Flood Routing Analysis of Arafuru Ii Retention Pond in Buah Sub Watershed, Palembang City

Achmad Syarifudin¹; Eddy Wibowo²

¹Professor of Civil Engineering, Faculty of Engineering ²Post Graduate Student of Civil Engineering, Faculty of Engineering Bina University, Palembang, Indonesia ¹Corresponding Author

Abstract

This research aims to determine the magnitude of the influence of flow from the outlet of the Arafuru I retention pond o and changes in flow at the inlet to the Arafuru II retention pond in the Buah sub-watershed of Palembang city. rainfall data, also carried out a field survey to obtain Arafuru II retention pond data as input data in the HEC-RAS ver. 6.1.0. The results obtained from this research are that there is a significant influence on rainfall intensity in the Buah Sub-watershed where there is an increase in changes in flow from the outlet of the Arafuru I retention pond to the inlet flow into the Arafuru II retention pond based on Gumbel distribution frequency analysis. with a flow discharge Q2 of 17.34 m3/sec with concentration time (tc) to retention ponds of 0.4227 hours and changes in flow at the inlet to the Arafuru II retention pond as a flood and inundation control function based on tracing floods occur at flow discharge with a 2-year rainfall return period of between 4 - 5 m. For annual rainfall return periods of 5 and 10 years there is also an increase in average flow of 5 m

Keywords: Retention Pond, flow capacity, HEC-RAS, flow changes

Date of Submission: 03-12-2024	Date of Acceptance: 14-12-2024

I. INTRODUCTION

Most of the floods that occur in Indonesia are caused by, among others: high rainfall that lasts for a long duration, causing a lot of waterlogging in urban areas. In addition, flooding is caused by the overflow of the main rivers that pass through residential and urban areas, due to the high intensity of rainfall in the upstream area or often referred to as flash floods or floods. (Syarifudin, A. et al 2018)

In the study of hydrology, fluctuations and the journey of flow discharge waves from one point upstream to the next point downstream can be known/estimated the pattern and time of travel. This method is commonly known as the flood routing method. According to Soemarto (1987) Flood tracing is a hydrograph forecast at a point in a flow or part of a river based on observations of hydrographs at other points. Flood hydrographs can be traced through riverbeds or through reservoirs/retention ponds. Based on the division of river basins, there are 21 Sub-DAS, but only 18 Sub-DAS in the city of Palembang flow directly into the Musi River in the city of Palembang, namely the Rengas Lacak, Gandus, Lambidaro, Boang, Sekanak, Bendung, Lawang Kidul, Buah, Juaro, Batang, Sei Lincah, Keramasan, Kertapati, Kedukan Ulu, Aur, Sriguna, Jakabaring and Plaju Sub-DAS. (Palembang City PUPR Service, 2018).

The floods that occurred in the city of Palembang caused problems for the Government to evaluate the existing drainage channels and retention ponds as flood/inundation control.

In recent years, the Buah River has often overflowed because it is no longer able to accommodate the water discharge during the rainy season. In addition, the water discharge of the Musi River enters the Buah River when the tide is high. This is one of the causes of the area around the Buah River.

Simulations using programs with different conditions, namely existing conditions, river channel normalization, diversion, combined retention ponds accompanied by pumping systems and embankment construction, show that in existing conditions there are seven areas that are inundated.

II. MATERIAL AND METHODS

This research was located in the Arafuru II retention pond adjacent to the Arafuru I retention pond with secondary data collection and primary data obtained directly from field surveys, namely at the inlet channel of the Arafuru II retention pond in the Buah Sub Watershedas shown in Figure 1.

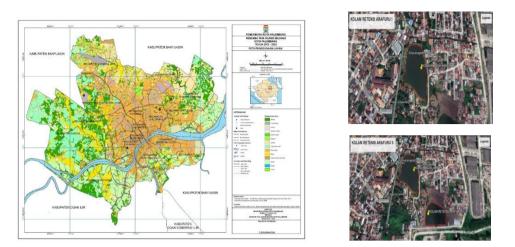


Figure 1: The research location is in Ilir Timur II sub-district, Palembang city

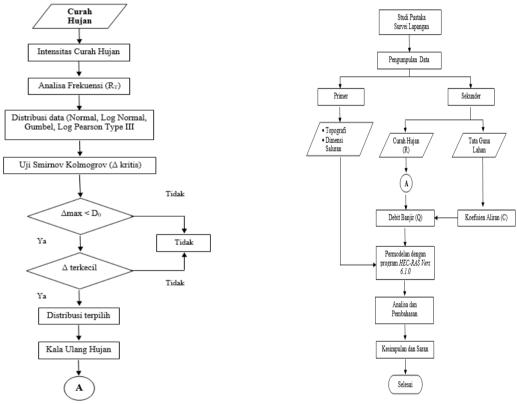


Figure 2: Research Flowchart

The research flow diagram as shown in Figure 2 can be described as follows: Based on data from the BMKG rainfall station in South Sumatra province for 19 years, a rainfall frequency analysis was carried out with a return period of 2, 5, 25, 50 and 100 years with the results as in Table 1.

Table 1: Recapitulation of Planned Rainfall Distribution							
	Method						
Return Period	Normal (mm)	Log Normal (mm)	Log Pearson type III (mm)	Gumbel (mm)			
5	117.613	139.711	43.783	120.761			
10	128.465	153.019	50.529	138.901			
25	138.824	166.901	61.078	161.817			
50	147.456	179.428	70.488	178.818			
100	154.362	190.123	81.348	195.696			

1. D itulati f DL d Dainfall Distributi

A recapitulation of the Smirnov-Kolmogorove goodness-of-fit test calculations for the four probability distributions can be seen in Table 2.

		-	-	
No		Selisih Untul	k Nilai Kritis 5 %	
110	Normal	Log Normal	Log Pearson III	Gumbel
1	0,0359	0,0500	0,0500	0,0293
2	0,0524	0,1000	0,1000	0,0609
3	0,0838	0,1500	0,1500	0,1091
4	0,0314	0,2000	0,2000	0,0532
5	0,0124	0,2500	0,2500	0,1111
6	0,0634	0,3000	0,3000	0,0734
7	0,0366	0,3500	0,3500	0,1158
8	0,1237	0,4000	0,4000	0,0451
9	0,0800	0,4500	0,4500	0,1007
10	0,1165	0,4999	0,5000	0,0540
11	0,0914	0,5499	0,5500	0,0766
12	0,0602	0,5998	0,6000	0,1028
13	0,0102	0,6498	0,6500	0,1653
14	0,0279	0,6998	0,7000	0,1992
15	0,0689	0,7498	0,7500	0,2334
Selisih Maks	0,1237	0,7498	0,7500	0,2334
Di Kritik	0,3380	0,3380	0,3380	0,3380
Uji Kecocokan	Diterima	Ditolak	Ditolak	Diterima

Table 2: Smirnov-Kolmogorov Test Recapitulation

Table 3: Rekapitulasi Uji Kecocokan Chi-Square dan Smirnov-Kolmogorov

Distribusi	Uji Kecocokan			
Frekuensi	Uji Chi-Square		Uji Smirnov-	Kolmogorov
	$\sum X^2$	X ² kritik	∆maks	∆kritik
Normal	8,2526	14,067	0,1237	0,338
Log-Normal	6,5684	14,067	0,7498	0,338
Log-Pearson Tipe III	5,5158	14,067	0,7500	0,338
Gumbel	8,2526	14,067	0,2334	0,338

Table 4: Rainfall Intensity and Duration with Return Period

t	Periode Ulang					
Menit	Jam	5	10	25	50	100
5	0.083	228.928	263.736	307.713	340.337	372.72
10	0.167	144.216	166.143	193.847	214.399	234.80
20	0.333	90.850	104.664	122.116	135.063	147.91
30	0.500	69.332	79.873	93.192	103.072	112.88
40	0.667	57.232	65.934	76.928	85.084	93.181
50	0.833	49.321	56.820	66.295	73.323	80.301
60	1.000	43.676	50.317	58.707	64.931	71.110
70	1.167	39.411	45.403	52.974	58.590	64.166
80	1.333	36.054	41.536	48.462	53.600	58.700
90	1.500	33.331	38.399	44.802	49.552	54.267
100	1.667	31.070	35.795	41.763	46.191	50.586
110	1.833	29.158	33.591	39.192	43.347	47.472
120	2.000	27.514	31.698	36.983	40.904	44.793
130	2.167	26.085	30.051	35.061	38.779	42.469
140	2.333	24.827	28.602	33.371	36.909	40.422
150	2.500	23.711	27.316	31.871	35.250	38.60
160	2.667	22.713	26.166	30.529	33.766	36.979
170	2.833	21.813	25.130	29.320	32.428	35.514
180	3.000	20.997	24.190	28.223	31.216	34.18
190	3.167	20.254	23.334	27.224	30.111	32.97
200	3.333	19.573	22.549	26.309	29.098	31.86
210	3.500	18.947	21.827	25.467	28.167	30.84
220	3.667	18.368	21.161	24.689	27.307	29.90
230	3.833	17.832	20.543	23.968	26.510	29.03
240	4.000	17.333	19.968	23.298	25.768	28.220
250	4.167	16.868	19.432	22.672	25.076	27.46
260	4.333	16.432	18.931	22.087	24.429	26.75
270	4.500	16.024	18.460	21.539	23.822	26.08
280	4.667	15.640	18.018	21.023	23.251	25.46
290	4.833	15.278	17.602	20.537	22.714	24.87
300	5.000	14.937	17.208	20.078	22.206	24.319
310	5.167	14.614	16.836	19.643	21.726	23.79
320	5.333	14.308	16.484	19.232	21.271	23.29
330	5.500	14.017	16.149	18.842	20.839	22.82
340	5.667	13.741	15.831	18.470	20.428	22.37
350	5.833	13.478	15.528	18.117	20.037	21.944
360	6.000	13.227	15.239	17.780	19.665	21.536

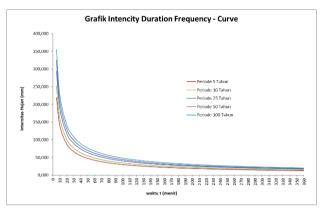
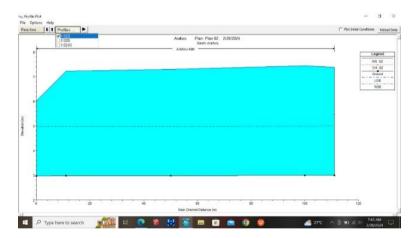



Figure 3: IDF curve (Intensity Duration Frequency-curve)

For return periods of 2, 5, 10, 20 and 50 can be seen in the following table 5.

Return Period (Year)	С	I (mm/hour)	A (km2)	Q (m3/sec)
2	0.8689	120.761	5,950	17.34
5	0.8689	138.901	5,950	71.81
10	0.8689	161.817	5,950	83.65
25	0.8689	178.818	5,950	92.45
50	0.8689	195.696	5,950	101.17

Table 5: Results of runoff discharge calculations

III. RESULTSAND DISCUSSION

Figure 4: Longitudinal section of the simulation results of the inlet flow to the Arafuru II Retention Pond with a 2-year flood return period (Q2)

Figure 4 shows a change in flow from sta 0+00 to 0+10 and continues to increase in flow up to 0+120 with a 2-year return period.

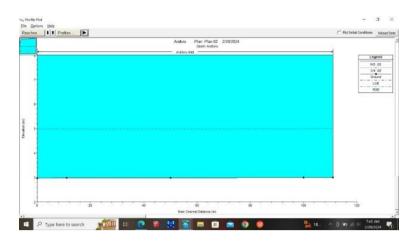


Figure 5: Longitudinal section of the simulation results of the inlet flow to the Arafuru II Retention Pond with a 5-year flood return period discharge (Q5).

Likewise in Figure 5, it was found that there was a change in flow from sta 0+00 to sta 0+120, there was an increase in flow with a 5-year return period of 5 m.

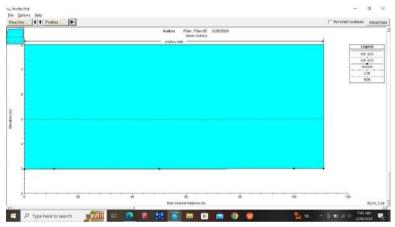


Figure 6: Longitudinal section of the simulation results of the inlet flow to the Arafuru II Retention Pond with a 10-year flood return period discharge (Q10).

In the same 10-year return period as the 5-year return period, there was also a 5-meter rise in the water level.

IV. CONCLUSION

This study resulted in the following conclusions:

- 1. There is a significant effect of rainfall intensity on the Buah Sub-watershed on the increase in changes in flow from the outlet of the Arafuru I retention pond to the inlet flow to the Arafuru II retention pond based on Gumbel distribution frequency analysis with a Q2 flow rate of 17.34 m3/sec with a concentration time (tc) to retention ponds I and II for 0.4227 hours.
- 2. Changes in flow at the inlet to the Arafuru II retention pond as a function of controlling flooding and inundation based on flood routing in the Buah Sub-watershed occurred at a flow rate with a 2-year rainfall return period of between 4 5 m. For annual rainfall return periods of 5 and 10 years, there was also an increase in average flow of 5 m.

REFERENCES

- [1]. Achmad Syarifudin., 2018, Hidrologi Terapan, Penerbit Andi, Yogyakarta, hal. 45-48
- [2]. Achmad Syarifudin., 2018, Sistem Drainase Perkotaan Berwawasan Lingkungan, Penerbit Bening's, hal. 38-42
- [3]. Aureli F and Mignosa P, 2001, "Comparison between experimental and numerical results of 2D flows due to levee-breaking," XXIX IAHR Congress Proceedings, Theme C, September 16-21, Beijing, China
- [4]. Achmad Syarifudin., 2017, The influence of Musi River Sedimentation to The Aquatic Environment DOI:

10.1051/matecconf/201710104026, MATEC Web Conf, 101, 04026, , [published online 09 March 2017]

- [5]. Cahyono Ikhsan., 2017, Pengaruh variasi debit aliran pada dasar saluran terbuka dengan aliran seragam, Media Teknik Sipil.
- [6]. Chow V.T., D.R. Maidment and L.W. Mays., (1988), Applied Hydrology. Mc. Graw Hill co.Department of Public Works., Guidance for Landslide Management Planning, SKBI - 2.3.06., 1987, PU Publication Agency Foundation
- [7]. Department of Public Works., Guidance for Landslide Management Planning, SKBI 2.3.06., 1987, PU Publication Agency Foundation Islam MZ,
- [8]. Istiarto, 2012, Teknik Sungai, Transpor Sedimen, Universitas Gadjahmada, Yogyakarta
- [9]. Istiarto, 2012, Teknik Sungai, Universitas Gadjahmada, Yogyakarta
- [10]. Loebis, J. 2008. Banjir Rencana Untuk Bangunan Air. Yayasan Badan Penerbit Pekerjaan Umum. Jakarta.
- [11]. Mc. Cuen R.H., (1982), A Guide to hydrologic analyses using SCS methods. Prentice Hall Publication.
- [12]. Narulita, I., (2016), Distribusi spasial dan temporal Curah Hujan di DAS Cerucuk, Pulau Belitung. Jurnal Riset dan Pertambangan, Vol. 26 No. 2: 141 – 154
- [13]. Okubo K, Muramoto Y, and Morikawa H, 1994, "Experimental Study on Sedimentation over the Floodplain due to River Embankment Failure," Bulletin of the Disaster Prevention Research Institute, Kyoto University, 44 (2), pp. 69-92
- [14]. Paimin et al, 2012, Sistem Perencanaan Pengelolaan Daerah Aliran Sungai, Pusat Penelitian dan Pengembangan Konservasi dan Rehabilitasi (P3KR), Bogor, Indonesia
- [15]. Robert. J. Kodoatie, Sugiyanto., 2002, Flood causes and methods of control in an environmental perspective, Yogyakarta
- [16]. Syarifudin A and Sartika D, A Scouring Patterns Around Pillars of Sekanak River Bridge, Journal of Physics: IOP Conference Series, volume 1167, 2019, IOP Publishing
- [17]. Sunu Tikno, 2002, Penerapan metode penelusuran banjir (flood routing) untuk program pengendalian dan sistem peringatan dini banjir kasus : sungai ciliwung jurnal sains & teknologi modifikasi cuaca, vol. 3, no. 1, 2002: 53- 61
- [18]. Suripin., 2004, Sistem Drainase Perkotaan Berkelanjutan, Penerbit Andi, hal. 176-179.
- [19]. Syarifudin A, HR Destania., IDF Curve Patterns for Flood Control of Air Lakitan river of Musi Rawas Regency, IOP Conference Series: Earth and Environmental ScienceVolume 448, 2020, The 1st International Conference on Environment, Sustainability Issues and Community Development 23 - 24 October 2019, Central Java Province, Indonesia