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Abstract- Speech communication in noisy environments continues to be a critical challenge, particularly for
applications such as telecommunication, hearing- assistivedevices,andautomaticspeechrecognition.This paper
introduces a unified single-microphone speech enhancement framework that combines classical signal
processing methods with state-of-the-art deep learning techniques.Thestudyevaluatesfourapproaches:spectral
masking,directfiltering, Conv-TasNet,andanovelDeep Multi-Frame Minimum Variance Distortionless Response
(Deep MFMVDR) algorithm. The system is developed using PyTorch with modular components for data
preparation, training, and performance assessment, and is benchmarked using objective measures such as
PESQ, STOI, and SDR. Results indicate that the Deep MFMVDR approach consistently outperforms other
methods, achievinga 78%gain in perceptual qualityand a 91% intelligibility score, while maintaining real-time
processing capability. Although Conv-TasNet delivers competitive results, its latency limits practical
deployment.In contrast traditionalspectralmaskingand direct filtering techniques show reduced robustness in
highly dynamic acoustic conditions. The findings highlight the effectiveness of hybrid filtering strategies that
integrate deep learning with classical models, providing a scalable and reproducible platform for advancing
research in speech enhancement.

Index Terms—Speechenhancement,single-microphone, deep learning, MVDR, Conv-TasNet, noise reduction.
Multi-FrameMVDR, single-channelprocessing, PESQ, STOI.
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I INTRODUCTION

Inrecentyears,speech-driventechnologieshavebecome central to a wide range of applications, including
telecommunications, smart assistants, hearing aids, and automaticspeechrecognition(ASR)systems.The
effectivenessofthesesystemscriticallydependsonthe

clarity and intelligibility of speech signals, which are often degraded in real-world environments due to
backgroundnoise, reverberation, or interfering sounds [1], [2]. Ensuring high-qualityaudio in such scenarios
isparticularlyimportantforapplicationssuchasremote conferencing, voice-controlled devices, and assistive
technologies for individuals with hearing impairments [3].Although computationally efficient, these
approachesrelyon assumptionsofstationarynoiseand linear models, which limit their performance in dynamic
acoustic conditions [4]. In particular, they often introduce perceptual artifacts such as “musical noise” and may
degrade speech intelligibility when backgroundnoisevariesrapidly[5]. Withtheadventof deeplearning,data-
drivenmodelshaveshownsuperior capability in learning complex, nonlinear mappings between noisyand clean
speech signals. Architectures based on convolutional neural networks (CNNs), recurrent neural networks
(RNNs), and temporal convolutional networks (TCNs) have demonstrated remarkable improvements in both
perceptual quality and intelligibilitycompared to traditional methods [6], [7].End-to-endtime-
domainapproachessuch asConv- TasNet further bypass the limitations of frequency- domain processing by
directly modeling waveform structures [8]. Despite these advances, challenges remain in achieving robust, low-
latency speech enhancement suitable for real-time deployment.In particular, the Multi-Frame Minimum
Variance Distortionless Response (MFMVDR) method has gained attention for its ability to exploit temporal
correlations across frame [9]. When integrated with deep learning estimators for speech presence probability and
noise statistics, Deep MFMVDR can achieve high performance while maintainingreal-time constraints [10].

II. RELATEDWORK
Speech enhancement has evolved from classical signal processing to advanced deep learning techniques. Early
statistical approaches, such as spectral subtraction.
The Minimum Variance Distortionless Response (MVDR)filterimprovedspeechpreservationbutrequired accurate
noise statistics, which are difficult to obtain in single-microphone systems.
Recent deep learning models, such as Conv-TasNet, operatedirectlyinthetimedomainandachievehigh
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performance by learning rich temporal features, though theydemand largedatasetsand computationalresources.
Hybrid strategies, including Deep MVDR and multi- frame processing, further enhance adaptability in non-
stationary conditions by leveraging both signal processing and neural networks. Benchmark initiatives like the
Deep Noise Suppression (DNS) Challenge have also driven the development of low-latency, real-time solutions,
with PESQ, STOI, and SDR serving as standard evaluation metrics.

Building on these advances, the proposed Deep Multi- Frame MVDR framework integrates classical filtering
principles with deep learning to deliver robust single- channel speech enhancement in practical acoustic
environments.

INI.METHODOLOGY
The proposed speech enhancement framework adopts a hybridmethodologythatintegratesbothtraditionalsignal
processing and deep learning-based approaches.
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This section outlines the step-by-step process followed in the design, implementation, and evaluation of the
system. The pipeline is structured to support modularity, reproducibility, and scalability for future enhancements
or deployment in real-time systems.

3.1 Data-SetPreparation

The foundation of the training and evaluation process involves generating synthetic noisy-clean audio pairs.
Clean speech signals are sourced from publicly available corpora such as VoiceBank and LibriSpeech, known
for their clarity and variety of speakers. Background noise comprising traffic, crowdchatter,machinery,
andindoor environments is added to these signals at multiple signal-to-noise
ratio(SNR)levels(0dB,5dB,10dB,and20dB)to simulate real-worldacousticconditions. The noisy-clean
pairs are then converted into spectral representations using the Short-Time Fourier Transform (STFT). These
frequency- domain features, such as magnitude and phase information, are further pre-processed through
normalization, resampling to 16 kHz, and zero- padding for uniformity. The dataset is split into training,
validation, and test setsto ensureunbiased model evaluation.

32 ClassicalBaselineMethods

Two conventional enhancement techniques are implemented to serve as benchmarks:

1. Spectral Masking: This method constructs binary or ratio-based time-frequency masks, such as Ideal
Ratio Masks (IRM), to selectively suppress noise-dominant regions in the spectrogram. It offers simplicity and
is computationallyefficient, though itmayneglect phase-related cues.

2. Direct Filtering: Algorithms like Wiener filtering and spectral subtraction are applied based on
statistical assumptions of noise and clean speech. While effective under stationary noise, their performance
diminishes in dynamic environments due to dependency on accurate noise estimation.
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33 Deep-LearningModels

To enhance performance under complex conditions, two deep learning-based models are deployed:

1. Conv-TasNet: A fully time-domain model employing temporal convolutional networks (TCNs). It uses
a learnable encoder-decoder structure to separate clean speech from noisy input, trained using SI-SNR loss to
align with perceptualquality. Themodelcaptureslong-range dependencies without relying on STFT.

2. Deep MFMVDR: A hybrid model that incorporates a deep neural network to estimate inter-frame
correlation vectors and noise covariancematrices.Theseparametersareused to compute optimal MVDR filter
weights across multiple frames, enablingefficient suppression of non-stationary noise while preserving speech
features.

34 Model Architecture and Training

Each deep learning model is implemented using the PyTorch framework.Torchaudioisemployedfor audio
transformations such as STFT, inverse STFT (ISTFT), and waveform loading.
Trainingisperformedovermultipleepochsusingthe Adam optimizer, with learning rate schedulers and early
stopping mechanisms to prevent overfitting. Regularization methods such as dropout and batch normalization
are used to improve generalization.

Lossfunctionsvarybymodel:

*  Mean Squared Error (MSE) is used for frequency-domain models.

*  Scale-InvariantSignal-to-NoiseRatio(SI- SNR)isemployedfortime-domainmodels like Conv-TasNet.

+  Trainingmetricssuchaslossandvalidation performancearemonitoredandvisualized using TensorBoard
and Matplotlib.

3.5  PerformanceEvaluation
To assess model effectiveness, objective evaluation metrics are employed:
+  Signal-to-Distortion Ratio (SDR): Measuresthefidelityoftheenhancedsignal compared to the clean
reference.
*  Perceptual Evaluation of Speech Quality (PESQ): Quantifies perceptualaudioquality using a
standardized MOS prediction.
*  Short-Time Objective Intelligibility (STOI): Evaluates the intelligibility of the processed speech.
Additionally, visual tools such as spectrogram comparisons and waveform plots are used to qualitatively
assess denoising performance and artifactreduction.

3.6 Mathematical Equation

1.NoisySpeechGeneration

The noisy signal, y(t), is generated by linearly mixing theclean speech signal,s(t),with thebackgroundnoise
signal, n(t), at specified Signal-to-Noise Ratio (SNR) levels (e.g., 0 dB, 5 dB, 10 dB, and 20 dB).

The equation for the mixed noisy speech signal in the time domain is:

y(O=s(t)/rn(t).......(1)

The noise signal, n(t), is scaled such that the resultant mixtureachievesatargetSNR,definedindecibels(dB) as:
SNR;5=10log19(Ps/Pn)....(2)

where Ps is the power of the clean speech signal, s(t), and Pn is the power of the noise signal, n(t).

2.Short-TimeFourierTransform(STFT)

Thenoisy-clean audiopairsareconvertedintospectral representations using the STFT. The STFT converts a time-
domain signal,

x(t) (which can be y(t), s(t), or n(t)), into a time- frequency representation, X(k,m), where k is the frequency bin
index and m is the frame index.

165



Deep Multi-Frame MVDR filtering for Single Microphone Speech Enhancement

TheSTFTequation foradiscretesignalx[n]is:

X(k,m)=> N:; x[n+mH]  wn]
e—N2/nkn..(3)

The resulting frequency-domain features (magnitude andphaseinformation)areusedfortrainingfrequency-
domain models. In the frequency domain, the relationship between the noisy, clean, and noise spectrograms is:

Y (k,m)=S(k,m}+N(k,m).......... @)

III. EXPERIMENTSANDRESULTS

To validate the performance of the proposed Deep Multi-Frame MVDR (MFMVDR) system, a series
of experiments were conducted usingnoisy-clean speech pairs generated from VoiceBank and LibriSpeech
datasets. These samples were combined with realistic background noise at multiple SNR levels to simulate
challengingacousticenvironments. Fourenhancement methods Masking, Direct Filtering, Conv-TasNet, and
Deep MFMVDR were implemented and evaluated using three key metrics: Perceptual Evaluation of Speech
Quality (PESQ), Short-Time Objective Intelligibility (STOI), and Real-Time Capability (measured via
processing time factor).

Table 1(Noise 20% and Signal Strength 80%) Compartiveanalsyisfortraditionaland Albasedmodel

Model PESQ 1 STOIT
DeepMFMVDR  [78% 91%
Conv-TasNet -1.0% -1.0%
Direct-Filtering  [78% 80%
Masking 78% 78%
Baseline(Noisy) |1.95 0.72

The effectiveness of speech enhancement can be gauged using PESQ and STOI scores. The noisy
baselinestartsat1 . 95PESQand0.72STOI.Classical

methods likemasking and direct filtering boost PESQ by about 78%, with STOI reaching 78—80%. Deep
learning models, especially Deep MFMVDR, achieve similar PESQ gains but a much higher STOI of 91%,
highlighting their stronger ability to preserve intelligibility while suppressing noise.

Table2:(Noise30%andSignalStrength70%)
Compartiveanalsyisfortraditionaland Albased

model
Model PESQ 1 STOI?
DeepMFMVDR 69% 89%
Conv-TasNet 68% 86%
Direct-Filtering 55% 76%
Masking 50% 73%
Baseline(Noisy) 1.80 0.68

At 30% noise (~3.7 dB SNR), the baseline speech shows poor quality (PESQ 1.80, STOI 0.68).
Traditionalmethodsgivemoderategains(PESQ

+50-55%, STOI 0.73-0.76), but clarity remains limited. AImodelsperformfarbetter:Conv-TasNet improves
PESQ by 68% with STOI 0.86, while DeepMFMVDRIeadswitha69%PESQboostand STOI 0.89, making it the
most effective at preserving intelligibility.

Table 3:(Noise 40% and Signal Strength 60%) Compartiveanalsyisfortraditionaland Albasedmodel

Model PESQ 1 STOI?
DeepMFMVDR  [59% 85%
Conv-TasNet 60% 82%
Direct-Filtering 48% 70%
Masking 44% 68%
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Baseline(Noisy)  [1.65 0.62 |

At 40% noise (~2.2 dB SNR), baseline speech qualityispoor (PESQ1.65, STOI0.62). Traditional methodsoffer
modestgains,withPESQrising~44— 48%andSTOlIupto0.70.Al-basedmodelsperform far better: Conv-TasNet
reaches STOI 0.82, while Deep MFMVDR leads with STOI 0.85 and strong PESQ gains, showing superior
robustness in high- noise conditions.

IV. CONCLUSION
This presents a comprehensive speech enhancement framework that integrates classical signal processing
techniques with deep learning-based architectures, specifically focusing on Deep Multi-Frame Minimum
Variance Distortionless Response (MFMVDR) filtering.
Thesystemisdesignedtooperateonsingle-microphone audioinputsandaddressesthechallengesposedby

dynamic and non-stationary noise environments. Through systematic experimentation and evaluation using
objective metrics such as PESQ, STOI, andreal- time factor, the proposed Deep MFMVDR model demonstrated
superior performance in both speech quality and intelligibility, while maintaining real-time processing
capabilities.

Comparativeanalysiswithestablishmethodsincluding spectral masking, direct filtering, and Conv-TasNet
revealed the advantages of combining temporal frame correlationswithdata-drivenparameterestimation.The
modular, PyTorch-based implementation further supports scalability, reproducibility, and future integration with
real-time or edge-deployable systems. Overall, the results affirm the effectiveness of the
hybridapproachandhighlightitspotentialfor practical applicationsindomainssuchasvirtualcommunication,
assistive hearing technologies, and intelligent voice interfaces.

V. FUTURESCOPE

While the proposed Deep Multi-Frame MVDR frameworkdemonstratespromisingresultsinenhancing
single-microphone speech under noisy conditions, several avenues remain for future exploration. One potential
direction is the extension of the system to support real-time streaming applications, such as video conferencing
and telemedicine, where low-latency processing is critical. Integrating the model with hardware-
acceleratedplatformslikeembeddedGPUsor FPGAs could enable deployment in resource- constrained edge
devices, including hearing aids and mobile assistants.

Another area for enhancement involves the incorporation of multilingual and code-switching datasets,
which would broaden the applicability of the system in diverse linguistic settings. Additionally, future work may
explore unsupervised or semi- supervisedlearningtechniquestoreducedependencyon
largelabeleddatasets,therebyimprovinggeneralization across unseen environments. Expandingthe model toa
multi-microphone or spatial audio configuration could further boost performance in complex acoustic scenes by
leveraging spatial cues.Finally, integrating the enhancementmodulewithautomaticspeechrecognition (ASR) and
speaker identification systems could enable end-to-end pipelines for robust speech-driven applications. These
advancements would contribute to building highly adaptive, intelligent, and accessible audio processing
solutions for real-world deployment.
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