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ABSTRACT 

Building a landing trajectory for a UAV is an important factor in ensuring the safety and efficiency of 

automated flights. When faced with challenges such as changes in weather and environmental conditions, as 

well as high accuracy requirements during landing, the Pontryagin principle becomes an effective optimization 

tool. This principle provides a method for determining the optimal landing trajectory through the establishment 

of optimal conditions and maximal functions. In this paper, the optimization technique based on the Pontryagin 

principle is applied to build the landing trajectory for the UAV. The simulations performed by Matlab - Simulink 

software show the effectiveness of this method in improving accuracy and minimizing risk during landing. 
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I. INTRODUCTION 

 An unmanned Aerial Vehicle (UAV) is a flying device that is controlled and remotely operated by 

humans on the ground. It plays an important role in many areas of social life, commercial and entertainment 

activities as well as military and defense activities. In general, automatic control in all UAV operations is very 

important, especially the take-off and landing process. Because this process is affected by many factors such as 

weather, UAV operating status parameters, etc., and UAVs are most susceptible to unsafe failures during this 

stage. In their research, the authors focused on studying the landing process of UAVs. The landing process is the 

stage of the UAV gradually slowing down from the specified height until it stops completely on the runway. 

When the UAV lands on the runway, it must also move back to the parking lot, so when the UAV reaches a 

rolling speed (about 5km/h), it is considered the end of the landing process. The landing stages of a fixed-wing 

UAV are shown specifically in Figure 1. 

 
Figure 1. Diagram of UAV landing stages 

 The paper presents the problem of constructing optimal landing trajectories for UAVs in the vertical 

plane. The landing trajectories are built in the case of no vertical overload restriction and the case of vertical 

overload restriction to create a reference landing trajectory to construct automatic systems for the programmatic 

landing of UAVs. With the method of constructing optimal trajectory proposed by the group of authors, the 

group hopes that their research can be applied in practice to develop automation of UAV operation stages. 
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II. MATERIAL AND METHODS 

2.1. Developing the problem of optimizing the landing trajectory for UAV-70V  

Pontryagin maximum principle 

 Pontryagin's maximal principle is a mathematical method developed by Pontryagin to solve the optimal 

problem. In particular, the focus is on proposing mathematical modeling methods and building concise results 

on strong optimal necessary conditions. When considering the optimal control problem, Pontryagin's principle 

will predefine the control vector. This is in line with the principle layer of maximum variation. Therefore, this 

principle is often used in practice. Pontryagin's maximal principle presents a series of optimal conditions, which 

are the basis for determining optimal control and optimal trajectory. Pontryagin's maximal principle focuses on 

solving the optimal problem with fixed or non-fixed boundaries, and times with limited control signals.  

To solve the problem of optimizing the landing trajectory of UAVs, it is necessary to determine and 

select quality indicators appropriately. The main quality indicator is a quality indicator of the control system, 

which is given in the form of: 

 
0[ ( ), ( ); ( ), ( )]fJ J x t x t u t x t  (1) 

The selection of quality indicators is to ensure that the UAV moves optimally according to specific 

tasks. The process of solving the problem of optimizing the landing trajectory of a UAV, depending on the 

quality requirements, can choose a specific problem. For the landing process of a UAV, the requirement for 

accurate landing control is always set. In addition, the minimum energy criterion also needs to be considered. 

Therefore, we choose the Bolza problem to build the optimal landing trajectory for UAVs: 

The Bolza problem has the form: 

0

0 0 0 0[ ( ), ( ), , ] ( , , )
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f f
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J g x t x t t t f x u t dt                                    (2)                         

Landing trajectory optimization problem for UAV-70V 

Let's consider the case of UAV motion as a point mass in a vertical plane. Then the equation system 

describes the UAV movement in the form of: 
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(3) 

Where:  V - Velocity;   - Orbital inclination; x - Distance; y - Altitude; g  - Gravitational acceleration                         

( 9.80665( / ²)g m s );  , , ,
T

X V x y - UAV status vector. 

   xn - Tangential overload, calculated according to the formula [4]: 
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Where:  T - Traction of the motor; ( , )xC H  - UAV drag coefficient. 

   yn  - Velocity normal overload, and calculated according to the formula: 
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(5) 

In which: ( , )yC H  - Lifting force coefficient of UAV. The lifting force coefficient of UAVs can be 

approximate ( , ) .y yC H C  . The angle of attack of the UAV is small, so it can be considered sin  . Then 

the expression (5) is rewritten as: 
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(6) 

Selecting the control signal [ , ]T

x yu n n  The indicator function (quality indicator) selected according 

to the Bolza problem is in the form of:  
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(7) 

Where: 
1 2 3 4, , ,    - Weights; 2 2 2

1 2( , )k diag k k -Coefficient; 0t  and 
ft  – The beginning and end of 

the control process; , , ,f f f fV x y - The desired state vector value of the UAV given at the end
ft ; 

( ), ( ), ( ), ( )f f f fV t t x t y t - The status vector value of the UAV given at the end
ft . 

According to Pontryagin's maximal principle, Hamilton's function corresponds to the form: 
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In which: , , ,V x yP P P P
- The corresponding co-state variables according to the variable , , ,V x y  

At that time, the system of equations for the co-state variable has the form: 
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(9) 

If the control signal is not restricted, we find the optimal overload at each moment that makes the 

Hamilton function H  reach its maximum. That is
* * * * *max , , , ( , , , )(x u P t) x u P tH H . From the optimum 

condition, we get the optimum overload: 
2 2

1 2;x V y

g
n P gk n P k

V
    .  

In case the control signal is restricted (overload stand yn  is restricted). The reason for only choosing to 

limit the standing overload yn is because it has a large range of change and has a direct effect on the angle of 

attack of the UAV. The angle of attack of the UAV must always be ensured not to exceed the critical value 

because if the critical angle of attack value is exceeded, it will cause a slowdown and unsafe flight. Thus, 

limiting standing overload will also help limit the angle of attack of the UAV. We find the overload ,x yn n  at 

each point that causes the Hamilton function H   to peak in the zone yN (the vertical overload restriction zone 

yn ). That is 
* * * * *max , , , ( , , , )

y yn N
(x u P t) x u P t


H H .  

When the UAV lands, the UAV speeds up to the smallest value hcV V , according to the equation (6), 

which reaches yn  it's maximum when   it reaches its maximum. 

Thus, if we limit the maximum value of the angle of attack, the value of the limited overload will be 

determined according to the formula:  
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(10) 

In addition, according to the above assumption, the standing overload of the UAV must meet the 

conditions 1yn   . Therefore, we must find the maximum value of the Function H  for the variable ,x yn n  (in 

which yn  the condition must be satisfied 1 y yhcn n   ). According to the Hamilton function expression, it is a H  

2nd-order function for variables yn . Therefore, finding the jaw maximum H  is not difficult. The necessary 
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problem is to find the initial conditions 
0( )VP t , 

0( )P t
, 

0( )xP t , 
0( )yP t , 

ft  satisfaction of boundary conditions 

( )f fV t V , (t )f f  , x(t )f fx , (t )f fy y , ( , , ) 0fX P t H . This is the solution to the boundary problem, 

the solution of this problem will be difficult because of the connection with the calculation time, the choice of the 

initial approximate parameters, and the convergence of the method. Some studies have used the Newton-Raphson 

method, but when the control signals are limited, the Newton-Raphson method is very complex. Other studies have 

proposed a method of continuous parametric solution, which has shown outstanding superiority. Thus, the method 

of continuous solving by parameters will find the initial set of conditions that satisfy the boundary conditions. 

 

 The system of equations that fully describe the movement of the UAV will be: 
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(11) 

2.2. Solving the problem of optimizing the landing trajectory for UAV-70V 

Based on considering the methods of solving the boundary problem, we choose the method of 

continuous solving according to parameters to solve the problem of optimal landing trajectory of UAVs. 

When using the method of continuous parametric solving to the UAV trajectory optimization problem, the 

case in the vertical plane or in space is essentially the same, except for the number of equations describing the 

movement of the UAV as well as the corresponding number of co-state equations. In addition, the number of control 

signals in these 2 cases is also different. So, using the method of continuous parametric solution, it is only necessary to 

consider the case in the vertical plane, and the case in the completely similar space. 

The use of the method of continuous parametric solving to the optimal problem of the trajectory board 

of the UAV in the vertical plane will be carried out according to the following steps: 

Step 1: Set any (approximate) initial value of the co-state variables (necessary so that they are not simultaneously 

equal to 0), the co-state variables that start to perform the problem at the initial time 0t have the form: 
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(12) 

In which: 
f mmV V  at ft  the time ; 

f mm   at ft  the time ; 
f mmX X  at ft the time ; 

f mmY Y  at 

ft the time. 

With , , ,mm mm mm mmV X Y  - Velocity, orbital tilt angle, distance, desired altitude at the end ft . This 

means that the desired velocity, coordinates, and angle of movement at the end is foreknowledge, we control the 

UAV to the right end of the trajectory;  

i  - Positive integer (number of repetitions). 

N  - The total number of co-state variables and variables ft  (the number of co-state variables is equal 

to the number of equations, describing the movement of the object).  

Step 2: Solve the problem of controlling the movement of UAVs from 0t  to ft . 

Step 3: According to the trajectory, calculate the movement of the UAV, and receive a double error vector: 
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Step 4: Give the family number 
0( )jP t  of the function for the second state covariable j . It is possible to 

0( )jP t  get equal to 0,1  words 0( )jP t  with any sign ( ) if 
0( ) 0jP t   or you can choose the homogeneous 

number of state covariables as 0,001 . 
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Step 5: Solve the UAV motion control problem (according to the previous expression of optimal 

control) from 0t  to ft . 

Step 6: According to the trajectory of the UAV's motion calculation, it will receive a double error vector: 

 
1 0

2 0

3 00

5 0

( ) ( ( ))

( ) ( ( ))

( ) ( ( ))( ( ))

( )

( ( ))( ) 0

f mm j j

f mm j j

f mm j jj j

f mm

i

jf

V t V Z P t

t Z P t

X t X Z P tZ P t

Y t Y

Z P tt

 

   
   
   
    
   

   
      



H

 

 

 

(14) 

Step 7: Create the second column j  of the matrix Z  (Jacobi matrix), if 1j  , then: 
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In which:           0 0 0( ( )) ( ( ))i

jk jk j k

j j

Z Z P t Z P t

P P

 


 
                 (1 k N  ) 

Step 8: If j N  and the 1j j   calculation is performed starting with step 4; if j N  then the full 

Jacobi matrix ( Z ) is calculated and continues with step 9. 

Step 9: The  value of the new initial state covariate is written in the form: 

 

 
1

11

0 0 0 0

0

( ) ( ) . ( ( )).i i iP t P t Z Z P t d
     
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If the matrix 1Z   does not exist, to calculate when the definition approaches zero, the matrix Z  is 

often 1Z  replaced by its approximation. The matrix 1Z   can be replaced Z   by an inverse pseudo-matrix. 

Inverse pseudomatrices can be found using the Greville method or the Moore-Penrose method (using the 

Pinv function in Matlab). 

Start the problem with new initial conditions 1

0( )iP t , calculate the movement of the UAV from 0t  to 

ft  and calculate the double error. 

Step 10: If the condition is fulfilled 1

0( ( ))i

pZ P t   , the initial co-state variable result is obtained. 

Where: 1

0( ( ))iZ P t - Dual error vector modulus, defined: 

1 2 2 2 2 2
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p - The pre-selected constant, which characterizes the approximate prize desired to receive. 

If this is not possible, then 
1

0 0( ) ( )i iP t P t , and continue solving the problem starting from step 2. 

Thus: By solving the steps as presented above, the result is that we will find the state variable at the initial 

time (including: 
0 0 0 0( ), ( ), ( ), ( ),V X Y fP t P t P t P t t

). From there, we can also determine the program trajectory 

(including: ( ), ( ), ( ), ( )V t t x t y t )) and control signals ( ,x yn n ).  

We use the simulation method using Matlab Simulink software to test and evaluate the research results. 

At that time, the conditions that need to be ensured for the UAV to land are as follows: 

 Altitude error at the time of landing 0 0,3m y m    ; Distance error: 30x m  ; 

 The formula for determining the landing speed is derived from the UAV's gravitational equilibrium 

with the landing lift (the time just before landing when the ground jets are applied to the UAV). 
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 (18) 

 Where: yHCC  - Lifting force coefficient at the time of landing;  - Air density at the ground; G  - 

Gravity of the UAV;  S  - Effective wing area of the UAV. 

 Calculating with the UAV-70V model, we can determine the landing speed of the UAV as follows: 

 2 2 2 56,5 9,81

3,14
12 5,9123 1,225 1,05

180

hc

yHC y

G mg
V

C S C S  

 
  

   

 26,3817( / )hcV m s    

(19) 

 Vertical velocity on landing: 1 /yhcV m s ;  

 The angle of the UAV when landing 0 12o  . This condition is to ensure that the UAV does not hit 

its head down and does not touch its tail when landing. According to the size parameters of the UAV (including 

body size, and claw size), for the UAV not to touch the tail when landing, the angle of the UAV must not be 

exceeded 12o ;  

 The vertical overload of the UAV during flight in general and landing in particular needs to be ensured 

within the range 1 3,5yn    (to ensure that the UAV is not destroyed by the structure), especially when 

landing, the vertical overload of the UAV must be approximately 1.  

 Suppose the initial state of the UAV when it enters the landing at point A (Figure 2). The UAV flies at 

the same speed (0) 50 /V m s , the initial trajectory tilt angle (0) 0 ( )rad  , the position of the original UAV 

on landing is: (0) 60y m ; (0) 0x m .  

 Where: l - Runway length; l - Distance from the end of the runway to the desired landing 
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location 40l m   

 The desired final state of the UAV at point B position: 

0,7 500 0 ; 31 /f f f fy m x m radian V m s       

 
Figure 2. Diagram of forces acting on the UAV during landing 

 

 According to the calculation of UAV size, when the UAV lands, the rear gear of the UAV lands first if 

the angle of the UAV when landing is equal 12o
, the distance from the UAV's center of gravity to the lowest 

position of the rear gear is about 0,7m . Therefore, when calculating, consider the UAV to land when the height 

of the UAV is equal to 0,7m . 

 Cases where there is no restriction on standing overload 

 Considering the initial state of the UAV with: 

(0) 50 ( / );V m s (0) 0 ( );rad  (0) 0 ( );x m (0) 60 ( )y m . The desired end state of the UAV: 

31 / ;fV m s 0 ( );f rad  500 ( )fx m ; 0,7 ( )fy m . 

 Consider that: 
1 20,1; 0,1.k k  Using Matlab software gives the following results: 

 
Figure 3. The trajectory of the UAV 

 
Figure 4. The dependence of the flight velocity 

of time 

 
Figure 5. The dependence of the flight-path angle 

of time 

 
Figure 6. The dependence of the tangential load 

factor of time 
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Figure 7. The dependence of the normal load 

factor of time 

 
Figure 8. The dependence of the Pontryagin 

function values of time 

 
Figure 9. The dependence of attack angle of time  

 
Figure 10. The dependence of pitch angle of time  

 Thus, with the desired set of initial and final states of the UAV ( , , , )V x y  , the calculation program has 

found out the trajectory of the UAV's landing program as well as the corresponding overload ,x yn n  . However, in this 

case, considering the desired landing speed ( 31 /fV m s ), it is found that the attack angle and angle of the UAV exceed 

the permissible range0 10o  . Therefore, next, we will change the desired landing speed (
fV ) to evaluate 

the effect of the desired landing speed on the UAV's state parameters when landing. 

 Use Matlab software to write and run the program in each case of the desired velocity at different end 

times (
1 31 /fV m s ; 

2 35 /fV m s ;
3 39 /fV m s ), the results are as follows: 

 Figure 11 shows the trajectory of the UAV corresponding to the desired velocities at different end times 

( fV ). Figure 12 shows the velocity of the UAV. Figure 13 shows the change in the trajectory angle of the UAV 

over time corresponding to different conditions fV  . Figure 14, and Figure 15 show the change in velocity 

tangential overload and velocity normal overload over time. Figure 16 shows the change in the value of 

Hamilton's function. Figures 17 and 18 show the change in the angle of attack and the angle of the UAV. 

Figure 11. The trajectory of the UAV 
 

Figure 12. The dependence of the flight velocity 

of time 

 
Figure 13. The dependence of the flight-path 

angle of time 

 
Figure 14. The dependence of the tangential 

load factor of time 
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Figure 15. The dependence of the normal load 

factor of time 

 
Figure 16. The dependence of the Pontryagin 

function values of time 

 
Figure 17. The dependence of attack angle of time  

 
Figure 18. The dependence of pitch angle of time 

  

Thus, the angle of attack and the angle of the UAV at the end depends on fV . Through the survey, it was found that to 

ensure safe landing conditions, it is only allowed to reduce fV  to 35 ( / )fV m s  (because if the reduction is 

smaller, the angle of attack and the angle of the UAV exceed the permissible value). At such a speed fV  , it is quite 

large compared to the smallest landing speed hcV . This leads to the UAV's rolling distance will be significantly large, 

and it is unlikely that the UAV will land on a short runway. One solution offered is to limit standing overload. 

 

Cases of restriction of standing overload 

 The concept of standing overload restriction here is to maintain the standing overload not exceeding the 

permissible value. From the formula for determining the velocity normal overload: 
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 Y - UAV lift; T  - Motor traction;   - The angle of attack of the UAV. 

 Transforming the formula (20), we are: 
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For each velocity fV  , we will determine the normal overload of the limited velocity ( yhcn ) to ensure that the 

angle of attack does not exceed the permissible value. However, when it fV  decreases, it yhcn  also decreases. 

And when yhcn  it decreases beyond a certain value, the program will not find the optimal solution.  
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In case of restriction of standing overload, the results of the program are as follows: 

 
Figure 19. The trajectory of the UAV 

 
Figure 20. The dependence of the flight velocity 

of time 

 
Figure 21. The dependence of the flight-path 

angle of time 

 
Figure 22. The dependence of the tangential 

load factor of time 

 
Figure 23. The dependence of the normal load 

factor of time 

 
Figure 24. The dependence of the Pontryagin 

function values of time 

 
Figure 25. The dependence of attack angle of time  

 
Figure 26. The dependence of pitch angle of time 

When limiting standing overload, allows the UAV to land at a significantly small speed 31 /fV m s  while 

still ensuring the angle of attack and angle of attack of the UAV within the permissible limits. This will significantly 

reduce the rolling distance of the UAV in case it is necessary to control the UAV to land on a short runway. 

 

III. DISCUSSION AND CONCLUSION 

Thus, with the desired set of initial and final states of the UAV, the calculation program has determined 

the landing trajectory as well as the corresponding overload. However, when considering the desired landing 

speed, we find that the UAV's angle of attack and tilt angle exceed the permissible range. To solve this problem, 

it is necessary to change the desired landing speed to assess its effect on the UAV's state parameters during 

landing. Through the survey, we found that to ensure safe landing conditions, the landing speed can only be 
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reduced to a certain level, because if it is reduced too much, the angle of attack and angle of attack of the UAV 

will exceed the permissible limit. With such a landing speed, although the angle of attack and angle of incidence 

are reduced, it is still quite large compared to the smallest landing speed that can be achieved. This leads to a 

significant increase in the UAV's rolling distance, making it difficult to land on short runways. An effective 

solution is to apply standing overload restrictions. When the standing overload restriction is applied, the UAV 

can land at a significantly smaller speed while maintaining the angle of attack and angle of rotation within the 

permissible limits. This significantly reduces the UAV's rolling distance, increases the ability to land safely on 

short runways, and improves the overall performance of the landing process. 
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