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ABSTRACT 

Transmission system is the bulk movement of electrical energy between generating stations and distribution 

centers catering for industrial, commercial and domestic consumers of electricity. Increased usage of non-linear 

loads has led to Power Quality (PQ) problems such as voltage sag which have undesirable impacts on the 

operation of the network among others. This study provides suitable mitigating techniques for PQ problem on 

electrical power system by appropriate placement of Static Synchronous Compensator (STATCOM) in the 

power system using analytical method. The performance of the STATCOM was tested and implemented on the 

IEEE 14 bus and Nigerian 330 kV grid system, respectively. The sag voltage and sag duration at contingency 

was determined for both systems. The simulation results indicated that application of STATCOM controller in 

the power system improved the voltage magnitude during contingency andthe voltage sag was minimized and 

regulated effectively. This study has established that, implementation of STATCOM controller on electric power 

system provided an extremely viable approach in averting against voltage sag in power transmission system 

without violation of the bus voltage profile thereby improving the overall efficiency of the power system. 
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I. INTRODUCTION 

Nowadays,consumption of electricity has been increasing rapidly butdue to inadequate resources, 

transmission system expansion has been severely limited. This contributes to the electricity supply failure since 

greater demands have been placed on the transmission system by the continuous addition of load [1]. The high 

demand of electricity has made the power management to modify the patterns of load demands for consumer of 

a power utility and thus, give rise to the issues of Power Quality (PQ) problem [2-4]. 

The concept of PQ deal with the capability of the electricity grid in provides customers with ideal, 

reliable and non-tolerant electricity. A PQ issue isextremely serious problems in electrical power system due to 

its impact on electricity suppliers [5]. Most of the PQ problems occurred in a power system were as results of 

faults, dynamic operations, or nonlinear loads [6, 7-8]. However, one of the major PQ issue is power system 

stability, which is the capability of power system to maintain an operating equilibrium point during disturbance 

[9]. 

The stability of a power system can be broadly divided into voltage and rotor angle stability. The 

voltage stability includes transients, voltage drop, voltage imbalance, short duration of variations and long 

duration variations. While the rotor angle stability includes waveform distortion (dc offset, harmonics, inter 

harmonics, notching and noise) and power frequency variations [10]. The former is the stability of the system 

under conditions of relatively slow change in load while the latter refers to the maximum power transfer 

possible through a point without losing stability [2, 11].  

However, the main difference between them is that voltage stability depends on the balance of reactive 

power demand and generation in the system where as the rotor angle stability mainly depends on the balance 

between real power generation and demand [3, 12-14]. 

Thus, in order to mitigate all these PQ problems in electrical power system, Flexible Alternating 

Current Transmission Systems (FACTS) devicessuch as such as Static VAR Compensators (SVC), Static 

Synchronous Compensators (STATCOM) and synchronous condensers have been widely recognized as 



Importance Of Synchronous Compensator For Suitable Solution Of Mitigating Power .. 

193 

powerful tools in providing a veritable way to reduce the excess voltage or current to avoid damage to the power 

system [2. 13, 15, 16-18]. 

 

II. RELATED WORKS 

The STATCOM according to More et al., (2014).Nwohu et al.,(2017), Obi, (2013) and  Okelola, 

(2018) is important members of shunt-connected FACTS devices shown in Figure 1, is a solid-state voltage 

source inverter coupled with a transformer and tied directly to the connected points; consequently behaving as 

either inductive or a capacitive reactance at those connected points. Hence, it is more often used to enhance the 

PQ performance of power system [17-20].The advantage of STATCOM over SVC and Synchronous condensers 

is that its compensating current is independent of network voltage level of the transmission at the point of 

connection. Thus, adequate compensation of transmission networks with STATCOM solve PQ problems [19, 

21-22].  

 
Figure 1: Static Synchronous Compensator 

 

A. Case study 

   In this research paper, IEEE 14- bus test system and Nigerian 28-bus transmission systems were used to 

implement the effectiveness of STATCOM controller for mitigation of PQ. 

 

i. IEEE 14-bus test system  

The IEEE 14-bus test system is a standard test system. The test system had five (5) generator buses (PV), 9 load 

buses (PQ), 20 interconnected lines or branches and three transformers with off-nominal tap ratio in lines 6-4, 7-

9, 7-8 as shown in Figure 2[23-25].   
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Figure 2: IEEE 14-Bus Test System 

 

ii. Nigerian28-bus, 330 kV transmission system 

Figure 3 shows the single-line diagram of the Nigerian 28-bus transmission system. The network has 60 

transmission line circuits, 8 effective generation stations, 20 load stations and 52 transmission lines. The entire 

grid system is sectioned into North, South-East and the South-West geographical zones [17, 26-28]. 
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Figure 3: Nigerian 330 kV, 28 –Bus Transmission System 

 

III. METHODOLOGY 

Electric utilities are to supply reliable electricity to their customers. However, customerneeds are 

changing with the addition of sensitive power-electronic based end-use equipmentwhich results in Power 

Quality (PQ) problems such as voltagefluctuations, voltage sags, voltage swells, switching transients, impulses, 

flickers andharmonics among others. These PQ disturbances result intoequipment malfunction, computer data 

loss and memory malfunction of the sensitiveequipment. Thus, thereis the need for aproper analytical approach 

to study and minimize these PQ disturbances in powersystem. Therefore, suitable placement of STATCOM in 

power system solves PQ problems. 

. Therefore, the objective function is the system load peak voltage which is formulated as in equation (1):        

OF min
 
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
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
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                                (1) 

Subjected to the following constraints: 

%12550  GiQ (2) 

MVARQSTC 1000  (3) 

puVGi 05.195.0  (4) 

puVsag 9.05.0  (5) 

min15.0  SagD (6) 

where; iV  is the peak source voltage, STCI  is the STATCOM controller current, SagV  is the voltage sag, SagD  is 

the voltage sag duration,    is the reactive power generation,      is the voltage magnitudes,      is the angle 

between buses i  and j ,     and    are the voltage angle, N  is the number of buses, Ng is the number of 

generators, NB is the number of load buses, STCQ  is the STATCOM reactive power. 

 

A. STATCOM with Newton-Raphsonload flow  
Load flow of power system was performed for transient stability of the transmission system using Newton-

Raphson (NR) to obtain system conditions prior to the contingencies. Then, contingency was introduced by 

varying the reactive power for load buses by 75 % from the base case one at a time to check the stability of the 

system.. 

In order to mitigate the PQ problem associated with voltage sags in the load buses at contingency, NR model 

with inclusion of Power Injection Model (PIM) of STATCOM controller was formulated. The STATCOM 

controller was used as compensator device to inject reactive power at defective buses where voltage magnitude 

falls outside the acceptable voltage range of ±5 %in the NR contingencies results. 

The assumptions made in formulating the STATCOM PIM are:  
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i. The transmission system is assumed to be balanced 3-phase system; 

ii. Harmonic generated by the STATCOM is neglected.  

iii. The STATCOM was equivalently represented by positive sequence voltage source. 

iv. The transmission line was  model as π model representation 

v. The load at receiving bus was modeled as a constant power sink, rrr QjPS   

The mathematical model of the PIM STATCOM is given as follows: 

The uncompensated transmission system contingency active and reactive powe are given in equations (7) and 

(8): 

 



n

j

ijijijijiDiConi CosYVVPP
1

                                     (7) 

 
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1

                                     (8) 

With injection of reactive power via STATCOM, the power flow equation for active power and reactive power 

injected by STATCOM for compensated transmission system is given in equations (9) and (10): 

    STCijSTCSTCijSTCSTCijSTCijij SinBCosGVVGVP   2
(9) 

    STCijSTCSTCijSTCSTCijSTCijij CosBSinGVVGVQ   2
                             (10) 

The Jacobian matrix equation gives the linearized load flow for STATCOM PIM is given as in equation (11): 
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The value of STATCOM required for compensation was calculated as in equation (12): 

22 Vf

Q
STC STC

Value





                             (12) 

The active and reactive power mismatches were calculated as in equations (13) and (14):  
  k
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The new state variables of the STATCOM is given in equations (15) and (16):   

     i
STC

i
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i
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                                 (15) 
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The power loss in the system was calculated using equations (22)  

 



NL

k

ijSTCijSTCijkloss CosVVVVGP
1

22 2     (17) 

where:     STATCOM voltage magnitude,     STATCOM phase angle,     
 STATCOM reference current, 

    
 STATCOM reference admittance,     

 STATCOM reference voltage,    
  is the reference bus voltage,      

is the STATCOM conductance,      is the STATCOM susceptance,      is the firing angle between bus i and j, 

     is the bus voltage between bus i and j, 1I    is the load current, ConiP   is the contingency real power for 

uncompensated system,              are active and reactive power consumed at bus i,               are active 

and reactive power generated between bus i and j,    
( )

and    
( )

 are calculated active and reactive power 
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between bus i and j,    
   and    

     are scheduled active and reactive power between bus i and j,      is the 

element of bus  admittance matrix between buses i and j,   
( )

 is the calculated angle, k and (k+1)  denote 

previous and next iteration respectively. 

 

B. Simulation 

The simulation for NRwithout and with STATCOM controller at contingency for mitigating the PQ problem 

was carried out in MATLAB (R2018b) based on the following steps: 

Step 1: The system data such as the number and types of buses, transmission line data, load data and 

STATCOM control parameters for power flow calculation were input; 

Step 2:  The load flow of steady state were performed; 

Step 3: The contingency load are generated  

Step 4: The system voltage sag and duration were determined using equations (18) and (19)and the system 

admittance matrix was formed; 

ConG

Coni

Sag
SS

SV
V




                                                (18) 
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i
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Sag
V

V

t

Z
D




1
                            (19) 

where; ConS  contingency apparent power, GS generator apparent power, ConZ  impedance at contingency, st  

is the settling time constant. 

Step 5: STATCOM impedance was added into the admittance matrix and the conventional Jacobian matrix were 

modified with reactive power injected by the STATCOM; 

Step 6:  The value of STATCOM required for compensation was calculated; 

Step 7:  The mismatched power flow equations with inclusion of STATCOM were modified and calculated; 

Step 8:  New state variables of the STATCOM and bus voltage at each iteration are updated; 

Step 9:  The convergence are checked if there is any voltage instability after Jacobian matrix is modified with 

STATCOM controller, If yes, Step 4 is repeated, else power equation were mismatched until convergence is 

achieved; 

Step 10: The system required load voltage was calculated using equation (1) and power flow results were 

displayed.  

Step 11: Stop the algorithm. 

The flowchart of NR load flow withinclusion of STATCOM for mitigation of Power Quality (PQ) problem with 

contingency is shown in Figure 4. 
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Figure 4: Flowchart of NRwith inclusion of PIM STATCOM 

 

IV. RESULTS AND DISCUSSION 

The simulation for NRwithout and with STATCOM for mitigatingPQ based on voltage sag at 75% load 

buses on IEEE 14-bus test system and Nigerian 28-bus system were analyzed and presented. Power flow 

analysis was performed with permissible working rangevalues of 0.95 to 1.05 p.u. and the stability level of the 

test system was evaluated. The simulation results were presented in Tables 2 to 3. 

Table 1 showed the results of load flow of the IEEE 14-bussystem at steady state.  From Table 1, buses 

whose voltage falls short of the ±5 % tolerance margin of the voltage criterion were buses 5 and 7 with voltage 

magnitude of 0.9490 and 0.9364 p.u. 

Table 2 analyzed the results of load flow for contingency without and with STATCOM. Buses whose 

voltage falls short of the ±5 % tolerance margin of the voltage criterion without STATCOM were buses 4, 5, 7, 
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9, 10, 11 and 13 with voltage magnitude of 0.9060, 0.9190, 0.8562, 0.9347, 0.9425, 0.8625 and 0.9266 p.u.. The 

values of voltage magnitude at these buses with STATCOM were 0.9785, 0.9786, 1.0030, 1.0081, 0.9815, 

0.9711 and 0.9918 p.u.. 

Figure 5 presented the relationship between sag voltage and sag duration for contingency. Seven (7) 

sag triggering points at duration of 0.5100, 0.5518, 0.9800, 0.9600, 0.6000, 0.5600 and 0.6000 sec, were 

detected at buses 4, 5, 7, 9, 10, 11 and 13, respectively, without STATCOM controller. While, the value of sag 

voltage with STATCOM at these buses were 0.0546, 0.0767, 0.0987, 0.0079, 0.0179, 0.0877 and 0.0861 p.u... 

Table 3 showed the results of power flow of the Nigerian 28-bus system.  From the Table, buses whose 

voltage falls short of the ±5 % tolerance margin of the voltage criterion were buses 6, 13, 16 and 17 with voltage 

magnitude of 1.0580, 0.9360, 0.9040 and 1.0510 p.u.. 

Table 4 revealed the Nigerian 28-bus system results of power flow for contingency without and with 

STATCOM. Buses whose voltage falls short of the ±5 % tolerance margin of the voltage criterion without 

STATCOM controller were buses 3, 4, 9, 13, 14, 16, 19, 22, 25 and 26 with voltage magnitudes0.8928. 0.9435, 

0.9258, 0.8905, 0.9213, 0.9230, 0.9338, 0.9373, 0.9283 and 0.9363 p.u., respectively. The values of voltage 

magnitude at these buses with STATCOM controller were 1.0499, 1.0024, 0.9901, 0.9728, 0.9885, 0.9900, 

0.9895, 0.9986, 0.9897 and 1.0098 p.u.. 

Figure 6 showed the relationship between Nigerian 28-bus system sag voltage and duration for 

contingency. Ten (10) sag triggering point at durations of  0.5317, 0.5417, 0.8060, 0.0187, 0.5231, 0.9218, 

0.5371, 0.7331, 0.7569 and 0.7610 sec were detected at buses 3, 4, 9, 13, 14, 16, 19, 22, 25 and 26, respectively, 

without STATCOM. The values of sag voltage with STATCOM controller at these buses were 0.0475, 0.0356, 

0.0568, 0.0493, 0.0610, 0.0325, 0.0678, 0.0520, 0.0489 and 0.0635 p.u.. 

 

Table 1: LoadFlow Result of IEEE 14-Bus Test System at Steady State 
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Table 2: Load Flow Result of IEEE 14-Bus Test System at 75 % Loading 

 
 

 
Figure 5: Sag Voltage with Duration for IEEE 14-Bus Power System at 75 % Loading 
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Table 3: Load Flow Result of Nigerian 28-Bus System at Steady Sate 
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Table 4: Load Flow Result of Nigerian 28-Bus System at 75 % Loading 
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Figure 6: Sag Voltage - Duration for Nigerian 28-Bus System at 75 % Loading 

 

V. CONCLUSION 

Application and importance ofSTATCOM in mitigating the effect of voltage sag inelectrical power 

system has been successfully presented in this study.NR load flow was performed for both steady state and 

contingency at 75% loading and simulation was carried out in MATLAB R(2018b). The simulation revealed 

that, the IEEE 14-bus power system is more stable while Nigerian 28-bus system is not stable. Similarly, the 

voltage magnitude of the load buses for the two power system at 75% loading scenarios fell short of the ±5 % 

tolerance margin of the voltage criterion and voltage sag problem were detected with high sag duration. 

Therefore, it could be concluded that the two power system were not stable during contingency especially 

Nigerian power system. This verified the radial nature of the Nigeria power system. It was also revealed 

that,with the application of PIM STATCOM, the voltage sag in the two system was minimized and regulated 

effectively. The simulation results obtained verified the efficiency and importance of STATCOM for mitigation 

of PQ problem 
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