
International Journal Of Engineering Research And Development

e- ISSN: 2278-067X, p-ISSN: 2278-800X, www.ijerd.com

Volume 20, Issue 8 (August, 2024), PP. 419-424

419

Beyond Automation: AI as a Catalyst for New Job Creation in

Software Development

Jill Willard, CTO XplorPay, Caledonia, IL, USA

James Hutson, Lindenwood University, USA https://orcid.org/0000-0002-0578-6052

Corresponding author: Jill Willard

Abstract

As artificial intelligence (AI) continues to evolve, its impact on software development and programming is

profound, drawing parallels to the shift from assembler to object-oriented programming. This article explores

how AI is reshaping the landscape of software jobs, creating new opportunities rather than diminishing them.

By simplifying complex tasks and lowering barriers to coding, AI is expanding the technology "pie," introducing

new use cases, and enhancing efficiency. The transition from monolithic services to microservices has reduced

risks and accelerated deployment processes, and AI is poised to further this evolution by managing the

complexities of service interactions through advanced orchestration layers. Despite fears of job displacement,

AI is likely to generate new roles in overseeing and integrating these systems, much like previous technological

shifts. The article also underscores the importance of continuous education and skill retooling in the AI-driven

future, advocating for more accessible and affordable higher education to equip the workforce with durable

skills. As AI continues to integrate into the software industry, it will require human oversight to navigate and

manage its complexities, ensuring that the future job market remains robust and dynamic. This article ultimately

positions AI not as a job-reducing force, but as a catalyst for expanding opportunities in the software industry,

emphasizing the necessity of adapting to and embracing this technological advancement.
Keywords: AI in software development, microservices, job market expansion, continuous deployment, skill

retooling

--- ----------

Date of Submission: 12-08-2024 Date of Acceptance: 27-08-2024

--- ----------

I. Introduction

Generative AI has significantly reshaped industries across the globe, influencing everything from

creative work to business operations. Generative AI (GAI), such as OpenAI’s GPT models, has the potential to

transform tasks that were previously considered immune to automation, by not just enhancing efficiency but

also by augmenting the creative process in fields like marketing, content creation, and design (Zohuri, 2023).

The capacityof technology to generate content autonomously is driving innovation while also introducing new

business models that emphasize scalability and personalization. This transformation is especially impactful in

knowledge-based sectors, where the role of GAI in automating routine tasks can free up human workers to focus

on more strategic, creative, and high-value activities (Brynjolfsson et al., 2023).

However, the widespread adoption of GAI has sparked debates about its implications for employment.

While some fear it could lead to job displacement, recent studies suggest that the net effect may be job

augmentation rather than automation, particularly in high-income regions where clerical and routine cognitive

roles are more prevalent (Gmyrek et al., 2023). This augmentation primarily benefits less experienced or lower-

skilled workers by disseminating expert knowledge more effectively and streamlining processes. Nonetheless, it

is clear that AI is accelerating shifts in labor markets, necessitating proactive reskilling and upskilling efforts to

ensure that the workforce adapts to these technological changes (Olaniyi et al., 2024).

Since the 1980s, software development began undergoing a significant evolution, particularly

transitioning from mainframe systems to object-oriented programming (OOP) (Nagineni, 2021). In the

mainframe era, development was highly centralized, with monolithic applications being managed by a few

highly specialized professionals (Megargel, Shankararaman, & Walker, 2020). However, as the industry shifted

towards object-oriented paradigms, the landscape of programming changed dramatically. Object-oriented

programming introduced modularity, encapsulation, and reusability, which simplified the development process

and allowed for more scalable and maintainable code (Saide, 2024). This transition not only enabled more

complex applications to be built but also opened up software development to a broader range of professionals,

reducing the steep learning curve traditionally associated with programming (Gutiérrez, Guerrero, & López-

Ospina, 2022; Li et al., 2008).

http://www.ijerd.com/
https://orcid.org/0000-0002-0578-6052

Beyond Automation: AI as a Catalyst for New Job Creation in Software Development

420

The shift towards object-oriented programming brought with it a new set of challenges and

opportunities. As object-oriented design became the standard, it required developers to acquire a different skill

set focused on understanding class hierarchies, inheritance, and polymorphism. These concepts are fundamental

to creating flexible and maintainable software, but they also introduced complexities, particularly when dealing

with evolving software requirements (Jablonický& Lang, 2023). For instance, evolving class hierarchies and

managing dependencies between objects became critical aspects of maintaining large-scale systems (Kasauli et

al., 2021). Consequently, software engineers increasingly relied on methodologies and tools that supported the

iterative evolution of object-oriented systems, such as refactoring and design pattern applications (Rajlich,

1997). This evolution underscores how skills in software development have continuously adapted, allowing

programmers to address growing system complexities while maintaining efficiency and scalability.
As AI continues to integrate into the software industry, these recent developments indicate that it will

reshape job roles and daily activities rather than completely replace software jobs. The progression of AI in the

workplace reveals that automation is more likely to impact specific tasks within roles, leading to augmentation

rather than outright replacement. For instance, AI tools are designed to handle repetitive and routine tasks,

freeing up human workers to focus on creative, strategic, and complex problem-solving activities (Santhosh et

al., 2023). This shift mirrors past technological changes, where the introduction of new tools and methodologies

reduced the burden of routine tasks and allowed professionals to engage in higher-value work.

As with previous technological advancements, such as the transition from mainframe systems to object-

oriented programming, AI is expected to create new roles and opportunities rather than diminish them. These

roles will likely involve overseeing AI-driven processes, integrating systems, and ensuring that AI applications

are used effectively and ethically. While concerns remain about potential job displacement, evidence suggests

that AI will more likely expand the job market by introducing new areas of expertise, particularly in managing

AI systems and orchestrating complex service interactions (Tolan et al., 2021). As such, the software industry

will see a shift in daily activities, with a stronger focus on continuous learning and adapting to new AI-driven

tools and practices.

Software Development Evolving

The history of software development is a narrative of rapid technological progress, characterized by

distinct eras that shaped the growth of the industry. Beginning in the 1940s and 1950s with the development of

early computers, the field has transitioned from rudimentary machine language coding to the more sophisticated

programming paradigms we see today. This progression involved significant shifts, such as moving from

mainframe systems with batch processing to more modular and flexible development methodologies like object-

oriented programming. Each period introduced advancements that reduced the complexity of coding and

broadened access to software development, eventually leading to today’s highly interconnected and automated

systems (Jadhav, Kaur & Akter, 2022).

The first generation of computers developed in the 1940s, including systems like ENIAC, were

primarily designed for scientific and military applications (Haigh & Ceruzzi, 2021). Programming was done

using machine language and assembly, with instructions inputted through punch cards (Arawjo, 2020). The Von

Neumann architecture, introduced during this period, revolutionized computing by introducing the concept of

stored programs, allowing instructions to be kept in memory for sequential execution (Collen & Kulikowski,

2015). These early computers were massive, costly, and limited in functionality but laid the groundwork for

future advancements in both hardware and software.

As computing technology advanced, the mainframe era began, marked by the dominance of large-scale

computers used primarily by governments and large corporations. During this time, programming languages like

COBOL and Fortran were developed to handle business and scientific applications, respectively (Bessen, 2022).

The structured programming principles introduced in the 1960s helped to manage the increasing complexity of

software systems, providing a foundation for more maintainable and efficient code (Farley, 2021). Mainframes

operated on batch processing, where tasks were queued and executed sequentially, which limited interactivity

but supported large-scale data processing needs (Campbell-Kelly & Garcia-Swartz, 2015). This era also saw the

beginnings of standardization in software development practices, setting the stage for more flexible computing

systems. These early periods highlight the foundational shifts in software development, from limited,

specialized systems to broader, more accessible programming practices that have continuously evolved to meet

new technological demands (Kasauli et al., 2021).

The 1970s and 1980s marked a significant shift in software development with the advent of personal

computing, driven largely by the development of microprocessors (Khan et al., 2021). As computing power

became more affordable and accessible, personal computers (PCs) began to enter homes and offices. This era

saw the popularization of operating systems like MS-DOS and the widespread use of programming languages

like BASIC, which made computing more approachable for hobbyists and professionals alike (Bright et al.,

2020). The introduction of graphical user interfaces (GUIs) with products like Apple’s Macintosh and Microsoft

Windows revolutionized software usability, making computers intuitive for non-technical users and expanding

Beyond Automation: AI as a Catalyst for New Job Creation in Software Development

421

the user base significantly (Ceruzzi, 1998). These developments paved the way for the personal computing

boom, transforming the software industry by shifting focus from mainframes to more user-centric applications

(Barlaskar, 2020).

The 1980s also saw the emergence of object-oriented programming (OOP), a paradigm that introduced

concepts such as encapsulation, inheritance, and polymorphism (Koti et al., 2024). These concepts allowed

developers to create more modular, maintainable, and scalable software systems. Languages like C++ and later

Java became dominant, allowing complex applications to be built with greater flexibility and efficiency (Ogala&

Ojie, 2020). OOP fundamentally changed software development by shifting the focus from procedural

programming to a more object-based approach, where software components could be reused and managed more

effectively (Dony et al., 1992). The rise of the client-server model during this time further enabled distributed

applications, which allowed businesses to run enterprise-level software across interconnected systems, driving

further adoption of OOP methodologies (Sallow et al., 2020). These periods illustrate how the convergence of

accessible personal computing and innovative programming paradigms like OOP set the stage for the rapid

expansion of software development, leading to the diverse and interconnected systems we rely on today.
The 1990s and early 2000s saw a transformative period in software development with the rapid growth

of the internet and the rise of open-source software. The widespread adoption of web technologies like HTML,

JavaScript, and PHP enabled the development of dynamic and interactive websites, leading to the proliferation

of web-based applications (Lendarduzzi et al., 2020). Software such as web browsers, email clients, and early

content management systems became essential tools as the internet became more ingrained in everyday life.

This era also marked the emergence of collaborative, community-driven development models in software, most

notably through the open-source movement (Tabarés, 2021). Projects like Linux and the Apache HTTP server

were pivotal, showcasing how decentralized development could produce reliable and scalable software. These

open-source initiatives not only fueled innovation but also challenged traditional software business models by

making software freely available and modifiable (Bretthauer, 2001).

During the 2000s, software development methodologies underwent significant shifts with the

introduction of Agile practices (Argen et al., 2022). Moving away from the rigid, sequential waterfall model,

Agile methodologies emphasized iterative development, continuous feedback, and close collaboration with

customers. Agile allowed teams to quickly adapt to changing requirements and deliver software in small,

manageable increments, significantly improving productivity and customer satisfaction (Ogundipe et al., 2024).

This period also saw the emergence of DevOps, a cultural shift that integrated development and operations to

streamline the deployment process. DevOps practices focused on automating the entire software delivery

pipeline, enabling continuous integration and continuous delivery (CI/CD) (Mishra & Otaiwi, 2020). By

breaking down silos between teams and promoting automation, organizations were able to deploy updates more

frequently and with greater reliability (Mockus et al., 2002).These advancements highlight how the combination

of Agile, DevOps, and open-source development has fundamentally reshaped software engineering, allowing for

faster iteration, improved collaboration, and more resilient systems.

Future of Software in the Age of AI

The integration of AI into software development is revolutionizing how code is written, tested, and

deployed. AI-powered tools such as GitHub Copilot have become increasingly popular, offering developers

automated code suggestions and autocompletion that can significantly enhance productivity. These tools

leverage large language models (LLMs) trained on extensive code repositories to generate relevant code

snippets based on natural language inputs. Research indicates that developers primarily use these tools to reduce

keystrokes, complete tasks faster, and recall syntax, making them valuable for both novice and experienced

programmers. However, challenges remain, including limitations in the functional accuracy of generated code

and the cognitive overhead required to validate AI-generated suggestions (Liang et al., 2023).

Continuous deployment practices have also been enhanced by AI-driven automation tools. Modern

software engineering emphasizes rapid, small, and incremental changes, facilitated by CI/CD pipelines and

orchestration tools. AI supports these processes by automating testing, deployment, and monitoring, thereby

reducing the need for manual intervention and enabling more frequent releases. This automation reduces the risk

associated with updates by ensuring that only validated and tested code is deployed. For instance, automated

deployment pipelines integrated with AI can handle everything from code commits to production deployment,

allowing for seamless updates with minimal downtime. As a result, companies can achieve greater agility and

faster time-to-market without sacrificing reliability (Sailer & Petrič, 2019).
Despite these advancements, the implementation of AI in software development is not without its

complexities. Developers have raised concerns about issues such as compatibility and integration challenges

when using AI tools like GitHub Copilot. While these tools excel in generating code, there are still significant

hurdles to overcome in terms of usability and integration within existing workflows. AI assistants are expected

to evolve, focusing on improving the quality of suggestions and reducing the cognitive load on developers.

Beyond Automation: AI as a Catalyst for New Job Creation in Software Development

422

Continued research and development will likely refine these tools, making them more reliable and effective,

thereby solidifying AI's role in the future of software engineering (Zhou et al., 2023).
Furthermore, GAI tools are rapidly expanding their capabilities, enabling more professionals without

traditional programming backgrounds to perform complex software development tasks. Tools like GitHub

Copilot and ChatGPT allow users to generate functional code from natural language prompts, which

significantly lowers the barrier to entry for those who are not formally trained in coding. By automating code

generation, bug detection, and even deployment processes, GAI tools make it easier for professionals in fields

like design, marketing, and data analysis to integrate software development into their workflows. For example,

in web development, GAI tools are already being used to create and modify website components without

requiring deep knowledge of HTML, CSS, or JavaScript. This democratization of software development means

that more industries can incorporate custom solutions tailored to their specific needs, driven by professionals

who understand their domain but are not necessarily coders (Bull & Kharrufa, 2023).

The implications of this trajectory extend beyond merely automating routine coding tasks. GAI systems

are increasingly being used in creative and strategic roles, offering non-programmers the ability to prototype

applications, automate data analysis, and even develop AI models. For instance, in innovation management and

digital prototyping, GAI tools are being leveraged to rapidly iterate designs and generate diverse solutions,

empowering professionals without coding expertise to directly engage in technical processes. This historical

trend suggests a future where software development becomes a collaborative, cross-disciplinary activity,

supported by AI tools that handle the technical complexity(Table 1). Such tools not only enhance productivity

but also reduce the need for specialized coding knowledge, allowing more professionals to focus on high-level

problem-solving and innovation (Ebert et al., 2023).

Table 1. Evolution of Software Development

Era Timeline Processes/Technologies
Skills/Barriers to

Entry
Significance

Early Days 1940s-1950s

Machine language,

Assembly, Punch cards,
Von Neumann architecture

Highly specialized

skills, limited access,
steep learning curve

Foundation of digital computing and

stored-program concept (Collen &
Kulikowski, 2015).

Mainframe Era 1950s-1970s
Batch processing,
COBOL, Fortran,

Structured programming

Centralized, large-scale
systems; specialized

knowledge required

Standardized processes, large
business and government use

(Bessen, 2022)

Rise of Personal

Computing
1970s-1980s

Microprocessors, GUIs,

Operating systems (MS-
DOS, Windows)

Lower barrier to entry

with BASIC and
accessible hardware

Widespread use of personal

computers and user-centric design
(Khan et al., 2021)

Object-Oriented

Programming
1980s-1990s

C++, Java, Encapsulation,

Inheritance, Polymorphism

Understanding OOP

concepts, class

hierarchies, modular
systems

Modular and maintainable software,
distributed systems (Dony et al.,

1992)

Internet and

Open Source Era
1990s-2000s

Web technologies (HTML,

JavaScript, PHP), Open
Source (Linux, Apache)

Collaborative
development,

community-driven

contributions

Decentralized software innovation,

web application boom (Lenarduzzi et
al., 2020)

Agile and DevOps 2000s-2010s
Agile methodologies,

DevOps, CI/CD pipelines

Cross-functional
collaboration, iterative

development,

automation

Faster iteration, improved quality and

reliability (Mishra & Otaiwi, 2020)

Cloud Computing

and

Microservices

2010s-

Present

Cloud infrastructure

(AWS, Azure),
Microservices architecture

Cloud orchestration,

independent services,
scalability

Enhanced flexibility, resilient

architectures (Sailer & Petrič, 2019)

AI and

Automation in

Software

Development

Present

AI-assisted development

(GitHub Copilot,

automated testing),
Continuous Deployment

AI integration, minimal
coding knowledge,

strategic oversight

Democratization of software
development, cross-disciplinary

collaboration (Bull &Kharrufa, 2023)

II. Conclusion

The rapid advancements in AI have had significant implications for software development,

transforming traditional coding practices and introducing new paradigms for automation and deployment. As

AI-driven tools like GitHub Copilot and ChatGPT become more sophisticated, they allow for greater efficiency

in coding tasks by offering automated code suggestions and accelerating development cycles. This integration of

AI is not only enhancing productivity but also reshaping the skill sets required in software engineering. The shift

from monolithic architectures to microservices and continuous deployment models has been further streamlined

by AI technologies that manage complex orchestration tasks, reducing both the time and risk associated with

software releases (Bull &Kharrufa, 2023).

Beyond Automation: AI as a Catalyst for New Job Creation in Software Development

423

The significance of these developments lies in how they redefine the software industry’s labor

landscape. While concerns about job displacement persist, the evidence suggests that AI will likely augment

rather than replace software roles. New opportunities are emerging for professionals with interdisciplinary skills

who can harness AI tools without extensive programming knowledge, thereby expanding the talent pool in

technology-driven sectors. Moreover, the democratization of software development through AI is lowering entry

barriers, allowing professionals from various backgrounds to contribute to coding, design, and system

management without requiring deep technical expertise (Ebert et al., 2023).
Looking ahead, the trajectory of software jobs in the AI era suggests a dynamic shift toward roles that

emphasize oversight, integration, and strategic use of AI systems rather than manual coding. The complexities

of AI-driven automation may reduce the demand for traditional software engineers while increasing the need for

specialists in AI ethics, data management, and system integration. Nonetheless, job displacement will vary

across sectors, with routine and repetitive tasks being the most vulnerable. The future of work in software

development is thus characterized by a symbiotic relationship between human creativity and machine efficiency,

where continuous learning and adaptability remain crucial for professionals to thrive in an AI-enhanced

environment (Karangutkar, 2023).

Data Availability
Data available upon request.

Conflicts of Interest
The authors declare that there is no conflict of interest regarding the publication of this paper.

Funding Statement
NA

Authors’ Contributions
Conceptualization, J. Willard; Methodology, J. Willard; Validation, J. Wilard; Investigation, J. Willard –

Original Draft Preparation, J. Hutson; Writing – Review & Editing, J. Hutson.; Visualization, J. Hutson.

References
[1]. Arawjo, I. (2020, April). To write code: The cultural fabrication of programming notation and practice. In Proceedings of the 2020

CHI Conference on Human Factors in Computing Systems (pp. 1-15).

[2]. Ågren, P., Knoph, E., & Berntsson Svensson, R. (2022). Agile software development one year into the COVID-19 pandemic.

Empirical Software Engineering, 27(6), 121.
[3]. Barlaskar, E. (2020). User-centric cloud application management (Doctoral dissertation, Queen's University Belfast).

[4]. Bessen, J. (2022). The new goliaths: How corporations use software to dominate industries, kill innovation, and undermine

regulation. Yale University Press.
[5]. Bretthauer, D. (2001). Open Source Software: A History. Information Technology and Libraries, 21, 3-10.

[6]. Bright, W., Alexandrescu, A., & Parker, M. (2020). Origins of the D programming language. Proceedings of the ACM on

Programming Languages, 4(HOPL), 1-38.
[7]. Brynjolfsson, E., Li, D., & Raymond, L. R. (2023). Generative AI at work (No. w31161). National Bureau of Economic Research.

[8]. Bull, C., &Kharrufa, A. (2023). Generative AI Assistants in Software Development Education. ArXiv, abs/2303.13936.

https://doi.org/10.1109/MS.2023.3300574
[9]. Campbell-Kelly, M., & Garcia-Swartz, D. D. (2015). From mainframes to smartphones: a history of the international computer

industry. Harvard University Press.

[10]. Ceruzzi, P. E. (2003). A history of modern computing. MIT press.
[11]. Collen, M. F., & Kulikowski, C. A. (2015). The development of digital computers. The History of Medical Informatics in the

United States, 3-73.

[12]. Dony, C., Purchase, J., & Winder, R. (1992). Exception handling in object-oriented systems. ACM SIGPLAN OOPS Messenger,
3(2), 17-30.

[13]. Ebert, C., Louridas, P., & Ebert, C. (2023). Generative AI for Software Practitioners. IEEE Software, 40, 30-38.
https://doi.org/10.1109/MS.2023.3265877

[14]. Farley, D. (2021). Modern Software Engineering: Doing What Works to Build Better Software Faster. Addison-Wesley

Professional.
[15]. Gmyrek, P., Berg, J., & Bescond, D. (2023). Generative AI and jobs : a global analysis of potential effects on job quantity and

quality. ILO working papers.https://doi.org/10.54394/fhem8239

[16]. Gutiérrez, L. E., Guerrero, C. A., & López-Ospina, H. A. (2022). Ranking of problems and solutions in the teaching and learning of
object-oriented programming. Education and Information Technologies, 27(5), 7205-7239.

[17]. Haigh, T., & Ceruzzi, P. E. (2021). A new history of modern computing. MIT Press.

[18]. Jablonický, K., & Lang, J. (2023). Code Based Selected Object-Oriented Mechanisms Identification. Proceedings http://ceur-ws.
org ISSN, 1613, 0073

[19]. Jadhav, A., Kaur, M., & Akter, F. (2022). Evolution of software development effort and cost estimation techniques: five decades

study using automated text mining approach. Mathematical Problems in Engineering, 2022(1), 5782587.
[20]. Kasauli, R., Knauss, E., Horkoff, J., Liebel, G., & de Oliveira Neto, F. G. (2021). Requirements engineering challenges and

practices in large-scale agile system development. Journal of Systems and Software, 172, 110851.

[21]. Khan, F. H., Pasha, M. A., & Masud, S. (2021). Advancements in microprocessor architecture for ubiquitous AI—An overview on
history, evolution, and upcoming challenges in AI implementation. Micromachines, 12(6), 665.

[22]. Karangutkar, A. (2023). The Impact of Artificial Intelligence on Job Displacement and the Future of Work. International Journal of

Advanced Research in Science, Communication and Technology. https://doi.org/10.48175/ijarsct-12096
[23]. Koti, A., Koti, S. L., Khare, A., & Khare, P. (2024). 1335 Beyond the Paradigm: Unraveling the Limitations of Object-Oriented

Programming. Multifaceted approaches for Data Acquisition, Processing & Communication, 95.

https://doi.org/10.1109/MS.2023.3300574
https://doi.org/10.1109/MS.2023.3265877
https://doi.org/10.54394/fhem8239
https://doi.org/10.48175/ijarsct-12096

Beyond Automation: AI as a Catalyst for New Job Creation in Software Development

424

[24]. Lenarduzzi, V., Taibi, D., Tosi, D., Lavazza, L., & Morasca, S. (2020, August). Open source software evaluation, selection, and
adoption: a systematic literature review. In 2020 46th Euromicro Conference on Software Engineering and Advanced Applications

(SEAA) (pp. 437-444). IEEE.

[25]. Li, H., Huang, B., & Lu, J. (2008, June). Dynamical evolution analysis of the object-oriented software systems. In 2008 IEEE
Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence) (pp. 3030-3035). IEEE.

[26]. Liang, J., Yang, C., & Myers, B. (2023). Understanding the Usability of AI Programming Assistants. ArXiv,

abs/2303.17125.https://doi.org/10.48550/arXiv.2303.17125
[27]. Megargel, A., Shankararaman, V., & Walker, D. K. (2020). Migrating from monoliths to cloud-based microservices: A banking

industry example. Software engineering in the era of cloud computing, 85-108.

[28]. Mishra, A., &Otaiwi, Z. (2020). DevOps and software quality: A systematic mapping. Computer Science Review, 38, 100308.
[29]. Mockus, A., Fielding, R. T., &Herbsleb, J. D. (2002). Two case studies of open source software development: Apache and Mozilla.

ACM Transactions on Software Engineering and Methodology (TOSEM), 11(3), 309-346.

[30]. Nagineni, R. B. (2021). A Research on Object Oriented Programming and Its Concepts. International Journal, 10(2).
[31]. Ogala, J. O., & Ojie, D. V. (2020). Comparative analysis of c, c++, c# and java programming languages. GSJ, 8(5), 1899-1913.

[32]. Ogundipe, D. O., Odejide, O. A., &Edunjobi, T. E. (2024). Agile methodologies in digital banking: Theoretical underpinnings and

implications for customer satisfaction. Open Access Research Journal of Science and Technology, 10(2), 021-030.
[33]. Olaniyi, O. O., Ezeugwa, F. A., Okatta, C., Arigbabu, A. S., &Joeaneke, P. (2024). Dynamics of the digital workforce: Assessing

the interplay and impact of AI, automation, and employment policies. Automation, and Employment Policies (April 24, 2024).

[34]. Rajlich, V. (1997). MSE: A methodology for software evolution. Journal of Software Maintenance: Research and Practice, 9(2),
103-124.

[35]. Saide, M. (2024). Understanding Object-Oriented Development: Concepts, Benefits, and Inheritance in Modern Software

Engineering. Benefits, and Inheritance in Modern Software Engineering (July 01, 2024).
[36]. Sailer, A., & Petrić, M. (2019). Automation and Testing for Simplified Software Deployment. EPJ Web of

Conferences.https://doi.org/10.1051/EPJCONF/201921405019

[37]. Sallow, A. B., Dino, H. I., Ageed, Z. S., Mahmood, M. R., & Abdulrazaq, M. B. (2020). Client/Server remote control administration
system: design and implementation. Int. J. Multidiscip. Res. Publ, 3(2), 7.

[38]. Santhosh, A., Unnikrishnan, r., Shibu, S., Meenakshi, K., & Joseph, G. (2023). AI impact on job autonation. International Journal of

Engineering Technology and Management Sciences.https://doi.org/10.46647/ijetms.2023.v07i04.05
[39]. Tabarés, R. (2021). HTML5 and the evolution of HTML; tracing the origins of digital platforms. Technology in Society, 65,

101529.

[40]. Tolan, S., Pesole, A., Martínez-Plumed, F., Fernández-Macías, E., Hernández-Orallo, J., & Gómez, E. (2021). Measuring the
occupational impact of AI: tasks, cognitive abilities and AI benchmarks. Journal of Artificial Intelligence Research, 71, 191-236.

[41]. Zhou, X., Liang, P., Zhang, B., Li, Z., Ahmad, A., Shahin, M., & Waseem, M. (2023). On the concerns of developers when using

GitHub Copilot. arXiv preprint arXiv:2311.01020.
[42]. Zohuri, B. (2023). Charting the future. The synergy of generative AI, quantum computing, and the transformative impact on

economy. Current Trends in Engineering Science, 3(7), 1-4.

https://doi.org/10.48550/arXiv.2303.17125
https://doi.org/10.1051/EPJCONF/201921405019
https://doi.org/10.46647/ijetms.2023.v07i04.05

