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ABSTRACT 

Artificial Intelligence (AI) offers transformative potential across industries, but its development and deployment 

come with environmental costs. This paper discusses topics such as the carbon footprint of AI models, methods 

for measuring and reporting environmental impacts, and challenges in estimating the sustainability of AI 

technologies. It provides insights into energy and carbon accounting, along with case studies demonstrating 

how AI’s environmental footprint is assessed. The paper provides a comprehensive understanding of the 

relationship between AI and the environment, equipping readers with knowledge to contribute to more 

sustainable AI practices. 
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I. INTRODUCTION 

1.1 AI Definitions 

The term artificial intelligence (AI) was coined in 1955 by Professor of Computer Science, John 

McCarthy. He defined it as the science and engineering of making intelligent machines. There was another term 

before AI which has played a foundational role in its development, called cybernetics. Cybernetics is the 

interdisciplinary study of control and communication in animals, humans, and machines. Coined by Norbert 

Wiener in the 1940s, it focuses on how systems regulate themselves through feedback loops, enabling stability, 

adaptation, and goal-directed behavior. At its core, cybernetics deals with how information is transmitted, 

processed, and used to control actions and make decisions. Cybernetic principles, especially feedback loops, 

underpin many AI systems such as reinforcement learning, where agents learn by receiving rewards or penalties 

from the environment. Cybernetics emphasizes how systems can self-regulate and adapt, which is critical for 

autonomous AI agents (like robots or self-driving cars) that need to make real-time decisions. AI-driven robotics 

is deeply inspired by cybernetics, where sensors (input), processors (decision), and actuators (output) form a 

control loop to perform intelligent actions. Cybernetics studies how humans interact with machines, influencing 

AI development in areas such as natural language processing, human-computer interaction, and cognitive 

systems. Early AI models, including neural networks, were inspired by cybernetic models of the human brain, 

emphasizing how biological systems process and act on information. In essence, cybernetics laid the conceptual 

groundwork for AI by framing intelligence as a system of communication, adaptation, and control—principles 

still central to modern AI research and applications. 

Machine learning is part of AI focused on the development and study of statistical algorithms that can 

learn from data. Forexample, a machine learning model may be used to analyze weather data then make future 

predictions of the weather.Professor John McCarthy describes AI as the science and engineering of 

makingintelligent machines, while machine learning is the statistical use ofalgorithms to make machines seem 

intelligent.There are a few different types of machine learning algorithms.Supervised machine learning 

algorithms use training data where the expectedoutput is labeled. A supervised learning algorithm for image 

classification wouldhave training data including pictures with labels such as hand, cat, traffic lights, etc. 

Unsupervised machine learning uses unlabeled training data and learns frompatterns inherent in that data.So 

training data for an unsupervised machine learning algorithm for imageclassification would have images but no 

labels.Reinforcement learning is when the machine learning model learns by receivingrewards and penalties. 

Theagent is rewarded for correct moves and punished for the wrong ones.In doing so, the agent tries to 

minimize the wrong and maximize the right.An algorithm for self-driving cars may utilize reinforcement 

learning to createlearning policies for how to drive on the highway, how to stay within lanes andchange lanes. 

http://www.ijerd.com/
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Supervised, unsupervised, and reinforcement learning are all types of machinelearning.And within those 

categories, there are many types of machine learningalgorithms, from logistic regression, a supervised learning 

algorithm, toprincipal component analysis, an unsupervised learning algorithm.And of most interest isan 

algorithm called an artificial neural network. 

An artificial neural network is a computational model inspired by the humanbrain.As shown in figure 

1, it consists of interconnected nodes, artificial neurons organized in layersthat process input to produce output, 

learning and adapting through theadjustment of what we call weights in the connections based on training 

data.So very simplistically, training a neural net is a whole bunch of matrixmultiplication where the nodes are 

vectors multiplied by weights to createoutput vectors. 

 
Figure 1 Artificial Neural Network 

 

Deep learning is the use of a large multi-layer artificial neural networkthat compute number 

representations of that training data.Neural networks and deep learning can be supervised, unsupervised, 

orincorporate reinforcement learning. Oneof the most common components of the engineering architecture of 

theneural net is the transformer.A transformer is a neural net which incorporates context of data via anintention 

mechanism, allowing powerful and computationally efficient analysisand generation of sequences, such as 

words or paragraphs. A foundation model is a neural network trained by self-supervision on large-scale broad 

data that can be easily adopted to perform a wide range ofdownstream tasks.It often has a transformer 

architecture. Modelslike GPT-4 and Cloud4 are foundation models.With the advent of foundation models, 

generative AI has become mainstream. 

Generative AI is neural network-based models trained on large amounts of datathat learn the 

underlying patterns to generate new data mirroring that trainingdata. When asked to make apicture of a dog, it 

creates a dog, but not the exact dog from any of the training data.Traditional AI, or discriminative AI, is 

machine learning systems designed tomake specific predictions or decisions based on a particular set of inputs. 

Thisis the type of AI that has been incorporated in many applications foryears. For example, Google Maps 

telling the bestway to a destination, or Netflix recommendations. Discriminative AI may be trained on a bunch 

of animal pictures, and when given a picture, it can tell what is in that picture.Foundation models and generative 

AI are developed with deep learning.And they can be multimodal, meaning the inputs and outputs can take 

many forms.The most talked-about form at the moment is text-to-text, wherein input and output are bothtext. 

Other forms are text-to-image, image-to-text, and even text-to-video. 

Parametersare variables in an AI system whose values are adjusted duringtraining to create a desired 

output.For example, all those connection weights in a neural network pictureare considered parameters. 

Theseparameters are adjusted during the model training process.There is a pre-training phase, which refers to 

the step where the model istrained on a whole bunch of general data, inthe world of large models, a few billion 

words, generally from theinternet.Then there is fine-tuning, where the model is further trained on a smaller setof 

datawhich is context specific.Inference is the process when the model processes inputs and then produces 

outputs. Every time a question is typed into ChatGPT and it provides ananswer, it just performs inference. 

Training these AI models requiresa lot of compute. Compute is measured in floating-point operations, or 

flops.Flops are the number of calculations, so additions, multiplications, performed. Since training a neural net 

is very simplistically a bunch of matrix multiplication, calculation steps are needed to perform this 

multiplication, which translate into flops. Flops are often used as an approximation of computational resources 

used in model training or used to discuss the efficiency of a model. The less flops per parameter means the 

model is more efficient at doing thecalculations. A Graphics Processing Unit (GPU) is a type of hardware on 

which neural networks are trained.It is a specialized version of a Central Processing Unit, the processorin a 

computer that executes instructions or algorithms.Lastly, the data center is where the compute infrastructure is 

housed. 
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Flops, GPUs, CPUs, and data centers are important whenconsidering the environmental impacts of AI. For 

instance, data centerstake a significant number of resources to function, between the electricity torun and keep 

the GPUs cool to the water needed to keep the cooling systemrunning. 

 

1.2 A Brief History of AI 

As mentioned earlier, many trace the origins of AI toProfessor John McCarthy, who coined the term in 

the 1950s.There were others around that time.Alan Turing, who wrote about the possibility of machine 

intelligence in the1940s and 50s, or Norbert Wiener, a founder of cybernetics.But the field extends back 

earlier.Traditions of machines that imitate intelligence stretch back centuries.An earlier word for artificial 

humans and animals, automaton, stemmed fromGreek roots meaning self-moving.Self-moving machines were 

inanimate objects that seemed to borrow the definingfeatures of living creatures.Vokosin's duck was an example 

of this.It was a mechanical duck which appeared to have the ability to eat kernels ofgrain.And Manzetti's flute 

playing automation was in the shape of a man.He was life-sized, seated in a chair, and hidden inside the chair 

were levers connecting rods and compressed airtubes, which made the lips and fingers move.Dendrel was an AI 

project started in the 1960s at Stanford University by EdwardPhenenbaum.It was a computer system which 

automated the decision-making process and problem-solving behavior of organic chemists. It utilized expert 

systems, which is an algorithm designed to solve complexproblems by reasoning, mainly through if-then rules. 

Inthe 1970s, backpropagation was invented.This is gradient estimation commonly used for training neural 

networks.And between the 1970s and the 1990s, there were two AI winters, a period ofreduced funding and 

interest in AI research, though therewere still many who were working on it.And in the mid-90s, the second AI 

winter begins to thaw.And in 1997, Deep Blue, an IBM supercomputer expert system trained to playchess, 

defeats the then world champion chess player.And in 2005, Stanley, a self-driving car developed at Stanford 

University, wonthe DARPA Grand Challenge, which is a self-driving car competition.In 2011, IBM Watson 

wins Jeopardy.This is the leading edge of a new generation of computers capable ofunderstanding questions 

posed in natural language and answering them far moreaccurately than any standard search technology.This 

represented a big leap in natural language processing.And in 2012, a convolutional neural network called 

AlexNet won the ImageNetChallenge.The ImageNet Challenge is where researchers run image classification 

algorithmson ImageNet, a database of over 14,000 images.The goal is to create an algorithm that correctly 

identifies as many of theimages as possible. 

AlexNet was the first time a neural network competed in the ImageNet Challenge.It made the 

community realize the power of neural nets when there was asufficient amount of training data.In the ImageNet 

database, an AlexNet winning that challenge was part of whatkicked off the next era of AI systems.Systems 

based on neural networks trained on large amounts of data. In 2016, AlphaGo, a deep neural network trained by 

Google DeepMind,mastered the ancient game of Go.Defeating a Go world champion and built upon this new 

era of AI, systems basedon neural nets trained on a lot of data, this time for playing games.In 2019 and 2020, 

OpenAI developed GPT-2 and GPT-3, generative pre-trainedtransformer, a deep neural network trained using 

the internet to generate whatseems like any type of text.And in 2022, they released it with a nice user interface 

to the public andcalled it ChatGPT. Themoment ChatGPT was released publicly, the moment thepublic became 

aware of the progress and opportunities in the field ofAI that had been happening for decades.Since then, many 

similar models have been released.  

 

1.3 Compute, Data, and Algorithms 

As mentioned earlier, there are three key ingredientsthat have enabled recent progress on AI: Compute, 

data, and algorithms.The chart in Figure 2 is from Stanford University's AI Index and shows the compute 

andteraflops needed to train notable machine learning systems.The x-axis is time and the y-axis is teraflops. 

They-axis is a log scale, meaning the amount of compute has beengrowing exponentially over time.And this has 

only been feasible due to the new generation of GPUs that processthese large amounts of data. 
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Figure 2 Training compute of notable AI models by sector, 2003–24[1] 

 

The chart in Figure 3 is from a research organization called Epoch AI (https://epoch.ai/). It shows the 

peak computational performance of common ML accelerators at a given precision. Time is on the x-axis and 

flops is on the y-axis. It may be noted that GPU performance is improving, especially in machine learning 

specific GPUs. The chart shows trendlines for number formats with eight or more accelerators: FP32, FP16 (FP 

= floating-point, tensor-* = processed by a tensor core, TF = Nvidia tensor floating-point, INT = integer) 

compute performance for various GPUs over time.  

 

 
Figure 3  Peak computational performance of common ML accelerators at a given precision [2] 

 

The second ingredient that has enabled recent progress on AI is data.Epoch AI reports that models are 

using more and more training data across all domains of ML. In language modeling, datasets are growing at a 

rate of 3.5 times per year (Figure 4). The largest models currently use datasets with tens of trillions of words. 

The largest public datasets are about ten times larger than this, for example Common Crawl contains hundreds 

of trillions of words before filtering. 
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Figure 4 Size of datasets used to train language models [1] 

 

The third ingredient that has enabled recent progress on AI is algorithms.In recent years, the 

performance of AI algorithms has been improving. An AI benchmark is a standardized test used to evaluate the 

performance and capabilities of AI systems on specific tasks. For example, ImageNet is a canonical AI 

benchmark that featuresa large collection of labeled images, and AI systems are tasked with classifying these 

images accurately. Tracking progress on benchmarks has been a standard way for the AI community tomonitor 

the advancement of AI systems. Figure 5 illustrates the progress of AI systems relative to human baselines for 

eight AI benchmarks corresponding to 11 tasks (e.g., image classification or basic-level reading 

comprehension). As of 2024, there are very few task categories where human ability surpasses AI. Even in these 

areas, the performance gap between AI and humans is shrinking rapidly. For example, on MATH, a benchmark 

for competition-level mathematics, state-of-the-art AI systems are now 7.9 percentage points ahead of human 

performance, a significant improvement from the 0.3-point gap in 2024. 

 

 
Figure 5 Select AI Index technical performance benchmarks vs. human performance [1] 
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1.4 AI Benchmarks  

Historically, most AI benchmarks have focused on performance and accuracy. However, as these tools 

start to have a larger and larger impact on society, there have been new benchmarks developed and calls to 

develop even more to focus on aspects like toxicity, bias, and even energy efficiency. This section highlights a 

few such benchmarks. 

Stanford researchers introduced HELM, Holistic Evaluation of Language Models in 2022. It is 

designed to evaluate LLMs across diverse scenarios, such as readingcomprehension, language understanding, 

mathematical reasoning, and more.They look at this versus diverse metrics, such as accuracy, 

collaboration,fairness, bias,toxicity.HELM assessed 142 models from severalleading companies and used what 

they call a min-win rate to track averageperformance across all scenarios.The team also developed HIME, 

Holistic Evaluation of Image Models. 

MMMU is the Massive Multidiscipline Multimodal Understanding Benchmark.This benchmark 

comprises of about 11,000 college-level questions from six coredisciplines, art, business, science, health, 

medicine, social science,technology, and others.In addition to text, the question formats include charts, maps, 

tables, and chemical structures.MMMU is one of the most demanding tests of AI to date.GPT-4.0 won with a 

score of 69.1%. 

MLPerf was developed by MLCommons, a consortium of AI leaders from academia,research labs, and 

industry.Within MLPerf, there are various benchmarks: ML Perf Training, ML Perf Inference, AI Safety, ML 

Perf Storage, etc.In the training challenge, participants train ML systems to execute varioustasks using common 

architecture.Tasks include image recognition, recommendation, natural language processing,and more. 

Entrantsare ranked on their absolute wall clock time.The inference challenge measures how fast a trained AI 

system can processinputs and produce outputs, across similar tasks, image recognition, recommendation, natural 

language processing. TheMLPerf inference includes power measurement.These tools and techniques 

complement the performance benchmarksenable reporting and comparing energy consumption,performance, 

and power for submitting systems. Similarly, HULKis a multitask energy efficiency benchmark for natural 

languageprocessing used to evaluate energy efficiency based on the time and the cost inpre-training, fine-tuning, 

and inference. 

 

1.5 Applications of AI 

The previous section discussed the progress AI has made in the past decade due to larger datasets, 

better performing GPUs, and better performing algorithms. This section will explore cutting-edge applications 

of this emerging technology across various fields such as healthcare, robotics, education, and sustainability. The 

aim is to provide essential context on the technology's potential to better society. 

Two significant applications of AI in healthcare are in the field of medical imaging and the field of 

biological discovery. AI algorithms, particularly deep learning models, have shown remarkable accuracy in 

analyzing medical images such as X-rays, CT scans, and MRIs [3]. These AI systems can detect abnormalities, 

assist in early diagnosis of diseases like cancer, and even predict patient outcomes. AI is accelerating the drug 

discovery process by analyzing vast amounts ofbiological and chemical data to identify potential drug 

candidates [4].Machine learning algorithms can predict how different compounds might interactwith specific 

proteins or disease targets, reducing the time and cost ofdeveloping new medications [5]. 

A notable example, Google DeepMind made history when its co-founder and CEO, Demis Hassabis, 

and research director John Jumper were awarded the Nobel Prize in Chemistry in 2024 for their groundbreaking 

work on AlphaFold, an AI system that predicts the 3D structure of proteins from their amino acid sequences. 

AlphaFold addressed a 50-year-old grand challenge in biology: accurately determining protein structures, which 

are crucial for understanding biological processes and developing new medications. By leveraging deep learning 

techniques, AlphaFold achieved unprecedented accuracy in predicting protein folding, significantly accelerating 

research in fields like drug discovery and disease understanding. 

In education, AI has the potential to enhance the educational experience byproviding more 

personalized, accessible, and effective learning opportunities.There have been many studies looking at the 

positive impact of a good personaltutor on student learning.However, not every classroom or family has the 

resources to obtain such aperson. AI-based tutoring systems can provide students with one-on-one guidance 

andsupport, simulating the experience of working with a human tutor. They can tailor educational content and 

pacing to individualstudent needs, by analyzing student performance data, learning patterns, and preferences 

tocreate customized learning paths.These systems use natural language processing and machine learning 

tounderstand student queries, provide explanations, and offer targeted feedback. This approach can help address 

the diverse learning needs of students andpotentially improve engagement.They can also extend access to high-

quality tutoring and provide additionalsupport outside of classroom hours.Similarly, these tools could be used to 

augment teachers in creating a morepersonalized experience for their students.  
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AI has significantlyprogressed in the field of robotics.Two examples that stand out for their 

transformative potential are roboticmanipulation through reinforcement learning and robotic-assisted 

surgery.Robotic manipulation involves enabling robots to interact with objects in theirenvironment, a task that is 

inherently challenging due to the complexity ofphysics, object variability, and the need for precision. 

Forexample, it is very difficult for a robot to know how much force toapply when picking up a blueberry versus 

a ball.Recent advancements in AI, particularly in reinforcement learning, haveempowered robots to learn and 

refine manipulation tasks through trial anderror, leading to more adaptable and generalizable skills.Although, 

the field of robotics tends to have less data, many are working to changethis.AI-powered surgical robots assist 

surgeons in performing complex procedureswith greater accuracy than human hands alone can achieve, 

especially inminimally invasive surgeries.There is also great promise for robotics to bring certain healthcare 

proceduresto locations that do not have physicians with the expertise.So, physicians in locations far away could 

control a robot assisted by AI inrural locations. 

AI is playing a crucial role in combating climate change by enabling moreefficient resource 

management, better predictions, and innovative solutions toreduce greenhouse gas emissions.Two of the most 

exciting applications of AI in this area are climate modelingand prediction and renewable energy 

optimization.Accurate climate modeling is essential for understanding the potential impactsof climate change 

and developing strategies to mitigate them.AI enhances traditional climate models by analyzing vast amounts of 

data fromvarious sources, including satellites, weather stations, and ocean buoys tocreate more precise and 

timely predictions.The transition to renewable energy is crucial for reducing greenhouse gasemissions, and AI 

plays a vital role in optimizing the production, storage, anddistribution of renewable energy, making it more 

efficient and reliable. One behavior to reduce greenhouse gas emissions is the electrification of ourvehicles.In 

this case, the transition to electric vehicles will challenge the electricgrid, for instance, if everyone went home at 

5 p.m. to charge their car.Researchers at Stanford developed a probabilistic framework that models EVcharging 

demand by analyzing drivers' behavior.They develop a use case study in California to present scenarios 

forelectricity demand in 2030, making this a valuable tool for planners andpolicymakers as they prepare for the 

growing EV market and energy transition.These innovations underscore the power of AI to revolutionize the 

world, butthey also bring to light important questions and challenges that mustbe addressed. 

 

1.5 Ethical and Societal Implications 

As AI is integrated into critical sectors like health care, education, andenvironmental management, it is 

crucial to consider the ethical, social, andenvironmental implications of these technologies.Multiple studies have 

revealed significant bias due to non-diverse trainingsets.A study published in 2020 found data used to train 

health care models primarilycame from just three states in the United States, California, Massachusetts,and New 

York, and these data sets lacked representation from the broader U.S. population [6].This can have many 

downstream consequences, one of which is that the model willnot work as well on populations not 

represented.This can impact health outcomes of these populations.In general, the data sets used to train AI tend 

to be mostly from westerncountries. 

As mentioned earlier, the increasing size of models has created an increasing demand for compute, 

which is housed in data centers. Figure 6 shows the shows a map of data centers in different countries around 

the world. Table 1 lists the number of data centers in each country (only for countries having more than 50 data 

centers). DataCenterMap lists 9649 data centers from 164 countries worldwide. 

 

Table 1 Number of data centers in different countries (src: datacentermaps.com) 
Country Data centers Country Data centers Country Data centers 

USA 3680 Brazil 171 Singapore 74 

Germany 424 Italy 169 South Korea 73 

United Kingdom 418 Spain 156 Norway 65 

China 346 Indonesia 139 Chile 62 

France 264 Ireland 121 Mexico 59 

Canada 264 Switzerland 109 Romania 59 

India 262 Malaysia 102 Israel 56 

Australia 256 Sweden 99 Denmark 55 

The Netherlands 192 Hong Kong 93 New Zealand 54 

Japan 182 Poland 84 United Arab Emirates 54 

Russia 173 Turkey 82 Finland 50 

 

https://www.datacentermap.com/usa/
https://www.datacentermap.com/brazil/
https://www.datacentermap.com/germany/
https://www.datacentermap.com/italy/
https://www.datacentermap.com/united-kingdom/
https://www.datacentermap.com/spain/
https://www.datacentermap.com/china/
https://www.datacentermap.com/indonesia/
https://www.datacentermap.com/france/
https://www.datacentermap.com/ireland/
https://www.datacentermap.com/canada/
https://www.datacentermap.com/switzerland/
https://www.datacentermap.com/india/
https://www.datacentermap.com/malaysia/
https://www.datacentermap.com/australia/
https://www.datacentermap.com/sweden/
https://www.datacentermap.com/the-netherlands/
https://www.datacentermap.com/hong-kong/
https://www.datacentermap.com/japan/
https://www.datacentermap.com/poland/
https://www.datacentermap.com/russia/
https://www.datacentermap.com/turkey/
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Figure 6Data centers in different countries (src: datacentermaps.com) 

 

These data centers require significant resources torun:land, energy, and water for cooling.This raises 

concerns, especially in locations where these resources arelimited.Google’s data centers worldwide consumed 

nearly 6 billion gallons (22.7 billion liters) of water in 2024 [7]. The company’s ‘2024 Environmental Report’ 

showed an 8% annual increase in water consumption, driven by advancements in search functions, AI, and other 

projects. AI remains the primary factor behind the surge, with Google’s water consumption having jumped 20% 

in 2022. For comparison, Türkiye consumed 16.6 billion gallons (63 billion liters) of water in 2022, according 

to the Turkish Ministry of Environment, Urbanization, and Climate Change. Google’s data centers alone 

accounted for nearly one-third of that total [8].TheInternational Energy Agency forecasts that global data 

centerelectricity demands will more than double from 2022 to 2026, with AI playing amajor role in that increase 

[9]. 

The opportunities for AI to better society, as discussed in this section, areimmense.In2022, Google 

DeepMind released the results ofexperiments inwhich it trained a reinforcement learning agent called 

BCOOLER to optimizecooling procedures for Google's data centers.At the end of one particular three-month 

experiment, BCOOLER achieved roughly12.7% energy savings [10]. Figure 7 shows the energy savings results 

over time for one of the live experiments. Each point on the curve represents the cumulative normalized savings 

since the beginning of the experiment. 

 
Figure 7 Energy savings results over time for one of the live experiments of DeepMind’s BCOOLER [10] 
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II. BACKGROUND AND PRIMER ON ENERGY & CARBON ACCOUNTING 

 Thissection discusses measuring and reportingthe carbon emissions of AI systems. The carbon 

emissions from training frontier AI models have steadily increased over time. Figure 8 shows the carbon 

emissions of selected AI models over the years. While AlexNet’s emissions were negligible, GPT-3 (released in 

2020) reportedly emitted around 588 tons of carbon during training, GPT-4 (2023) emitted 5,184 tons, and 

Llama 3.1 405B (2024) emitted 8,930 tons. DeepSeek V3, released in 2024, and whose performance is 

comparable to OpenAI’s o1, is estimated to have emissions comparable to the GPT-3, released five years ago.  

 

 
Figure 8 Estimated carbon emissions from training select AI models and real-life activities, 2012–24 [1] 

 

This section introduces the terms and concepts required as a primer for energy accounting.In recent 

years, many cloud providers have set ambitious sustainability targetsand are working towards carbon neutrality 

by offsetting their emissions withRenewable Energy Certificates (RECs).Achieving carbon neutrality means an 

organization has a net zero carbonfootprint.Each purchased REC certifies that one megawatt of renewable 

energy has beenadded to the grid by the organization, offsetting an equivalent amount of non-renewable energy. 

Google claims that it became the first major company to become carbon neutral, in 2007. And in 2017, 

it became the first company to match 100% of its electricity consumption with renewable energy [11]. Google 

Cloud purchases enough renewable energy, i.e. wind and solar power to match its data centers’ electricity 

consumption. Since the power is averaged annually, a particular data center, at any given time, may have too 

much renewable power, or too little. Google feeds the extra power into the local grid and draws power from the 

local grid when renewable generation is lacking. Google aims to run its business on carbon-free energy 

everywhere, at all times, by 2030. 

 

 
Figure 9 Hourly carbon-free performance of a Google data center [11] 

 

Energy for data centers in many locations are not currently derived from carbon-neutral sources, and 

whenrenewable energy is available, it is still limited tothe equipment available to produce and store it.The 

energy consumption of a system can be measured in joules or watt-hours.A watt is a unit of power, and one watt 

is equivalent to one joule per secondand represents the amount of energy needed to power the system.Lifecycle 

accounting refers to all stages of the product lifecycle.In the case of AI models, this would include activities like 

materialextraction and manufacturing to end-of-life disposal.However, it is currently quite difficult to attribute 
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hardware manufacturingand disposal on a per-equipment basis. Most researchers focus on the 

energyconsumption of model training and deployment. 

Pre-training an AI model refers to the steps where a whole bunch ofgeneral data is fed into the 

model.Fine-tuning is when the model is further trained on a smaller set of context-specific data, and inference is 

when the model processes inputs and producesoutputs.Energy impacts of pre-training and fine-tuning are 

generally accounted for inthe model training step, and inference is generally accounted for in thedeployment 

step. 

When measuring energy used during training and deployment, the focusis mainly onthe data center.This 

includes cooling, lighting, power conversion, networkhardware, and storage. Storage can include aspects like 

CPUs and DRAM.DRAM, dynamic random access memory, is a type of memory that is typically usedfor the 

data or program code needed by the computer to function. 

Another important term is power usage effectiveness, or power unitefficiency (PUE).This is a ratio of 

Total Facility Energy (all energy used in the data center including lighting, cooling, power systems, etc.) to IT 

Equipment Energy (energy used only by computing equipment such as servers, storage, networking devices). 

PUE describes how efficiently a computer data center uses itsenergy.An ideal PUE is one.An accurate 

accounting for all of the components of this ratio requires complex modelingand varies depending on workload 

or utilization of the CPUs and GPUs (which is usually reported as a percentage). 

Carbon accounting at project scale can be defined as measuring thevaluation of carbon and green house 

gas (GHG) emissions and offsetting from projects.This assessment informs project owners and investors and 

establish standardizedmethodologies.Carbon and GHG emissions are typically measured in CO2 

equivalents.This is the amount of carbon and other GHG converted to carbon amounts releasedinto the 

atmosphere as a result of the project. Carbon offsetting is when organizations invest in green initiatives 

thatbalance out the carbon emissions as a result of the project. Forexample, an organization might support solar 

or wind energy, whichproduce more renewable energy than the energy needed to power their datacenters and 

used to train their AI models. U.S. Environmental Protection Agency defines the social cost of carbon 

(SCCO2)as the measure in dollars of the long-term damage done by a ton of carbon dioxide emissions in a given 

year.This dollar figure also represents the value of damage avoided for a smallemission reduction. 

Carbon emissions for a compute system can be estimated by understanding thecarbon intensity of the 

local energy grid and the energy consumption of thesystem.Any given energy grid will have a carbon intensity, 

the grams of CO2 equivalentemitted per kilowatt hour of energy used.This carbon intensity is determined based 

on the energy sources supplying thegrid, and each energy source has its own carbon intensity. 

Electricity Maps [12] is a powerful tool for understanding and acting on electricity carbon footprints. It 

provides a live 24/7 visualization of where electricity comes from and how much CO2 equivalent is emitted 

during generation. In addition to current emissions data and historical trends, it provides forecasts up to 72 hours 

ahead, covering over 200 zones worldwide, with granular data on electricity mix, carbon intensity, and prices.  

The tool also offers a developer API and an open-source codebase (GitHub licensed), enabling integration into 

apps and dashboards. Web and mobile app display intuitive maps, hourly CO₂ readings, breakdowns of 

generation sources, emissions, and cross-border flows make Electricity Maps a significant tool in the research 

for green energy. 
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Figure 10 Live Electricity Mix and Carbon Emissions for India on July 15, 2025 (src: 

https://app.electricitymaps.com/zone/IN/72h/hourly) 

 

2.1 AI Carbon Accounting Methodologies 

This section discusses two methodsused to estimate the carbon emissions of AI models. 

Strubell et al. [13] quantify the approximate computational, financial andenvironmental costs of training a 

variety of recently successful neural network models forNLP. Authors performed an analysis of the energy 

required to train a variety of NLP models such as transformer, ELMo (Embeddings from Language Models), 

BERT (Bidirectional Encoder Representations from Transformers), GPT-2 (Generative Pre-trained 

Transformer). Themodelswere trained using the default settingsprovided in table 2. 

 

Table 2 Computational requirements of popular NLP models 
Model Parameters Hardware Used Training Time Notes 

Transformer 

(T2Tbase) 
65M 

8× NVIDIA P100 

GPUs 
12 hours 300k steps reported 

Transformer 

(T2Tbig) 
213M 

8× NVIDIA P100 

GPUs 

84 hours (3.5 

days) 
300k steps 

NAS-Transformer — 1× TPUv2 core 
10 hours (300k 

steps) 

Full NAS search: 979M steps = 32,623 TPU hours 

or 274,120 GPU hours 

ELMo — 
3× NVIDIA GTX 

1080 GPUs 

336 hours (14 

days) 
Based on stacked LSTMs 

BERT (Base) 110M 16× TPU chips 
96 hours (4 

days) 
Devlin et al. (2019) 

BERT (Base) 110M 
64× V100 GPUs (4 

DGX-2H) 

79.2 hours (3.3 

days) 
NVIDIA implementation 

GPT-2 (Large) 1542M 32× TPUv3 chips 
168 hours (7 

days) 
Trained on massive unsupervised data 

Each model was trainedfor a maximum of 1 dayona NVIDIA Titan X GPU, except forELMo which 

was trained on 3 NVIDIAGTX 1080 Ti GPUs, sampling the GPU power consumption repeatedly. CPU power 

consumption was sampled using Intel’s RunningAverage Power Limit interface. The total time expected for 

models to train to completion was estimated using training times andhardware reported in the original papers of 

the models. Calculation of the power consumption in kilowatt-hours(kWh) was done as follows.  

𝑝𝑡 = 1.58𝑡 × (𝑝𝑐 + 𝑝𝑟 + 𝑝𝑔) ÷ 1000 

Where,  

pc:average powerdraw (in watts) from all CPU sockets during training 

pr:average power draw from allDRAM (main memory) sockets 

pg: average power draw of a GPU during training 

g:number of GPUs used to train 

t : time taken to train the model 

PUE coefficient: 1.58 (2018 global average for data centers) 
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Thus, the total power consumption as combined GPU,CPU and DRAM consumption is multiplied by PUE, 

which accounts for the additional energy required to support the compute infrastructure (mainly cooling). 

Authors provide the following formula to convert power toestimated CO2 emissions: 

𝐶𝑂2𝑒 = 0.954 𝑝𝑡 

This conversion considers the relative proportions of different energy sources (primarily natural gas, 

coal, nuclear and renewable) consumedto produce energy in the United States. Authors believe that the U.S. 

breakdown of energy provides a reasonable estimate of CO2 emissions per kilowatt hour of compute energy 

used as it is comparable to that of the mostpopular cloud compute service, Amazon Web Services. 

The second methodology [14] builds a framework to track and report the environmental impact of machine 

learning experiments that aims to promote transparency and accountability in research by encouraging authors 

to document energy usage and emissions alongside traditional performance metrics. 

At the core of the framework is the Experiment Impact Tracker, a lightweight, Python-based tool that 

logs system-level metrics during machine learning training. With just a few lines of code, it begins collecting 

information such as CPU and GPU usage, power draw, memory usage, disk activity, and training duration. The 

tracker identifies the energy grid region of the machine running the experiment (via IP address) and links it with 

regional carbon intensity data, which is used to estimate the experiment’s emissions. It can even track real-time 

carbon intensity in California by polling data from CAISO, highlighting how carbon output can vary depending 

on time of day and grid energy sources. The framework employs a fair accounting method to assign energy 

consumption to individual experiments, especially in shared environments. It does this by monitoring per-

process resource utilization and calculating total energy using a PUE factor to account for infrastructure energy 

overhead. For example, if a training process uses 25% of the total CPU time during an experiment, it is credited 

with 25% of the CPU energy consumption. This ensures accurate measurement even when multiple jobs run 

concurrently on the same machine. The resulting energy usage is then converted into carbon emissions using the 

following formula. 

𝑒𝑡𝑜𝑡𝑎𝑙 = 𝑃𝑈𝐸 ∑ (𝑝𝑑𝑟𝑎𝑚𝑒𝑑𝑟𝑎𝑚 + 𝑝𝑐𝑝𝑢𝑒𝑐𝑝𝑢 + 𝑝𝑔𝑝𝑢𝑒𝑔𝑝𝑢)
𝑝

 

Where, 

presource: percentage of system resource used by the attributable processes relative to the total in-use resources 

eresource: energy usage of that resource 

To support reproducible and accessible reporting, the framework includes a script that automatically generates 

HTML appendices with graphs, tables, and summaries of energy and carbon metrics. These appendices can be 

published alongside research papers, making it easier for readers to understand the environmental costs of model 

training. The broader goal of the framework is to foster a culture of sustainable AI research, where energy 

efficiency and carbon awareness become standard parts of model evaluation and scientific communication. 

 

III. REPORTING CARBON EMISSIONS 

The previous section discussed mechanisms to report carbon impact and this section discusses some 

tools used. TheCodeCarbon tool (https://codecarbon.io/)considers the location of the datacenter of the cloud 

provider and the CO2 emissions of the power grid at thatlocation. This information is generally available on one 

of the websites of the cloudproviders, such as AWS, Google, and Azure.If the carbon intensity in a certain 

location is not available, the CodeCarbonteam uses the electricity mix as a weighted average with the carbon 

intensityof each component. Forexample, if the energy mix for Germany is 9% biomass, 20% coal, 3% 

wind,56% solar, etc., the carbon intensity of those mechanisms can be obtained based on the data from the 

website electricitymaps.com and an energy mix can be derived. Ifthese mixes are not available, theaverage of 

475 grams of CO2equivalents per kilowatt hour would be applied.CodeCarbon uses a scheduler that by default 

calls for a measure every 15seconds, which the user can adjust. Likeother methodologies, power usage from 

GPU, CPU, and RAM are tracked. Foreach experiment, output is provided through a CSV or a webapplication. 

Users can see the net power consumption and carbon equivalents for the projectand comparisons to everyday 

activities, like driving a car or watching TV. 

The Microsoft Emissions Impact Dashboard is a Power BI–based tool designed to help Azure and 

Microsoft 365 customers monitor, analyze, and report the greenhouse gas emissions associated with their cloud 

usage Originally launched in 2020 as the ‘Microsoft Sustainability Calculator’, the solution was relaunched as a 

fully featured dashboard by late 2021. The Emissions Impact Dashboard provides transparency into greenhouse 

gas emissions associated with using Microsoft cloud services and enables a better understanding of the root 

causes of emissions changes. Organizations can measure the impact of Microsoft cloud usage on their carbon 

footprint, and they can drill down into emissions by month, service, and datacenter region. The tool also enables 

customers to enter un-migrated workloads and get an estimate of emissions savings from migrating to the 

Microsoft cloud. Newly added data protection allows Emissions Impact Dashboard administrators within an 

organization to control who can see their company data in the tool. 

https://codecarbon.io/
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Figure 11 The main Microsoft Emissions Impact Dashboard focuses on showcasing overall emissions and 

usage over time, as well as carbon intensity, which is a metric of carbon efficiency specific to cloud usage. 

(src: https://azure.microsoft.com/) 

 
Figure 12 A custom Azure Automation playbook collects activity logs in Power BI via Power BI SDK. It 

then transforms and feeds this log into an Azure Log Analytics workspace so that organizations can use 

Azure Monitor for monitoring, query, and alert purposes. (src: https://learn.microsoft.com/) 

 

https://learn.microsoft.com/
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3.1 Importance of Carbon Reporting  

Many cloud providers are striving forcarbon neutrality by using RECs, to offset theiremissions. 

• One REC is issued when one megawatt hour of electricity generated from arenewable energy source is 

delivered to the grid. 

• Users can buy RECs from renewable energy companies to offset their electricityconsumption.For 

instance, a company might purchase RECs and then sell the associatedrenewable energy back to the 

grid that supplies their data centers. 

• However, this approach supports future renewable energy production rather thanaltering the current 

energy mix on the grid. 

• It is important to note that even if a cloud provider claims carbon neutralityfor their data centers, the 

actual CO2 emissions can significantly varydepending on the region and even the time of day. 

Solarenergy cannot be generated at night, for example. 

• Forthis reason, most of the methods and trackers do not consider offsetswhen estimating the carbon 

emissions of AI models. 

Most of the research works advocate for the reporting of carbonemissions in the world of machine 

learning.No methods have been discussed to reduce those emissions.However, the first step in reducing 

emissions is understanding them.Without consistent and accurate accounting, theimpacts of these models and 

what consequences they can have on society will be unknown. 

In 2020, Hulk, a multitask energy efficiency benchmark for natural languageprocessing, evaluated energy 

efficiency based on the time and the cost inpre-training, fine-tuning, and inference. In2021, MLPerf, one of the 

most popular benchmarks to measure training andinference performance for hardware, software, and services, 

added a systempower measurement to complement performance measurements. Apart from these, there haven’t 

been any broad energybenchmarks discussed within the AI community.Pairing energy and carbon emissions 

benchmarks directly in addition toperformance or accuracy benchmarks can institute a climate-friendly 

culturewithin the AI community and spread information about the most energy andclimate-friendly 

combinations of hardware, software, and algorithms. 

Figure 13 shows an evaluation of four baseline reinforcement learning algorithms, namely, Proximal 

Policy Optimization (PPO), Advantage Actor-Critic (A2C), A2C+Vtraces, and Deep Q Networks (DQN), in 

two evaluation environments, PongNoFrameskip-v4 and BreakoutNoFrameskip-v4[14]. The models are trained 

for only 5M timesteps, less than prior work, to encourage energy efficiency and evaluate for 25 episodes every 

250k timesteps. The Average Return is plotted across all evaluations throughout training (giving some measure 

of both ability and speed of convergence of an algorithm) as compared to the total energy in kWh. Weighted 

rankings of Average Return per kWh place A2C+Vtrace first on Pong and PPO first on Breakout. Using PPO 

versus DQN can yield significant energy savings, while retaining performance on both environments(in the 5M 

samples regime). The experiment shows that while no algorithm is the energy efficiency winner,the light blue 

dots attain balance between efficiency and performance. Thelight blue dots are the PPO dots, and they're 

relatively low on the x-axis,power, and high on the y-axis, asymptotic return. 

 

 
Figure 13 Average Return versus total power of A2C, PPO, DQN, and A2C+VTraces on 

PongNoFrameskip-v4 (left) and BreakoutNoFrameskip-v4 (right) [14] 

 

Accurate reporting of energy metrics also enables cost-benefit analysis thatwould otherwise be 

impossible.For instance, the estimated revenue generated by a model could be comparedagainst its electricity 

costs, or the carbon emissions saved by a model couldbe weighed against the emissions it generates. 
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IV. CASE STUDY: ENVIRONMENTAL IMPACT OF BLOOM 176B 

BLOOM (BigScience Large Open-science Open-access Multilingual Language Model) is a 176-billion-

parameter autoregressive large language model developed as part of the BigScience Project [15], a collaborative 

international effort to democratize large-scale AI research. It represents not only a scientific and technical 

milestone, but also one of the most transparent large-scale model development projects in terms of 

environmental reporting. Unlike many proprietary models, BLOOM was accompanied by a full lifecycle carbon 

footprint assessment, which provides a rare and instructive insight into the environmental costs of developing 

and deploying such models. 

 

4.1 Lifecycle Emissions Breakdown 

The training phase of BLOOM took place on the Jean Zay supercomputer in France, a system partially 

powered by nuclear energy, which significantly reduced its carbon intensity compared to fossil-fuel-heavy grids. 

The dynamic emissions—i.e., the electricity consumed directly during training—were estimated at 24.7 tonnes 

of CO2 equivalent (tCO₂eq). However, a more holistic environmental analysis reveals that training emissions are 

only one part of the model’s overall footprint [16]. 

When taking into account hardware manufacturing (embodied emissions) and idle energy consumption, the total 

emissions nearly double. Specifically: 

• Idle energy—the electricity used by the infrastructure (such as GPUs and system components) when 

not actively training—contributed an estimated 14.6 tCO₂eq. 

• Hardware manufacturing and embodied emissions added another 11.2 tCO₂eq, which includes the 

emissions from producing and shipping high-performance GPUs, CPUs, and servers used during the 

training. 

In total, the end-to-end emissions from training BLOOM are estimated at approximately 50.5 tCO₂eq, 

demonstrating that focusing only on compute-time electricity underestimates the environmental burden by more 

than 50%. 

 

4.2 Inference and Deployment Emissions 

The BLOOM team also undertook a post-training evaluation of energy use during inference, which is 

particularly important since LLMs are often deployed at scale, serving millions of queries. Power measurements 

were conducted during real-time API calls, showing that per-GPU energy draw ranged from 78W to 171W 

depending on the load and batch size. Although each individual inference may only consume a small amount of 

energy, sustained low-utilization (such as idle servers during off-peak hours) can lead to significant emissions 

over time. 

To mitigate this, the team recommended deploying batching strategies, improving resource sharing, 

and using dynamic instance scaling to reduce the environmental cost of hosting such models. Their findings 

suggest that optimization during inference may be just as important as reducing training time, especially when 

the model serves a large user base. 

 

4.3 Broader Implications 

The BLOOM case study reinforces the argument that AI sustainability efforts must move beyond 

training emissions. It highlights the importance of including idle power, hardware lifecycle emissions, and 

geographical energy grid carbon intensities in any serious environmental evaluation. One important insight is 

that even if a supercomputer is relatively clean (due to low-carbon energy sources like nuclear or hydro), the 

overall impact can still be high when idle energy and hardware manufacturing are factored in. 

Moreover, BLOOM sets a precedent in environmental transparency for the AI community. By publishing 

detailed energy metrics, carbon accounting methodology, and the breakdown of hardware usage, the BLOOM 

project provides a model for responsible and open AI development. It also underscores the need for future 

models to be optimized not only for performance but also for efficiency, carbon-awareness, and sustainability 

over the entire AI lifecycle—from data curation to long-term deployment. 

Figure 14 provides a comparison chart of the estimated carbon emissions for three major AI models—

BERT Base, GPT-3, and BLOOM. BERT Base emits very little CO2 (around 0.65 tonnes) during training due to 

its relatively small size (110M parameters). GPT-3, with 175 billion parameters, has extremely high training 

emissions (~552 tonnesCO₂eq), and this doesn’t account for idle energy or hardware emissions. BLOOM, while 

also a 176B-parameter model, shows significantly lower training emissions (24.7 tonnes)—thanks to the low-

carbon energy mix used (nuclear/hydro). However, when idle energy and hardware manufacturing emissions are 

included, the total rises to 50.5 tonnes, still far below GPT-3. 
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Figure 14  Estimated carbon emissions for BERT Base, GPT-3, and BLOOM 

 

V. RECOMMENDATIONS 

The environmental implications of developing and deploying AI systems are becoming increasingly 

significant as models grow in size, complexity, and usage. Addressing this issue requires a multi-pronged 

strategy involving improved transparency, conscientious design and deployment practices by developers, and 

enhanced user awareness. The following recommendations are structured across three key areas: 

1. Reporting and Transparency 

To foster accountability and enable informed comparisons across models, standardized reporting of 

environmental metrics should become an integral part of AI research and deployment. Publications and 

benchmarks should include comprehensive documentation of energy consumption, carbon emissions, hardware 

specifications, model size, and training duration. Existing frameworks such as the Experiment Impact Tracker 

and corporate tools like Microsoft's Emissions Impact Dashboard provide viable mechanisms for such reporting. 

Furthermore, environmental metrics should be extended beyond the training phase to include fine-tuning, 

inference, and real-world deployment scenarios. The introduction of sustainability-oriented leaderboards that 

rank models based on carbon efficiency in addition to task performance may further incentivize environmentally 

responsible innovation. 

2. Developer-Led Design and Deployment Decisions 

Developers play a crucial role in minimizing the environmental footprint of AI. This can be achieved by 

prioritizing computationally efficient model architectures and training methodologies. Techniques such as 

model pruning, knowledge distillation, early stopping, and parameter sharing have shown promise in reducing 

energy usage while maintaining competitive accuracy. Moreover, selecting cleaner compute options—such as 

data centers powered by renewable energy or carbon-aware cloud scheduling—can substantially lower 

associated emissions. Where feasible, AI workloads should be scheduled during periods of lower grid carbon 

intensity or run on energy-efficient hardware platforms like optimized TPUs or next-generation GPUs. These 

practices collectively enable a more sustainable AI development lifecycle. 

3. User Awareness and Informed Usage 

End-users, often unaware of the environmental impact of their interactions with AI systems, should be equipped 

with the tools and information necessary to make more sustainable choices. One approach involves embedding 

energy or carbon intensity indicators into user interfaces, particularly for high-consumption features such as 

generative AI queries or continuous model-driven recommendations. Additionally, application-level options 

such as “eco-mode” or “low-impact inference” could be offered to reduce emissions in non-critical use cases. 

Educational outreach—including public campaigns, documentation, and curricular integration—can also play a 

vital role in raising awareness and fostering responsible behavior among users and developers alike. 

These combined strategies—grounded in transparency, thoughtful design, and collective awareness—can 

contribute meaningfully to the sustainable advancement of AI technologies. Future research should further 

explore and validate low-carbon methodologies, while policy and industry standards can help institutionalize 

these practices. 
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VI. CONCLUSION 

As artificial intelligence systems continue to scale in complexity and pervasiveness, their 

environmental impact becomes an increasingly urgent concern. From the energy-intensive process of training 

large language models to the cumulative emissions generated during deployment and inference at scale, AI 

systems contribute meaningfully to global carbon emissions. These impacts are often obscured by a lack of 

standardized reporting and insufficient awareness among both developers and users. 

Addressing these challenges requires a holistic approach that integrates transparency, efficiency, and 

accountability. Reporting mechanisms must be standardized to include energy use, carbon footprint, and 

hardware details, enabling more informed comparisons and sustainable design choices. Developers must adopt 

energy-efficient architectures, leverage cleaner computational infrastructure, and make thoughtful decisions 

about model size and training frequency. At the same time, users should be made aware of the environmental 

cost of AI-driven features and empowered to make lower-impact choices where possible. 

Sustainability must become a foundational consideration in the development and deployment of AI, rather than 

an afterthought. Through collaborative efforts between researchers, industry stakeholders, policymakers, and the 

broader public, we can guide AI innovation toward a future that is not only intelligent and impactful—but also 

environmentally responsible. 

 

REFERENCES 

 

[1]  N. Maslej, "The AI Index 2025 Annual Report," Stanford University, 2025. 

[2]  M. Hobbhahn, L. Heim and G. Aydos, "Trends in Machine Learning Hardware," 9 November 2023. [Online]. Available: 

https://epoch.ai/blog/trends-in-machine-learning-hardware. [Accessed 13 June 2025]. 

[3]  L. Guo, C. Zhou, J. Xu, C. Huan, Y. Yu and G. Lu, "Deep Learning for Chest X-ray Diagnosis: Competition Between Radiologists 

with or Without Artificial Intelligence Assistance," Journal of Imaging Informatics in Medicine, vol. 37, pp. 922-934, 2024.  

[4]  M. K. G. Abbas, A. Rassam, F. Karamshahi, R. Abunora and M. Abouseada, "The Role of AI in Drug Discovery," ChemBioChem, vol. 
25, no. 14, 2024.  

[5]  Y. Zhang, Y. Wang and C. Wu, Drug-target interaction prediction by integrating heterogeneous information with mutual attention 

network, arXiv, 2024.  

[6]  A. Kaushal, R. Altman and C. Langlotz, "Geographic Distribution of US Cohorts Used to Train Deep Learning Algorithms," JAMA, 

vol. 324, no. 12, pp. 1212-1213, 2020.  

[7]  Google, "2024 Environmental Report," Juky 2024. [Online]. Available: https://sustainability.google/reports/google-2024-
environmental-report/. [Accessed 1 May 2025]. 

[8]  A. Günyol, "Google data centers used nearly 6B gallons of water in 2024," Anadolu Ajansi, 2025. 

[9]  International Energy Agency, "AI is set to drive surging electricity demand from data centres while offering the potential to transform 
how the energy sector works," International Energy Agency, 2025. 

[10]  J. Luo, C. Paduraru and O. Voicu, "Controlling Commercial Cooling Systems Using Reinforcement Learning," DeepMind, 2022. 

[11]  U. Hölzle, "Announcing ‘round-the-clock clean energy for cloud," 14 September 2020. [Online]. Available: 
https://cloud.google.com/blog/topics/inside-google-cloud/announcing-round-the-clock-clean-energy-for-cloud. [Accessed 14 June 

2025]. 

[12]  Tomorrow, Electricity Maps ApS, [Online]. Available: https://www.electricitymaps.com/. [Accessed 15 June 2025]. 

[13]  E. Strubell, A. Ganesh and A. McCallum, "Energy and Policy Considerations for Deep Learning in NLP," in Proceedings of the 57th 

Annual Meeting of the Association for Computational Linguistics, Florence, 2019.  

[14]  P. Henderson, J. Hu, J. Romoff, E. Brunskill, D. Jurafsky and J. Pineau, "Towards the Systematic Reporting of the Energy and Carbon 
Footprints of Machine Learning," Journal of Machine Learning Research, vol. 21, no. 248, pp. 1-43, 2020.  

[15]  BigScience, "BigScience Large Open-science Open-access Multilingual Language Model," 6 July 2022. [Online]. Available: 

https://huggingface.co/bigscience/bloom. [Accessed 21 June 2025]. 

[16]  A. S. Luccioni, S. Viguier and A.-L. Ligozat, "Estimating the Carbon Footprint of BLOOM, a 176B Parameter Language Model," 

Journal of Machine Learning Research , vol. 24, pp. 1-15, 2023.  

 

 

 


