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Abstract- Speech communication in noisy environments continues to be a critical challenge, particularly for 

applications such as telecommunication, hearing- assistivedevices,andautomaticspeechrecognition.This paper 

introduces a unified single-microphone speech enhancement framework that combines classical signal 

processing methods with state-of-the-art deep learning techniques.Thestudyevaluatesfourapproaches:spectral 

masking,directfiltering,Conv-TasNet,andanovelDeep Multi-Frame Minimum Variance Distortionless Response 

(Deep MFMVDR) algorithm. The system is developed using PyTorch with modular components for data 

preparation, training, and performance assessment, and is benchmarked using objective measures such as 

PESQ, STOI, and SDR. Results indicate that the Deep MFMVDR approach consistently outperforms other 

methods, achievinga 78%gain in perceptual qualityand a 91% intelligibility score, while maintaining real-time 

processing capability. Although Conv-TasNet delivers competitive results, its latency limits practical 

deployment.In contrast,traditionalspectralmaskingand direct filtering techniques show reduced robustness in 

highly dynamic acoustic conditions. The findings highlight the effectiveness of hybrid filtering strategies that 

integrate deep learning with classical models, providing a scalable and reproducible platform for advancing 

research in speech enhancement. 

Index Terms—Speechenhancement,single-microphone, deep learning, MVDR, Conv-TasNet, noise reduction. 

Multi-FrameMVDR,single-channelprocessing,PESQ, STOI. 
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I INTRODUCTION 

Inrecentyears,speech-driventechnologieshavebecome central to a wide range of applications, including 

telecommunications, smart assistants, hearing aids, and automaticspeechrecognition(ASR)systems.The 

effectivenessofthesesystemscriticallydependsonthe 

clarity and intelligibility of speech signals, which are often degraded in real-world environments due to 

backgroundnoise, reverberation, or interfering sounds [1], [2]. Ensuring high-qualityaudio in such scenarios 

isparticularlyimportantforapplicationssuchasremote conferencing, voice-controlled devices, and assistive 

technologies for individuals with hearing impairments [3].Although computationally efficient, these 

approachesrelyon assumptionsofstationarynoiseand linear models, which limit their performance in dynamic 

acoustic conditions [4]. In particular, they often introduce perceptual artifacts such as “musical noise” and may 

degrade speech intelligibility when backgroundnoisevariesrapidly[5]. Withtheadventof deeplearning,data-

drivenmodelshaveshownsuperior capability in learning complex, nonlinear mappings between noisyand clean 

speech signals. Architectures based on convolutional neural networks (CNNs), recurrent neural networks 

(RNNs), and temporal convolutional networks (TCNs) have demonstrated remarkable improvements in both 

perceptual quality and intelligibilitycompared to traditional methods [6], [7].End-to-endtime-

domainapproachessuch asConv- TasNet further bypass the limitations of frequency- domain processing by 

directly modeling waveform structures [8]. Despite these advances, challenges remain in achieving robust, low-

latency speech enhancement suitable for real-time deployment.In particular, the Multi-Frame Minimum 

Variance Distortionless Response (MFMVDR) method has gained attention for its ability to exploit temporal 

correlations across frame [9]. When integrated with deep learning estimators for speech presence probability and 

noise statistics, Deep MFMVDR can achieve high performance while maintainingreal-time constraints [10]. 

 

II.   RELATEDWORK 

Speech enhancement has evolved from classical signal processing to advanced deep learning techniques. Early 

statistical approaches, such as spectral subtraction. 

The Minimum Variance Distortionless Response (MVDR)filterimprovedspeechpreservationbutrequired accurate 

noise statistics, which are difficult to obtain in single-microphone systems. 

Recent deep learning models, such as Conv-TasNet, operatedirectlyinthetimedomainandachievehigh 
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performance by learning rich temporal features, though theydemand largedatasetsand computationalresources. 

Hybrid strategies, including Deep MVDR and multi- frame processing, further enhance adaptability in non- 

stationary conditions by leveraging both signal processing and neural networks. Benchmark initiatives like the 

Deep Noise Suppression (DNS) Challenge have also driven the development of low-latency, real-time solutions, 

with PESQ, STOI, and SDR serving as standard evaluation metrics. 

Building on these advances, the proposed Deep Multi- Frame MVDR framework integrates classical filtering 

principles with deep learning to deliver robust single- channel speech enhancement in practical acoustic 

environments. 

 

III.METHODOLOGY 

The proposed speech enhancement framework adopts a hybridmethodologythatintegratesbothtraditionalsignal 

processing and deep learning-based approaches. 

 

 
Figure1:FlowchartofMethodologyforTraditional Method 

 

 
Figure2:FlowchartofMethodologyforMachine LearningMethod 

 

This section outlines the step-by-step process followed in the design, implementation, and evaluation of the 

system. The pipeline is structured to support modularity, reproducibility, and scalability for future enhancements 

or deployment in real-time systems. 

 

3.1 Data-SetPreparation 

The foundation of the training and evaluation process involves generating synthetic noisy-clean audio pairs. 

Clean speech signals are sourced from publicly available corpora such as VoiceBank and LibriSpeech, known 

for their clarity and variety of speakers. Background noise comprising traffic, crowdchatter,machinery, 

andindoor environments is added to these signals at multiple signal-to-noise 

ratio(SNR)levels(0dB,5dB,10dB,and20dB)to simulate real-worldacousticconditions. The noisy-clean 

pairs are then converted into spectral representations using the Short-Time Fourier Transform (STFT). These 

frequency- domain features, such as magnitude and phase information, are further pre-processed through 

normalization, resampling to 16 kHz, and zero- padding for uniformity. The dataset is split into training, 

validation, and test setsto ensureunbiased model evaluation. 

 

3.2 ClassicalBaselineMethods 

Two conventional enhancement techniques are implemented to serve as benchmarks: 

1. Spectral Masking: This method constructs binary or ratio-based time-frequency masks, such as Ideal 

Ratio Masks (IRM), to selectively suppress noise-dominant regions in the spectrogram. It offers simplicity and 

is computationallyefficient, though itmayneglect phase-related cues. 

2. Direct Filtering: Algorithms like Wiener filtering and spectral subtraction are applied based on 

statistical assumptions of noise and clean speech. While effective under stationary noise, their performance 

diminishes in dynamic environments due to dependency on accurate noise estimation. 
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3.3 Deep-LearningModels 

 

To enhance performance under complex conditions, two deep learning-based models are deployed: 

1. Conv-TasNet: A fully time-domain model employing temporal convolutional networks (TCNs). It uses 

a learnable encoder-decoder structure to separate clean speech from noisy input, trained using SI-SNR loss to 

align with perceptualquality.Themodelcaptureslong-range dependencies without relying on STFT. 

2. Deep MFMVDR: A hybrid model that incorporates a deep neural network to estimate inter-frame 

correlation vectors and noise covariancematrices.Theseparametersareused to compute optimal MVDR filter 

weights across multiple frames, enablingefficient suppression of non-stationary noise while preserving speech 

features. 

 

3.4 Model Architecture and Training 

Each deep learning model is implemented using the PyTorch framework.Torchaudioisemployedfor audio 

transformations such as STFT, inverse STFT (ISTFT), and waveform loading. 

Trainingisperformedovermultipleepochsusingthe Adam optimizer, with learning rate schedulers and early 

stopping mechanisms to prevent overfitting. Regularization methods such as dropout and batch normalization 

are used to improve generalization. 

 

Lossfunctionsvarybymodel: 

• Mean Squared Error (MSE) is used for frequency-domain models. 

• Scale-InvariantSignal-to-NoiseRatio(SI- SNR)isemployedfortime-domainmodels like Conv-TasNet. 

• Trainingmetricssuchaslossandvalidation performancearemonitoredandvisualized using TensorBoard 

and Matplotlib. 
 

3.5 PerformanceEvaluation 

To assess model effectiveness, objective evaluation metrics are employed: 

• Signal-to-Distortion Ratio (SDR): Measuresthefidelityoftheenhancedsignal compared to the clean 

reference. 

• Perceptual Evaluation of Speech Quality (PESQ): Quantifies perceptualaudioquality using a 

standardized MOS prediction. 

• Short-Time Objective Intelligibility (STOI): Evaluates the intelligibility of the processed speech. 

Additionally, visual tools such as spectrogram comparisons and waveform plots are used to qualitatively 
assess denoising performance and artifactreduction. 

 

3.6 Mathematical Equation 

 

1.NoisySpeechGeneration 

 

The noisy signal, y(t), is generated by linearly mixing theclean speech signal,s(t),with thebackgroundnoise 

signal, n(t), at specified Signal-to-Noise Ratio (SNR) levels (e.g., 0 dB, 5 dB, 10 dB, and 20 dB). 

The equation for the mixed noisy speech signal in the time domain is: 

y(t)=s(t)+n(t)…….(1) 

 

The noise signal, n(t), is scaled such that the resultant mixtureachievesatargetSNR,definedindecibels(dB) as: 

𝑆𝑁𝑅𝑑𝐵=10𝑙𝑜𝑔10(Ps/Pn)….(2) 

 

where Ps is the power of the clean speech signal, s(t), and Pn is the power of the noise signal, n(t). 

 

2. Short-TimeFourierTransform(STFT) 

 

Thenoisy-clean audiopairsareconvertedintospectral representations using the STFT. The STFT converts a time-
domain signal, 

x(t) (which can be y(t), s(t), or n(t)), into a time- frequency representation, X(k,m), where k is the frequency bin 

index and m is the frame index. 
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TheSTFTequation foradiscretesignalx[n]is: 

 

 

The resulting frequency-domain features (magnitude andphaseinformation)areusedfortrainingfrequency- 

domain models. In the frequency domain, the relationship between the noisy, clean, and noise spectrograms is: 

Y(k,m)=S(k,m)+N(k,m) .......... (4) 

 

III. EXPERIMENTSANDRESULTS 

To validate the performance of the proposed Deep Multi-Frame MVDR (MFMVDR) system, a series 

of experiments were conducted usingnoisy-clean speech pairs generated from VoiceBank and LibriSpeech 

datasets. These samples were combined with realistic background noise at multiple SNR levels to simulate 

challengingacousticenvironments. Fourenhancement methods Masking, Direct Filtering, Conv-TasNet, and 

Deep MFMVDR were implemented and evaluated using three key metrics: Perceptual Evaluation of Speech 

Quality (PESQ), Short-Time Objective Intelligibility (STOI), and Real-Time Capability (measured via 

processing time factor). 

 

Table 1(Noise 20% and Signal Strength 80%) CompartiveanalsyisfortraditionalandAIbasedmodel 

 

Model PESQ ↑ STOI↑ 

DeepMFMVDR 78% 91% 

Conv-TasNet -1.0% -1.0% 

Direct-Filtering 78% 80% 

Masking 78% 78% 

Baseline(Noisy) 1.95 0.72 

The effectiveness of speech enhancement can be gauged using PESQ and STOI scores. The noisy 

baselinestartsat1.95PESQand0.72STOI.Classical 

 

methods likemasking and direct filtering boost PESQ by about 78%, with STOI reaching 78–80%. Deep 

learning models, especially Deep MFMVDR, achieve similar PESQ gains but a much higher STOI of 91%, 

highlighting their stronger ability to preserve intelligibility while suppressing noise. 

 

Table2:(Noise30%andSignalStrength70%) 

CompartiveanalsyisfortraditionalandAIbased 

model 

Model PESQ ↑ STOI↑ 

DeepMFMVDR 69% 89% 

Conv-TasNet 68% 86% 

Direct-Filtering 55% 76% 

Masking 50% 73% 

Baseline(Noisy) 1.80 0.68 

 

At 30% noise (~3.7 dB SNR), the baseline speech shows poor quality (PESQ 1.80, STOI 0.68). 

Traditionalmethodsgivemoderategains(PESQ 

+50–55%, STOI 0.73–0.76), but clarity remains limited.AImodelsperformfarbetter:Conv-TasNet improves 

PESQ by 68% with STOI 0.86, while DeepMFMVDRleadswitha69%PESQboostand STOI 0.89, making it the 

most effective at preserving intelligibility. 

 

Table 3:(Noise 40% and Signal Strength 60%) CompartiveanalsyisfortraditionalandAIbasedmodel 

Model PESQ ↑ STOI↑ 

DeepMFMVDR 59% 85% 

Conv-TasNet 60% 82% 

Direct-Filtering 48% 70% 

Masking 44% 68% 
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Baseline(Noisy) 1.65 0.62 

 

At 40% noise (~2.2 dB SNR), baseline speech qualityispoor (PESQ1.65, STOI0.62). Traditional methodsoffer 

modestgains,withPESQrising~44– 48%andSTOIupto0.70.AI-basedmodelsperform far better: Conv-TasNet 

reaches STOI 0.82, while Deep MFMVDR leads with STOI 0.85 and strong PESQ gains, showing superior 

robustness in high- noise conditions. 

 

IV. CONCLUSION 

This presents a comprehensive speech enhancement framework that integrates classical signal processing 

techniques with deep learning-based architectures, specifically focusing on Deep Multi-Frame Minimum 

Variance Distortionless Response (MFMVDR) filtering. 

Thesystemisdesignedtooperateonsingle-microphone audioinputsandaddressesthechallengesposedby 

 

dynamic and non-stationary noise environments. Through systematic experimentation and evaluation using 

objective metrics such as PESQ, STOI, andreal- time factor, the proposed Deep MFMVDR model demonstrated 

superior performance in both speech quality and intelligibility, while maintaining real-time processing 

capabilities. 

Comparativeanalysiswithestablishmethodsincluding spectral masking, direct filtering, and Conv-TasNet 

revealed the advantages of combining temporal frame correlationswithdata-drivenparameterestimation.The 

modular, PyTorch-based implementation further supports scalability, reproducibility, and future integration with 

real-time or edge-deployable systems. Overall, the results affirm the effectiveness of the 

hybridapproachandhighlightitspotentialfor practical applicationsindomainssuchasvirtualcommunication, 

assistive hearing technologies, and intelligent voice interfaces. 

 

V. FUTURESCOPE 

While the proposed Deep Multi-Frame MVDR frameworkdemonstratespromisingresultsinenhancing 

single-microphone speech under noisy conditions, several avenues remain for future exploration. One potential 

direction is the extension of the system to support real-time streaming applications, such as video conferencing 

and telemedicine, where low-latency processing is critical. Integrating the model with hardware-

acceleratedplatformslikeembeddedGPUsor FPGAs could enable deployment in resource- constrained edge 

devices, including hearing aids and mobile assistants. 

Another area for enhancement involves the incorporation of multilingual and code-switching datasets, 

which would broaden the applicability of the system in diverse linguistic settings. Additionally, future work may 

explore unsupervised or semi- supervisedlearningtechniquestoreducedependencyon 

largelabeleddatasets,therebyimprovinggeneralization across unseen environments. Expandingthe model toa 

multi-microphone or spatial audio configuration could further boost performance in complex acoustic scenes by 

leveraging spatial cues.Finally, integrating the enhancementmodulewithautomaticspeechrecognition (ASR) and 

speaker identification systems could enable end-to-end pipelines for robust speech-driven applications. These 

advancements would contribute to building highly adaptive, intelligent, and accessible audio processing 

solutions for real-world deployment. 
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