress at their own pace and revisit

specific topics as needed. This flexibility supports students who may struggle with linear course structures,

helping them to reinforce key concepts without feeling constrained. Additionally, the game employs a training

and reuse model, enabling learners to continuously practice programming logic by returning to the game for

further exercises. With cross-platform compatibility, the game can be compiled and deployed on various

operating systems, making it accessible to a broad range of students. Preliminary results suggest that the game

effectively aids students in mastering fundamental programming logic, potentially reducing dropout rates in

technology courses and strengthening foundational skills.

Key-words: serious games, programming logic, immersive learning, non-linear learning, dropout prevention.

--- ----------

Date of Submission: 09-11-2024 Date of Acceptance: 21-11-2024

-- ---------------

I. INTRODUCTION

When studying programming logic, students not only practice logic related to algorithms but also

develop skills in other activities. Often, solving a problem requires concepts from other fields of knowledge.

Therefore, it is essential to have a solid foundation in programming logic, as it enables a broader perspective on

potential problem-solving approaches.

Although programming logic is a crucial concept, many students in schools and universities face

significant challenges when first encountering the subject, leading to high rates of retention and dropout.

According to Souza and França (2013), technology courses are in high demand; however, the complexity of

concepts taught in these courses contributes to increased dropout rates. Additionally, students may reach a

certain point in their studies without the necessary knowledge in programming, which complicates their

understanding of other subjects, (BAIST & PAMUNGKAS, 2017).

Therefore, the creation of a tool to support the study of programming logic is necessary. To this end, an

educational game will be developed. According to Moratori (2003), games can capture students' attention,

making them an ideal teaching tool. By employing various strategies, such as gamification and a sense of

reward, it is possible to engage the player and reinforce essential programming logic concepts.To Salomão et al.

(2017), the serious games can motivate students and enhance educational outcomes.

II. MATERIAL AND METHODS

Programming Logic and Algorithms

The technology market seeks professionals capable of solving multidisciplinary problems. In a

company or project, a programmer may need to develop a platform for issuing invoices, and later in their career,

the developer might participate in creating a platform for submitting academic articles. Each problem, therefore,

has its unique characteristics.

According to Cormen et al. (2022), practical applications of algorithms are everywhere. For instance,

they enable the development of tools capable of analyzing massive datasets with billions of chemical bases that

make up human DNA. Another example provided by the authors is in online commerce, or e-commerce, which

allows the buying and selling of products remotely, worldwide.

http://www.ijerd.com/

Development of a Serious Game to Assist in Teaching Programming in Introductory Courses

609

Programming logic is related to the abstract and logical thinking required to design algorithmic

structures and computational problem-solving solutions. In other words, programming logic is the reasoning a

developer uses to solve a problem. Therefore, regardless of the programming language being used,

programming logic can be applied as it operates at an abstract level of thought.

The algorithm is the concrete representation of programming logic. When a problem’s solution remains

abstract in the programmer’s mind, the computer cannot interpret it. It is therefore necessary to translate logical

thinking into a sequence of instructions called algorithms, making that thought process accessible to the

computer.

Retention and Dropout in Technology Courses

Retention occurs when a student remains in a given course period longer than expected. This can

happen for various reasons, including academic difficulties, financial issues, family problems, lack of

motivation, among others. Additionally, retention affects students’ self-esteem regarding their learning progress

and may increase the likelihood of dropout.

Dropout is when a student leaves their studies before completing the cycle or period of elementary,

secondary, or higher education. Dropout can occur due to similar factors as retention. When a student stops

studying, it impacts their social relationships in the educational environment as well as their knowledge

development.

Programming logic and algorithms present a challenge for students in fields that require these skills.

One of the reasons behind this difficulty is the amount of prerequisite knowledge necessary to understand the

subject, as well as the learning of tools that form the developer's work environment, known as Integrated

Development Environments (IDEs) (Rocha et al., 2013).

According to Junior et al. (2020), retention and dropout rates are high in introductory courses, which is

a concern for educators in the field. Research conducted by Filho et al. (2018) showed that, from 2015 to 2017,

the failure rate was 52% in the Information Technology course at UFJF, a course that includes algorithms and

programming logic.

Serious Games

Serious games are digital games that go beyond entertainment. They can assist in various fields, such as

serious games applied in healthcare, like Depression Quest, created by Zoe Quinn, which aims to help people

suffering from depression. They can also be used in education, such as Meister Cody, a game that helps children

learn mathematics (Caserman et al., 2020).

Today, most people in Brazil use technology. According to data from a study conducted by IBGE

(Brazilian Institute of Geography and Statistics) in 2021, around 90% of households have internet access, with

cell phones being the most used device. Additionally, the study shows that among people aged 10 and older,

90.3% are students who access the internet. This data indicates that digital media are increasingly accessible and

frequently used by the population.

Therefore, the application of digital serious games to a population that is increasingly using technology

is an important aspect. According to Yusoff et al. (2009), digital educational games are effective teaching

methods, as the current generation of students grows up and develops in a digital environment, which facilitates

comprehension and normalizes the use of technology.

Game Engines

Game engines are platforms that facilitate the completion of tasks related to game development, such as

rendering, physics for environments and characters, animations, collision objects, and more. To achieve this, the

engine provides a wide range of libraries and tools that professionals can use to bring ideas from paper to the

real world (Paul; Goon; Bhattacharya, 2012).

Although the term "game engine" originated in 1990, the first game engine was only created seven

years later by the Japanese group ASCII. Named RPG Maker, it was initially programmed in JavaScript and was

used exclusively for creating 2D games, offering several resources, such as characters and other pre-made assets

for developers (Scherer; Batista; Mendes, 2020).

Over the years, with significant technological advancements, many other engines have been developed

and updated, providing even more tools to make games smoother and more realistic. For example, the new

Unreal Engine 5, released in 2021, introduced improvements in rendering, animation, and simulation—features

that the original Unreal Engine from 1991 could not yet offer.

Development of a Serious Game to Assist in Teaching Programming in Introductory Courses

610

Game Design

The Game Design Document (GDD) is a document created by the game development team during the

production process. It contains all the necessary information to guide the team throughout the game’s

development, from basic information, such as characters, dialogues, and environments, to more advanced

details, including level prototypes, sounds, and the technologies that will be used in the project (Motta; Junior,

2013).

Currently, three types of GDDs are commonly used in the game industry, differentiated by their level

of detail and the number of pages. First, there is the single-page GDD, which provides an overview of the game

and includes some visual elements. Then, there is the 10-page GDD; with more pages, it allows for greater detail

on various elements of the game, such as characters, level design, summaries, and more. Finally, there is the

bible GDD, which can exceed 15 pages. This version offers a complete breakdown of every aspect the game

will include.

Thus, creating a GDD is an effective strategy in game production, as it helps developers stay aligned

with the ideas initially proposed by the team. Regardless of its size, the primary purpose of a GDD is to ensure

that all team members are consistently aligned with the project’s overall vision.

RPG

Considered the first Role Playing Game (RPG) in history, Dungeons and Dragons, released in 1974

(Filho; Albuquerque, 2018), established many of the rules for traditional tabletop RPGs, as well as for computer

RPGs (CRPGs). In the early days of CRPGs, traditional RPG rules were combined with the rules of other

computer games. However, the primary goal of these games remained the same: overcoming challenges,

whether they be battles against monsters or solving puzzles, along with character interpretation (Barton; Stacks,

2019).

With the expansion of the gaming market, RPGs have evolved to include different options. One

example is a traditional RPG, such as Baldur’s Gate III by Larian Studios, in which the player embarks on an

adventure, making choices and interpreting the character.

Alternatively, a game may incorporate RPG mechanics, as in Horizon Zero Dawn by Guerrilla Games,

where the player controls a character with limited choices but features a leveling and character progression

system. Both examples fall under the RPG genre.

Development of the Game

The primary technology used was RPG Maker MV, a game engine developed by Gotcha Gotcha

Games to facilitate the creation of electronic games, focusing on the Role-Playing Games (RPG) genre. This

engine offers various features that aid in game development, such as character creation, map blocking, database

management, controls, etc. However, despite the numerous resources provided by the game engine, it was

necessary to use additional tools to assist in creating the game. In the first phase, a Game Design Document

(GDD) was prepared. This document contains everything involved in the game's creation, from controls to the

complete storyline.

Furthermore, the study’s focus includes fundamental concepts of programming logic, such as input,

processing, and output; variable manipulation; the operation of conditional structures (if, else); repetition

structures (while, for); logical problem-solving; and function study.

Therefore, beyond the GDD and the game engine, it was essential to design programming logic

exercises with the appropriate difficulty level. If too challenging, it could discourage the player, while if too

simple, the game might become monotonous, leaving the player with a sense of not learning, which would be

highly ineffective for an educational game.

Thus, the primary requirement of the system is to enable the player to learn programming logic by

solving logical exercises and applying fundamental programming concepts. Additionally, as a game, it must be

visually engaging, in other words, it should captivate the user's attention and provide enjoyment alongside

learning.

Storyline

To strengthen the game's narrative and create an immersive setting, a script was developed

incorporating a story with characters and a historical context to provide students with the challenges of the

didactic objective.

The protagonist, named Ada, returns from a tiring day of classes and reviews some lectures on

programming. Meanwhile, as she heads to the kitchen, something unexpected happens—a cabinet falls on her

head, and she passes out. Following this series of events, a portal opens, transporting her to another dimension.

When she wakes up, Ada finds herself in a medieval dimension and encounters a wizard named Alan.

He explains that several adventurers have appeared in the same way she did, but they left behind some notes to

Development of a Serious Game to Assist in Teaching Programming in Introductory Courses

611

help future travelers. Upon arriving at the guild with the wizard, Ada starts reading the notes and discovers

something astonishing: the magic in the medieval dimension is similar to the programming logic she had been

studying in the real world.

Ada gradually understands what is happening and asks the wizard how she can return home. He tells

her it would be a mission: to study magic (programming logic) to reach the final challenge and reopen the

portal. The wizard suggests that Ada help the townsfolk to practice magic—in the city, the forest, and the

cave—so that she can eventually access the portal and return to her home.

III. RESULTS

Game Modeling

Initially, the modeling of functional and non-functional requirements was conducted. Functional

requirements are directly related to the software’s behaviors, that is, what the software must do. Non-functional

requirements, on the other hand, pertain to the attributes and characteristics the software needs to have, such as

security, reliability, performance, among others (WIEGERS; BEATTY, 2013), (SALOMÃO; SANTOS;

GIANCOLI; AMATE, 2017). Tables 1 and 2 present the modeled functional and non-functional requirements.

Table 1 –Functional Requirements
Title Description Status

FR001 Character Movement The game should allow the user to move the character byclicking with the

mouse cursor.

Mandatory

FR002 AlternativeCharacter
Movement

The game should allow the user to move the character using the following
keys: "w" to move forward, "a" to move left, "d" to move right, and "s" to

move backward

Important

FR003 Interact with NPC The game should allow the user to interact with NPCs by approaching them

and clicking on them with the mouse cursor

Mandatory

FR004 Specify Controls The game should display the basic controls to the user, showing how to

move, interact with NPCs, and navigate the map

Important

FR005 Display Dialogues The game should display dialogues to the user when they interact with an

NPC. These dialogues will present the questions or tasks the player needs to
solve

Mandatory

FR006 Respond to Dialogues The game must allow the player to respond to the dialogues presented by

NPCs

Mandatory

FR007 Correct or Incorrect

Response

The game should display to the player whether the response they selected in

the dialogue with the NPC is correct or incorrect

Mandatory

FR008 Scoring System The game should add points to the player's total score if their answer to a

question is correct

Important

FR009 Map Transition The game should allow the user to switch between game maps if they have

the required score

Important

FR010 Display Required

Score

The game should display the score required for the player to progress to the

next map

Important

FR011 Block Progression The game should not allow the user to advance to the next map if they do

not have the required number of points.

Important

FR012 Map Topics The game should feature maps covering different programming logic

topics. The first map should teach the player about concepts such as
variables, input, processing, output, and variables. The second map should

cover conditional structures. The third map should focus on repetition

structures

Mandatory

FR013 Map-Specific

Questions

The game should include questions relevant to the topic each map covers,

allowing the user to study and practice that specific concept

Mandatory

Table 2 – Non-Functional Requirements
Title Description Status

NFR001 Accessibility The game should function on most computers regardless of the hardware
quality

Mandatory

NFR002 Languages Initially, the game should only support Brazilian Portuguese. Important

NFR003 Platforms The game must be compatible with both computers and mobile devices Mandatory

NFR004 Easy Explanation The game must explain programming logic concepts in a simple and
accessible way

Mandatory

The game follows a single-player campaign model, where the unfolding of the story events serves as an

additional motivator for the player to continue. Although the focus is on learning, the lighthearted narrative tone

helps make the player’s journey less tedious. During the game, a space at the bottom of the screen displays the

dialogues and interactions the user must engage in with the NPCs. The Figure 1 shows an example of a dialogue

in the game.

Development of a Serious Game to Assist in Teaching Programming in Introductory Courses

612

Figure 1 – Dialogue Mechanic in Game Interface

A more natural language style has been implemented, adding simplicity and a touch of humor to the

dialogues. The goal is to make the concepts easier to understand, using the challenges faced by the characters

and the world as a means to teach the fundamentals of programming logic. Figure 2 shows an example of a

natural language as implemented in the game.

Figure 2 – Natural Language Mechanic in Game

On the maps, it is possible to identify where a mission will begin through dialogue bubbles that appear

above the NPCs' heads. Once the mission is completed, these bubbles become invisible, providing a visual

indicator of game progress. As shown in Figure 3.

Development of a Serious Game to Assist in Teaching Programming in Introductory Courses

613

Figure 3 – Quest Indicator on Map

Figure 4 illustrates how the missions are structured. A problem is presented, and solving it involves

creating an algorithm. The player must analyze the requirements of the problem and select, from the available

options, the response that meets all the necessary specifications to resolve the NPC’s situation. If the player

makes a mistake, they can try as many times as needed until all answers are correct, with no penalty for errors

made.

Figure 4 – Question Mechanic During a Mission

If the player answers a question incorrectly, a dialogue appears informing them that they did not obtain

the scroll and can try again at a later time, as shown in Figure 5.

Development of a Serious Game to Assist in Teaching Programming in Introductory Courses

614

Figure 5 – Display of a Failed Interaction During a Quest

When the player answers all questions correctly, the dialogue continues, accompanied by a visual

indicator that signals the player’s success in the mission. Additionally, if the player initiates a dialogue with the

NPC after completing the mission, the NPC will thank the player for resolving their problem, Figure 6.

To represent player dialogues and interactions on RPG Maker maps, Events are used. Through these,

developers can set up conversations, object interactions, quest systems, and more. Events can be categorized

based on their functionalities.

There are primary events, which represent essential conversations and interactions necessary for game

progression, and secondary events, which are used for controlling switches, transitioning between maps,

animations, etc. Figure 7 below highlights examples of the events mentioned.

Figure 6 – Display of a Successful Interaction

Development of a Serious Game to Assist in Teaching Programming in Introductory Courses

615

Figure 7 – Overview of Events on the City Entrance Map

Figure 8 below describes the main event creations for the quest involving the character Alberic

Fizzlepot. It presents the key events used in constructing the mission, including primary events highlighted in

blue, animations used in the game setting in purple, and player movement events across the map marked in

yellow.

Figure 8 – Overview of Events for the Quest of the Character Alberic Fizzlepot

Development of a Serious Game to Assist in Teaching Programming in Introductory Courses

616

To assist beginner players in programming, a book was created as a reference guide, allowing players

to review all the content presented from the start of the game to the final mission. Each page focuses on a

specific topic the player has learned throughout the various maps. The book can be accessed at any time by

pressing the [TAB] key on the keyboard. It covers topics introduced in programming logic, such as data

input/output, processing, variables, decision structures, and repetition structures. Figure 9 below illustrates

content related to the topic of Inputs, accompanied by an example in pseudocode.

Figure 9 – Overview of Book Pages for Player Assistance: Data Input

Figure 10 below presents new content, this time about Loops. This is the last page of the player’s help

book and includes a brief description of what loops are and the different types of loops, accompanied by an

example in pseudocode.

Figure 10 – Overview of Book Pages for Player Assistance: Loops

Development of a Serious Game to Assist in Teaching Programming in Introductory Courses

617

Another book was created containing instructions on the commands that players will use in the game,

providing information on the actions of each button without disrupting the player’s immersion, Figure 11.

Figure 11 – Instruction Book Screen

After development is complete, or if you want to create a test version of the game without using the

engine for testing, it is possible to generate an executable for the desired platform. This allows for testing

without exposing the scripts used and enables a quick and simple release on multiple platforms without the need

to rewrite code, saving development time.

IV. DISCUSSION AND CONCLUSION

The creation of a serious game for teaching programming logic has proven to be a promising approach

to addressing retention and dropout challenges in introductory technology courses. The game provides an

immersive setting that engages students and facilitates learning, promoting an interactive and engaging

experience that connects them to programming concepts in a practical way. This approach stands out for its non-

linear learning, allowing students who need more time to advance at their own pace, revisiting content without

being confined to a rigid sequence. This feature is particularly valuable for students who need additional

practice on specific topics before moving forward.

The game mechanics encourage practice and reinforcement of logic concepts, enabling students to

return to the game and consolidate their knowledge through repetition and continuous practice, which studies

show is essential for retaining content in technical areas. Another strength of the project is the ability to compile

the executable for different platforms, expanding its reach and facilitating access for students using various

operating systems.

 In this way, the developed game is an accessible and effective tool that can support new students in

learning programming logic, promoting a stronger foundation and contributing to reducing dropout and

retention rates in technology courses.

REFERENCES
[1]. BAIST, A.; PAMUNGKAS, A. S. Analysis of student difficulties in computer programming. Volt: JurnalIlmiah Pendidikan Teknik

Elektro, v. 2, p. 81–92, 2017. 2

[2]. BARTON, M.; STACKS, S. Dungeons and desktops: The history of computer role-playing games 2e. [S.l.]: AK Peters/CRC Press,
2019. 10

[3]. CASERMAN, P. et al. Quality criteria for serious games: Serious part, game part, and balance. JMIR Serious Games, v. 8, 2020. 8

[4]. CORMEN, T. H. et al. Introduction to algorithms. [S.l.]: MIT press, 2022. 7 DEMIRKIRAN, M.; HOCANIN, F. T. An
investigation on primary school students’ dispositions towards programming with game-based learning. Education and Information

Technologies, v. 26, p. 3871 – 3892, 2021. 1

Development of a Serious Game to Assist in Teaching Programming in Introductory Courses

618

[5]. FILHO, C. B. P.; ALBUQUERQUE, R. M. de. Uma análise da história dos rpgs (roleplaying games) de mesa brasileiros.

SBGAMES, v. 17, p. 29, 2018. 10 [In Portuguese]

[6]. FILHO, R. S. de S. et al. Análises do índice de reprovação na disciplina de tecnologia da informação i da universidade federal de
juiz de fora. 2018. 8 [In Portuguese]

[7]. JUNIOR, O. V. d. S. et al. Predição do rendimento dos alunos em lógica de programação com base no desempenho das disciplinas

do primeiro período do curso de ciências e tecnologia utilizando técnicas de mineração de dados. BrazilianJournalOfDevelopment,
2020. 8 [In Portuguese]

[8]. MORATORI, P. B. Por que utilizar jogos educativos no processo de ensino aprendizagem. UFRJ. Rio de Janeiro, v. 4, 2003. 1, 4

[In Portuguese]
[9]. MOTTA, R. L.; JUNIOR, J. T. Short game design document (sgdd). Proceedings of SBGames, v. 2013, p. 115–121, 2013. 9

[10]. PAUL, P. S.; GOON, S.; BHATTACHARYA, A. History and comparative study of modern game engines. International Journal of

Advanced Computed and Mathematical Sciences, v. 3, n. 2, p. 245–249, 2012. 9
[11]. ROCHA, A. S. et al. Utilização do scratch como ferramenta de auxílio à aprendizagem de programação. In: Anais do COBENGE

2013-XLI Congresso Brasileiro de Educação em Engenharia, Gramado, RS, Brasil. [S.l.: s.n.], 2013. 8 [In Portuguese]

[12]. SALOMÃO, J. S., dos SANTOS, C. E., GIANCOLI, A. P. M., & AMATE, F. C. (2017). Development of a Serious Game to Assist
in Teaching History. In 2nd International Conference on Wireless Communication and Network Engineering (WCNE 2017) (pp.

474-479).

[13]. SCHERER, D.; BATISTA, D. V.; MENDES, A. de C. Análise da evolução de engines de jogos. In: SBC. Anais do V Congresso

sobre Tecnologias na Educação. [S.l.], 2020. p. 425–434. 9 [In Portuguese]

[14]. SOUZA, M. d.; FRANÇA, A. C. C. Um estudo sobre as dificuldades no processo de aprendizagem de programação no curso de

análise e desenvolvimento de sistemas na fafica–faculdade de filosofia, ciências e letras de caruaru-pe. Revista da Escola Regional
de Informática, v. 2, n. 2, p. 19–27, 2013. 4 [In Portuguese]

[15]. WIEGERS, K. E.; BEATTY, J. Software requirements. [S.l.]: Pearson Education, 2013. 14

[16]. YUSOFF, A. et al. A conceptual framework for serious games. 07 2009. 9

