
International Journal of Engineering Research and Development 

e-ISSN: 2278-067X, p-ISSN: 2278-800X, www.ijerd.com 

Volume 3, Issue 5 (August 2012), PP. 62-71 

62 

A Novel Approach To Measure Semantic Similarity  Between 

Words Using Web Search Engine  

Chandrakala.K
1
, Prof. E.V.Prasad

2
 

1Department of Computer Science & Engineering, UCEK, JNTUKAKINADA, Kakinada, Andhra Pradesh, INDIA 
2Professor of Computer Science & Engineering & Registrar-JNTUK, Kakinada, Andhra Pradesh, INDIA 

 

 

 

Abstract—Semantic similarity measures play important roles in Information Retrieval (IR) and Natural Language 

Processing (NLP). Accurately measuring the semantic similarity between two words (or entities) is an important problem 

in web mining. Web mining application such as community mining, relation detection, and entity disambiguation 

requires the ability to accurately measure the semantic similarity between concepts or entities remains a challenging task.  

We propose a novel approach to estimate semantic similarity that uses the information available on the Web to measure 

similarity between words or entities. The proposed method exploits page counts and text snippets returned by a Web 

search engine. We define various similarity scores for two given words W1 and W2, using the page counts for the queries 

W1, W2 and W1 AND W2. Moreover, we propose a novel approach to compute semantic similarity using automatically 

extracted lexico-syntactic patterns from text snippets. These different similarity scores are integrated using support vector 

machines, to leverage a robust semantic similarity measure. The proposed method significantly improves the accuracy 

comparatively the existing methods. 

 

Keywords- Web mining, information extraction, Semantic Similarity, web text analysis. 

I.  INTRODUCTION  
The study of semantic similarity between words has long been an integral part of information retrieval and natural 

language processing. Semantic similarity between entities changes over time and across domains. For example, blackberry is 

frequently associated with phones on the Web. However, this sense of blackberry is not listed in most general-purpose 

thesauri or dictionaries. A user, who searches for blackberry on the Web, may be interested in this sense of blackberry and 

not blackberry as a fruit. New words are constantly being created as well as new senses are assigned to existing words. 

Manually maintaining thesauri to capture these new words and senses is costly if not impossible. We propose an automatic 

method to measure semantic similarity between words or entities using Web search engines. Because of the vastly numerous 

documents and the high growth rate of the Web, it is difficult to analyze each document separately. Web search engines 

provide an efficient interface to this vast information. Page counts and Snippets are two useful information sources provided 

by most Web search engines. Page count of a query is the number of pages that contain the query words. Page count for the 

query W1 AND W2 can be considered as a global measure of co-occurrence of words W1 and W2. For example, the page count 

of the query “blackberry" AND “phone" in Google is 510, 000, 000, whereas the same for “strawberry" AND “phone" is 

only 84, 200, 000. The more than 70 times more numerous page counts for “blackberry" AND “phone" indicate that 

blackberry is more semantically similar to phone than is strawberry. Despite its simplicity, using page counts alone as a 

measure of co-occurrence of two words presents several draw backs. First, page count analyses ignore the position of a word 

in a page. Therefore, even though two words appear in a page, they might not be actually related. Secondly, page count of a 

polysemous word (a word with multiple senses) might contain a combination of all its senses. For an example, page counts 

for apple contain page counts for apple as a fruit and apple as a company. Moreover, given the scale and noise in the Web, 

some words might occur arbitrarily, i.e. by random chance, on some pages. For those reasons, page counts alone are 

unreliable when measuring semantic similarity.  

Snippets, a brief window of text extracted by a search engine around the query term in a document, provide useful 

information regarding the local context of the query term. Semantic similarity measures defined over snippets have been 

used in query expansion [2], personal name disambiguation [3] and community mining [4]. Processing snippets is also 

efficient as it obviates the trouble of downloading web pages, which might be time consuming depending on the size of the 

pages. However, a widely acknowledged drawback of using snippets is that, because of the huge scale of the web and the 

large number of documents in the result set, only those snippets for the top-ranking results for a query can be processed 

efficiently. Ranking of search results, hence snippets is determined by a complex combination of various factors unique to 

the underlying search engine. Therefore, no guarantee exists that all the information we need to measure semantic similarity 

between a given pair of words is contained in the top-ranking snippets.  

This paper proposes a method that considers both page counts and lexico-syntactic patterns extracted from 

snippets, thereby overcoming the problems described above. For example, let us consider the following snippet from Google 

for the query Lion AND cat. 

 

 

 

Fig.1. A snippet retrieved for the query Lion AND cat 

“The Lion is the largest cat found in Western Africa and usually 

hunts in coordinated groups and stalks their chosen prey" 



A Novel Approach To Measure Semantic Similarity Between Words Using Web Search Engine 

63 

Here, the phrase is the largest indicates a hypernymic relationship between Lion and cat. Phrases such as also 

known as, is a, part of, is an example of all indicate various semantic relations. Such indicative phrases have been applied to 

numerous tasks with good results, such as hypernym extraction [5] and fact extraction [6]. From the previous example, we 

form the pattern X is the largest Y, where we replace the two words Lion and cat by two variables X and Y.  Our 

contributions are summarized as follows: 

 We present an automatically extracted lexical syntactic patterns-based approach to compute the semantic similarity 

between words or entities using text snippets retrieved from a web search engine. We propose a lexical pattern 

extraction algorithm that considers word subsequences in text snippets. Moreover, the extracted sets of patterns are 

clustered to identify the different patterns that describe the same semantic relation. 

 We integrate different web-based similarity measures using a machine learning approach. We extract synonymous 

word pairs from WordNet synsets as positive training instances and automatically generate negative training 

instances. We then train a two-class support vector machine (SVM) to classify synonymous and nonsynonymous 

word pairs. The integrated measure outperforms all existing web based semantic similarity measures on a 

benchmark data set. 

II. RELATED WORK 
Given taxonomy of words, a straightforward method to calculate similarity between two words is to find the length 

of the shortest path connecting the two words in the taxonomy [7]. If a word is polysemous, then multiple paths might exist 

between the two words. In such cases, only the shortest path between any two senses of the words is considered for 

calculating similarity. A problem that is frequently acknowledged with this approach is that it relies on the notion that all 

links in the taxonomy represent a uniform distance. Resnik [8] proposed a similarity measure using information content. He 

defined the similarity between two concepts C1 and C2 in the taxonomy as the maximum of the information content of all 

concepts C that subsume both C1 and C2. Then, the similarity between two words is defined as the maximum of the 

similarity between any concepts that the words belong to. He used WordNet as the taxonomy; information content is 

calculated using the Brown corpus. Li et al. [9] combined structural semantic information from a lexical taxonomy and 

information content from a corpus in a nonlinear model. They proposed a similarity measure that uses shortest path length, 

depth, and local density in taxonomy. Their experiments reported a high Pearson correlation coefficient of 0.8914 on the 

Miller and Charles [10] benchmark data set. They did not evaluate their method in terms of similarities among named 

entities. Lin [11] defined the similarity between two concepts as the information that is in common to both concepts and the 

information contained in each individual concept. 

Sahami and Heilman [2] measured semantic similarity between two queries using snippets returned for those 

queries by a search engine. For each query, they collect snippets from a search engine and represent each snippet as a TF-

IDF-weighted term vector. Each vector is L2 normalized and the centroid of the set of vectors is computed. Semantic 

similarity between two queries is then defined as the inner product between the corresponding centroid vectors. They did not 

compare their similarity measure with taxonomy-based similarity measures. 

Chen et al. [4] proposed a double-checking model using text snippets returned by a web search engine to compute 

semantic similarity between words. For two words W1 and W2, they collect snippets for each word from a web search engine. 

Then, they count the occurrences of word W1 in the snippets for word W2 and the occurrences of word W2 in the snippets for 

word W1. These values are combined nonlinearly to compute the similarity between W1 and W2. The Co-occurrence Double-

Checking (CODC) measure is defined as 

 𝐶𝑂𝐷𝐶  𝑊1 ,𝑊2 =    

 

                         0,                                                      𝑓 𝑊1@𝑊2 = 0

exp 𝑙𝑜𝑔  
𝑓 𝑊1@𝑊2 

𝐻 𝑊1 
×
𝑓 𝑊2@𝑊1 

𝐻 𝑊2 
 

𝛼

 ,                 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒
  

 

Here, 𝑓 𝑊1@𝑊2  denotes the number of occurrences of W1 in the top-ranking snippets for the query W2 in Google, 

H (W1) is the page count for query W1, and α is a constant in this model, which is experimentally set to the value 0.15. This 

method depends heavily on the search engine’s ranking algorithm. Although two words W1 and W2 might be very similar, we 

cannot assume that one can find W2 in the snippets for W1, or vice versa, because a search engine considers many other 

factors besides semantic similarity, such as publication date (novelty) and link structure (authority) when ranking the result 

set for a query. This observation is confirmed by the experimental results in their paper which reports zero similarity scores 

for many pairs of words in the Miller and Charles [10] benchmark data set. Semantic similarity measures have been used in 

various applications in natural language processing such as word sense disambiguation [14], language modeling [15], 

synonym extraction [16], and automatic thesauri extraction [17]. Semantic similarity measures are important in many web 

related tasks. In query expansion [18], a user query is modified using synonymous words to improve the relevancy of the 

search. One method to find appropriate words to include in a query is to compare the previous user queries using semantic 

similarity measures. If there exists a previous query that is semantically related to the current query, then it can be either 

suggested to the user, or internally used by the search engine to modify the original query.  

D.Bollegala.et.al [34], measured semantic similarity between two words using snippets and page counts returned 

by a search engine. He defined four different Page co-occurrence metrics to calculate semantic similarity and combined these 

features with the features extracted from Snippets. 



A Novel Approach To Measure Semantic Similarity Between Words Using Web Search Engine 

64 

III. METHOD  

A. Problem Definition and  Outline 

Given two words W1 and W2, we model the problem of measuring the semantic similarity between W1 and W2, as a one of 

constructing a function SemSim (W1, W2) that returns a value in range [0, 1]. If W1 and W2 are highly similar (e.g., 

synonyms), we expect SemSim (W1, W2) to be closer to 1. On the other hand, if W1 and W2 are not semantically similar, then 

we expect SemSim (W1, W2) to be closer to 0. We define numerous features that express the similarity between W1 and W2 

using page counts and snippets retrieved from a web search engine for the two words. Using this feature representation of 

words, we train a two-class support vector machine to classify synonymous and nonsynonymous word pairs. The function 

SemSim (W1, W2) is then approximated by the confidence score of the trained SVM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Outline of the proposed method 

 

Fig. 2 illustrates an example of using the proposed method to compute the semantic similarity between two words, 

midday and noon. First, we query a web search engine and retrieve page counts for the two words and for their conjunctive 

(i.e., “midday” “noon,” and “midday AND noon”). In Section B, we define five similarity scores using page counts. Page 

counts-based similarity scores consider the global co-occurrences of two words on the web. However, they do not consider 

the local context in which two words co-occur. On the other hand, snippets returned by a search engine represent the local 

context in which two words co occurs on the web. Consequently, we find the frequency of numerous lexical syntactic 

patterns in snippets returned for the conjunctive query of the two words. The lexical patterns we utilize are extracted 

automatically using the method described in Section C. However, it is noteworthy that a semantic relation can be expressed 

using more than one lexical pattern. Grouping the different lexical patterns that convey the same semantic relation, enables 

us to represent a semantic relation between two words accurately. For this purpose, we propose a sequential pattern 

clustering algorithm in Section D. Both page counts-based similarity scores and lexical pattern clusters are used to define 

various features that represent the relation between two words. Using this feature representation of word pairs, we train a 

two-class support vector machine [19] in Section E.  

 

B. Page Count-Based Co-Occurrence Measures 

Page counts for the query W1 AND W2 can be considered as an approximation of co-occurrence of two words (or 

multiword phrases) W1 and W2 on the web. However, page counts for the query W1 AND W2 alone do not accurately express 

semantic similarity. For example, Google returns 11,300,000 as the page count for “car” AND “automobile,” whereas the 

same is 49,000,000 for “car” AND “apple.” Although, automobile is more semantically similar to car than apple is, page 

counts for the query “car” AND “apple” are more than four times greater than those for the query “car” AND “automobile.” 

One must consider the page counts not just for the query W1 AND W2, but also for the individual words W1 and W2 to assess 

semantic similarity between W1 and W2. We compute five popular co-occurrence measures; Jaccard, Overlap (Simpson), 

Dice, and Pointwise mutual information (PMI), Normalized Google Distance, to compute semantic similarity using page 

counts. For the remainder of this paper, we use the notation H (W1) to denote the page counts for the query W1 in a search 

engine. The WebJaccard coefficient between words (or multiword phrases) W1 and W2, WebJaccard (W1, W2 ) is defined as 

 

 

Search Engine 

    midday         noon 

Page-counts Snippets 

 

 

 

“midday” AND “noon” 

H(“midday”) 

H(“noon”) 

H(“midday” AND “noon”) 

Web Jaccard 

Web Overlap 

Web Dice 

Web PMI 

NORMALIZED GOOGLE 

DISTANCE 

 

Frequency of Lexical 

patterns in Snippets 

X is Y: 10 

X or Y: 12 

X,also known as Y: 

7 

--- 

--- 

Pattern 

clusters 

SUPPORT 

VECTOR 

MACHINE 

SEMANTIC 

SIMILARITY 



A Novel Approach To Measure Semantic Similarity Between Words Using Web Search Engine 

65 

𝑊𝑒𝑏𝑗𝑎𝑐𝑐𝑎𝑟𝑑 𝑊1 ,𝑊2 =   

0,                                      𝐻 𝑊1 ∩𝑊2 ≤ 𝑐,
𝐻(𝑊1 ∩𝑊2)

𝐻 𝑊1 + 𝐻 𝑊2 − 𝐻(𝑊1 ∩𝑊2)
, 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒 − − −−(1)

  

 

 

Therein, W1 ∩ W2 denotes the conjunction query W1 AND W2. Given the scale and noise in web data, it is possible that two 

words may appear on some pages even though they are not related. In order to reduce the adverse effects attributable to such 

co-occurrences, we set the WebJaccard coefficient to zero if the page count for the query W1 ∩ W2  is less than a threshold c.2 

Similarly, we define Web Overlap, (W1, W2 )  as  

 

𝑊𝑒𝑏 𝑂𝑣𝑒𝑟𝑙𝑎𝑝 𝑊1 ,𝑊2 =   

0,                                      𝐻 𝑊1 ∩𝑊2 ≤ 𝑐,
𝐻(𝑊1 ∩𝑊2)

𝑚𝑖𝑛[𝐻 𝑊1 ,𝐻 𝑊2 ]
,             𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

 − − − −(2) 

Web Overlap is a natural modification to the Overlap (Simpson) coefficient. We define the Web Dice coefficient as a variant 

of the Dice coefficient. Web Dice (W1, W2) is defined as  

𝑊𝑒𝑏 𝐷𝑖𝑐𝑒 𝑊1 ,𝑊2 =   

0,                                      𝐻 𝑊1 ∩𝑊2 ≤ 𝑐,
𝐻(𝑊1 ∩𝑊2)

𝐻 𝑊1 + 𝐻 𝑊2 
,               𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒     − −− −(3)

  

 

Point wise mutual information [20] is a measure that is motivated by information theory; it is intended to reflect the 

dependence between two probabilistic events. We define WebPMI as a variant form of point wise mutual information using 

page counts as 

𝑊𝑒𝑏 𝑃𝑀𝐼 𝑊1 ,𝑊2 =  

 
 

 
0,                                      𝐻 𝑊1 ∩𝑊2 ≤ 𝑐,

𝑙𝑜𝑔 

𝐻(𝑊1∩𝑊2)

𝑁
𝐻(𝑊1)

𝑁

𝐻(𝑊2)

𝑁

 , 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒
− − −−(4)  

Here, N is the number of documents indexed by the search engine. Probabilities in (4) are estimated according to the 

maximum likelihood principle. To calculate PMI accurately using (4), we must know N, the number of documents indexed 

by the search engine. Although estimating the number of documents indexed by a search engine [21] is an interesting task 

itself, it is beyond the scope of this work. In the present work, we set N= 1010 according to the number of indexed pages 

reported by Google. Normalized Google Distance (NGD) is a distance metric between words and is defined as 

 

𝑁𝐺𝐷 𝑊1 ,𝑊2 =
𝑚𝑎𝑥 log𝐻 𝑊1 , 𝑙𝑜𝑔𝐻(𝑊2) − log𝐻(𝑊1 ,𝑊2)

log𝑁 −𝑚𝑖𝑛 log𝐻 𝑊1 , 𝑙𝑜𝑔𝐻(𝑊2)           
  −− − (5) 

 

NGD is based on normalized information distance [13] which is defined using kolmogorov complexity. As previously 

discussed, page counts are mere approximations to actual word co-occurrences in the web. However, it has been shown 

empirically that there exists a high correlation between word counts obtained from a web search engine (e.g., Google and 

Altavista) and that from a corpus (e.g., British National corpus) [22]. Moreover, the approximated page counts have been 

successfully used to improve a variety of language modeling tasks [23]. 

 

C. Extracting Lexio- Syntactic  Patterns from Snippets 

Page counts-based co-occurrence measures described in Section B do not consider the local context in which those 

words co-occur. This can be problematic if one or both words are polysemous, or when page counts are unreliable. On the 

other hand, the snippets returned by a search engine for the conjunctive query of two words provide useful clues related to 

the semantic relations that exist between two words. A snippet contains a window of text selected from a document that 

includes the queried words. For example, consider the snippet in Fig. 3. Here, the phrase is a indicates a semantic 

relationship between cricket and sport. Many such phrases indicate semantic relationships. For example, also known as, is a, 

part of, is an example of all indicate semantic relations of different types. 

 

 

 

 

Fig.3. Snippet retrieved for the query “Cricket and sport” 

 

In the example given above, words indicating the semantic relation between Cricket and Sport appear between the 

query words. Replacing the query words by variables X and Y, we can form the pattern X is a Y from the example given 

above. Despite the efficiency of using snippets, they pose two main challenges: first, a snippet can be a fragmented sentence; 

second, a search engine might produce a snippet by selecting multiple text fragments from different portions in a document. 

Because most syntactic or dependency parsers assume complete sentences as the input, deep parsing of snippets produces 

incorrect results. Consequently, we propose a shallow lexical pattern extraction algorithm using web snippets, to recognize 

the semantic relations that exist between two words. Lexical syntactic patterns have been used in various natural language 

processing tasks such as extracting hypernyms [5], [24], or meronyms [25], question answering [26], and paraphrase 

extraction [27]. Although a search engine might produce a snippet by selecting multiple text fragments from different 

“Cricket is a sport played between two teams, each 

with eleven players” 



A Novel Approach To Measure Semantic Similarity Between Words Using Web Search Engine 

66 

portions in a document, a predefined delimiter is used to separate the different fragments. For example, in Google, the 

delimiter “...” is used to separate different fragments in a snippet. We use such delimiters to split a snippet before we run the 

proposed lexical pattern extraction algorithm on each fragment. Given two words P and Q, we query a web search engine 

using the wildcard query “P***** Q” and download snippets. The “*” operator matches one word or none in a webpage. 

Therefore, our wildcard query retrieves snippets in which P and Q appear within a window of seven words. Because a search 

engine snippet contains approximately 20 words on average, and includes two fragments of texts selected from a document, 

we assume that the seven word window is sufficient to cover most relations between two words in snippets. In fact, over 95 

percent of the lexical patterns extracted by the proposed method contain less than five words. We attempt to approximate the 

local context of two words using wildcard queries. For example, Fig. 4 shows a snippet retrieved for the query “Toyoto**** 

Nissan” 

 

 

 

 

Figure.4. Snippet retrieved for the query “Toyoto**** Nissan” 

 

For a snippet δ, retrieved for a word pair (W1, W2), first, we replace the two words W1 and W2, respectively, with 

two variables X and Y. We replace all numeric values by D, a marker for digits.  Punctuation marks are not removed. Next, 

we generate all subsequences of words from δ by using modified Prefix Span algorithm.  

Algorithm 1 (Prefix Span) Prefix-projected sequential pattern mining. 

Input: A sequence database S, and the minimum support threshold min_support. 

Output: The complete set of sequential patterns 

Method: Call Prefix Span ((), 0, S) 

Subroutine Prefix Span (α, l, S/ α) 

               The parameters are 1) α is a sequential pattern; 2) l is 

the length of ; and 3) S/ α is the  α -projected database if α ǂ‹›, otherwise, it is the sequence database S. 

Method: 

1.  Scan S/ α once, find each frequent item, b, such that 

     (a)  b can be assembled to the last element of α  to form a sequential pattern; or 

     (b)  ‹b› can be appended to α to form a sequential pattern. 

2.  For each frequent item b, append it to form a sequential pattern α1, and output α1. 

3.  For each α1, construct α 1-projected database S/ α1 0, and call Prefix Span(α1, l+1, S/ α1). 

 

Finally we consider the subsequences that satisfy all of the following conditions: 

1.  A subsequence must contain exactly one occurrence of each X and Y . 

2.  The maximum length of a subsequence is L words. 

3.  A subsequence is allowed to skip one or more words. However, we do not skip more than g number of words 

consecutively. Moreover, the total number of words skipped in a subsequence should not exceed G. 

4.  We expand all negation contractions in a context. For example, didn’t is expanded to did not. We do not skip the 

word not when generating subsequences. For example, this condition ensures that from the snippet X is not a Y, 

we do not produce the subsequence X is a Y. 

 

Lastly, we count the frequency of all generated subsequences and only use subsequences that occur more than T 

times as lexical patterns. We experimentally set the parameters L, g, G, and T to 5, 2, 4 and 5 respectively. It is noteworthy 

that the proposed pattern extraction algorithm considers all the words in a snippet, and is not limited to extracting patterns 

only from the mid fix (i.e., the portion of text in a snippet that appears between the queried words).  For example, some of 

the patterns extracted from the snippets shown in Fig 4 are: X, a large Y, X a flightless Y, and X, large Y lives. 

 

D.  Pattern Clustering Algorithms  

Typically, a semantic relation can be expressed using more than one pattern. For example, consider the two distinct 

patterns, X is a Y, and X is a large Y. Both these patterns indicate that there exists an is-a relation between X and Y. 

Identifying the different patterns that express the same semantic relation enables us to represent the relation between two 

words accurately. We represent a pattern p by a vector a of word-pair frequencies. We designate a, the word-pair frequency 

vector of pattern p. It is analogous to the document frequency vector of a word, as used in information retrieval. The value of 

the element corresponding to a word pair (𝑊1𝑖 , 𝑊2𝑖 ) in a, is the frequency, f(𝑊1𝑖 , 𝑊2𝑖 , a), that the pattern a occurs with the 

word pair (𝑊1𝑖 , 𝑊2𝑖 ). Next, we present a greedy sequential clustering algorithm to efficiently cluster the extracted patterns. 

 Given a set P of patterns and a clustering similarity threshold θ, Algorithm 2 returns clusters (of patterns) that express 

similar semantic relations. First, in Algorithm 2, the function SORT sorts the patterns into descending order of their total 

occurrences in all word pairs. The total occurrence µ(p) of a pattern p is the sum of frequencies over all word pairs, and is 

given by 

𝜇 𝑝 =  𝑓(𝑊1𝑖 ,𝑊2𝑖 , 𝑝)𝑖   -----(6) 

After sorting, the most common patterns appear at the beginning in P, whereas rare patterns (i.e., patterns that occur with 

only few word pairs) get shifted to the end. Next, in line 2, we initialize the set of clusters, C, to the empty set. The outer for 

loop (starting at line 3), repeatedly takes a pattern pi from the ordered set P, and in the inner for loop (starting at line 6), finds 

the cluster, c* (ϵ C) that is most similar to pi. First, we represent a cluster by the centroid of all word-pair frequency vectors 

“Toyoto and Nissan are two major Japanese car 

manufacturers” 



A Novel Approach To Measure Semantic Similarity Between Words Using Web Search Engine 

67 

corresponding to the patterns in that cluster to compute the similarity between a pattern and a cluster. Next, we compute the 

cosine similarity between the cluster centroid (cj), and the word-pair frequency vector of the pattern (pi). If the similarity 

between a pattern pi, and its most similar cluster, c*, is greater than the threshold θ, we append pi to c* (line 14). We use the 

operator   to denote the vector addition 

between c* and pi. Then, we form a new cluster {pi} and append it to the set of clusters, C, if pi is not similar to any of the 

existing clusters beyond the threshold θ. 

 

Algorithm 2. Greedy Sequential pattern clustering algorithm. 

 

Input: patterns Ᵽ = { p1, p2, …….  ,pn}  ,  threshold  θ 

Output: clusters C 

1: SORT(Ᵽ) 

2: C  {} 

3: for pattern pi ϵ Ᵽ do 

4: max  -∞ 

5: c*null 

6: for cluster cj ϵ C do 

7: sim cosine(pi,cj) 

8: if sim > max then 

9: max   sim 

10: c*  cj 

11: end if 

12: end for 

13: if max > θ then 

14: c*  c*   pi 

15: else 

16: C  C   {pi} 

17: end if 

18: end for 

19: return C 

 

By sorting the lexical patterns in the descending order of their frequency and clustering the most frequent patterns 

first, we form clusters for more common relations first. This enables us to separate rare patterns which are likely to be 

outliers from attaching to otherwise clean clusters. The greedy sequential nature of the algorithm avoids pairwise 

comparisons between all lexical patterns. The only parameter in Algorithm 2, the similarity threshold θ, ranges in [0, 1]. It 

decides the purity of the formed clusters. So, we experimentally set theta value to 0.7 which is optimal. Moreover, sorting 

the patterns by their total word-pair frequency prior to clustering ensures that the final set of clusters contains the most 

common relations in the data set.  

E. Measuring Semantic Similarity using support vector machines 

Support Vector Machines are currently among the best performers for a number of classification tasks ranging 

from text to genomic data. SVMs can be applied to complex data types beyond feature vectors (eg. Graphs, sequences and 

relational data) by designing kernel functions for such data. SVM was trained using features of page count based co-

occurrence measures and lexical pattern clustering to predict the synonymous & non-synonymous word pairs. 

 In section B, we defined five co-occurrence measures using page counts. Moreover, in sections C and D, we showed how to 

extract clusters of lexical patterns from snippets to represent numerous semantic relations that exist between two words. In 

this section we describe a machine learning approach to combine both page counts-based co-occurrence measures to 

construct a robust semantic similarity measure.  

Given N clusters of lexical patterns, first, we represent a pair of words (W1, W2) by an (N+5)-dimensional feature 

vector𝑓𝑊1𝑊2
. The five page count-based co-occurrence measures defined in section B are used for five different features in 

𝑓𝑊1𝑊2
. For comprehensiveness, let us assume that (N+1)st, (N+2)nd, (N+3)rd, (N+4)th and (N+5)th features are set, 

respectively, to WebJaccard, WebOverlap, WebDice, WebPMI and Normalized Google Distance. Next we compute a 

feature from each of the N clusters as follows: first we assign a weight 𝜔𝑖𝑗  to a pattern pi that is in a cluster cj as follows 

𝜔𝑖𝑗 =
𝜇 𝑝𝑖 

 𝜇 𝑡 𝑡𝜖 𝑐𝑗

         −− − −(7) 

Here 𝜇(𝑝) is the total frequency of a pattern p in all word pairs, and it is given by (6). Because we perform a hard clustering 

on patterns, a pattern can belong to only one cluster (i.e. 𝜔𝑖𝑗 = 0, 𝑓𝑜𝑟 𝑝𝑖 ∉ 𝑐𝑗 ). Finally we compute the value of the jth 

feature vector for a word pair (W1, W2) as follows 

 𝜔𝑖𝑗𝑓(𝑊1𝑖 ,𝑊2𝑖 , 𝑝𝑖)

𝑝𝑖∈𝑐𝑗

      − − − −− (8) 

The value of the jth feature of the feature vector 𝑓𝑊1𝑊2
 representing a word pair (W1, W2 ) can be seen as the weighted sum of 

all patterns in cluster cj that co-occur with words W1 and W2. We assume all patterns in a cluster to represent a particular 



A Novel Approach To Measure Semantic Similarity Between Words Using Web Search Engine 

68 

semantic relation. Consequently, the jth feature value given by (8) expresses the significance of the semantic relation 

represented by cluster j for word pair (W1, W2 ). 

To train a two-class SVM to detect synonymous and nonsynonymous word pairs, we utilize a training data set 𝑆 =

  𝑊1𝑘 ,𝑊2𝑘 , 𝑦𝑘   of word pairs. S consists of synonymous Word pairs (positive training instances) and non synonymous 

word pairs (negative training instances). Training data set S is generated automatically from Word Net synsets. We randomly 

select 2,500 nouns from Wordnet and extract synonymous words and non synonymous word pairs for each selected noun. 

Our  final  training data set contains 5,000 word pairs. Label 𝑦𝑘 ∈  −1, 1  indicates whether the word pair (W1k,W2k ) is a 

synonymous word pair (i.e.,𝑦𝑘  = 1)or a non synonymous word pair (i.e., ,𝑦𝑘  = -1). For each word pair in S, we create an 

(N+5)-dimensional feature vector as described above. To simplify the notation, let us denote the feature vector of a word pair 

(W1k, W2k ) by fk. Finally, we train a two-class SVM using the labeled feature vectors. Once we have trained an SVM using 

synonymous and non synonymous word pairs, we can use it to compute the semantic similarity between  any two given 

words. Following the same method, we used to generate feature vectors for training, we create an (N+5)-dimensional feature 

vector f * for a pair of words   (W1
*,W2

*), between which we must measure semantic similarity. We define the semantic 

similarity          SemSim(W1
*, W2

*)  between W1
* and W2

*
  as the posterior probability, 𝑝 𝑦∗ = 1 𝒇∗ that the feature vector  

𝒇∗ corresponding to the word pair (W1
*, W2

*) belongs to the synonymous-words class (i.e., 𝒚∗= 1).  SemSim(W1
*, W2

*) is 

given by 

SemSim(W1
*, W2

*)= 𝑝 𝑦∗ = 1 𝒇∗      −− − −(𝟗) 

 

Because SVMs are large margin classifiers, the output of an SVM is the distance from the classification hyperplane. The 

distance d(𝒇∗) to an instance 𝒇∗ from the classification hyperplane is given by 

d(𝒇∗) = 𝒉 𝒇∗ + 𝒃 

 

Here,b is the bias term and  the hyperplane, 𝒉 𝒇∗  is given by 

𝒉 𝒇∗ =  𝒚𝒌𝜶𝒌𝑲(𝒇𝒌𝒊 ,𝒇∗) is 

Here, 𝜶𝒌 is the Lagrange multiplier corresponding to the support vector fk, and 𝑲(𝒇𝒌 ,   𝒇
∗) is the value of the kernel function 

for a training instance fk and the instance to classify, f*.  However, d(f*)  is not a calibrated posterior probability. Following 

Platt [30], we use sigmoid functions to convert this un calibrated distance into a calibrated posterior probability. 

The probability, 𝑝 𝑦 = 1\𝑑 𝑓  , is computed using a sigmoid 

 

Table-1 : SEMANTIC SIMILARITY SCORES ON DATA SET 

Word Pair WebJaccard WebDice WebOverlap WebPMI NGD D.Bollegala[34] Proposed 

Journey – 

voyage 

 

0.79 0.88 1.00 1.00 0.10 1.00 1.00 

gem – jewel 

 
0.05 0.09 0.10 1.00 0.60 0.82 1.00 

bird – cock 

 
0.03 0.07 0.07 0.02 0.99 0.87 0.99 

monk-oracle 0.00 0.01 0.03 0.30 0.95 0.80 0.95 

boy – lad 

 
0.02 0.04 0.43 1.00 0.82 0.96 1.00 

automobile – 

car 

 

0.07 0.14 0.78 0.66 0.84 0.92 0.84 

car - journey 

 
0.07 0.13 0.56 0.19 0.94 0.17 0.94 

coast – shore 

 
0.17 0.29 0.53 1.00 0.48 0.97 1.00 

food - rooster 

 
0.00 0.00 0.25 0.00 1.00 0.02 0.00 

asylum – 

madhouse 
0.00 0.01 0.09 1.00 0.66 0.79 1.00 

magician- 

wizard 

 

0.02 0.05 0.14 1.00 0.66 1.00 1.00 

crane – 

implement 

 

0.02 0.04 0.06 1.00 0.77 0.06 0.02 

midday – noon 

 
0.04 0.08 1.00 1.00 0.31 0.99 1.00 



A Novel Approach To Measure Semantic Similarity Between Words Using Web Search Engine 

69 

furnace – 

stove 

 

0.04 0.08 0.11 1.00 0.56 0.88 0.93 

food – fruit 

 
0.14 0.24 0.84 1.00 0.68 0.94 0.95 

implement – 

tool 

 

0.08 0.15 0.58 1.00 0.65 0.50 1.00 

bird – crane 

 
0.03 0.06 0.17 1.00 0.79 0.85 1.00 

brother – 

monk 

 

0.03 0.06 0.30 1.00 0.74 0.27 1.00 

brother – lad 

 
0.03 0.06 0.31 1.00 0.73 0.13 0.02 

coast – hill 

 
0.20 0.33 0.43 1.00 0.57 0.36 0.20 

forest – 

graveyard 

 

0.01 0.02 0.23 1.00 0.81 0.44 0.01 

monk – slave 

 
0.02 0.04 0.08 1.00 0.74 0.24 0.02 

coast- forest 

 
0.19 0.31 0.34 1.00 0.50 0.15 0.19 

lad – wizard 

 
0.00 0.01 0.02 0.07 0.98 0.23 0.00 

cord – smile 

 
0.13 0.23 0.78 1.00 0.52 0.01 0.13 

noon – string 

 
0.02 0.04 0.08 0.42 0.92 0.00 0.02 

rooster- 

voyage 

 

0.00 0.00 0.03 0.00 0.43 0.05 0.00 

 
function defined over d(f) as follows: 

𝑝 𝑦 = 1\𝑑 𝑓  =
1

1 + exp(𝜆𝑑 𝑓 + 𝜇)
 

Here, λ and µ are parameters which are determined by maximizing the likelihood of the training data. Log likelihood of the 

training data is given by 

𝐿 𝜆, 𝜇        =  log𝑝(𝑦𝑘\𝑓𝑘 ;𝜆, 𝜇)

𝑁

𝑘=1

 

    =  {𝑡𝑘 log 𝑝𝑘 +  1 − 𝑡𝑘 log 1 − 𝑝𝑘 }

𝑁

𝑘=1

− − −−(10) 

 

Here, to simplify the notation, we have used tk = (yk+1)/2 and pk = p(yk  =1\fk). The maximization in (10) with respect to 

parameters λ and µ is performed using model-trust minimization [31]. 

 

IV. CONCLUSION 
In this paper, we proposed a measure that uses both page counts and snippets to robustly calculate semantic 

similarity between two given words. The method consists of five page-count-based similarity scores and automatically 

extracted lexico-syntactic patterns. We integrated different page-count based similarity scores with lexico syntactic pattern 

clusters using support vector machines. Training data were automatically generated using WordNet synsets. Proposed method 

outperformed all the baselines including previously proposed Web-based semantic similarity measures on a benchmark 

dataset. Only 2500 positive examples and 2500 negative examples are necessary to leverage the proposed method, which is 

efficient and scalable because it only processes the snippets (no downloading of Web pages is necessary) for the top ranking 

results by Google. A contrasting feature of our method compared to the WordNet based semantic similarity measures is that 

our method requires no taxonomies, such as Word Net, for calculation of similarity. The results are given in Table-1. Table 1 

shows the experimental results on Miller Charles data set for the proposed method (Proposed) and previously proposed web 

based semantic similarity measures.All similarity scores in Table-1are normalized into [0,1] range for the ease of 



A Novel Approach To Measure Semantic Similarity Between Words Using Web Search Engine 

70 

comparison.Therefore, the proposed method can be applied in many tasks where such taxonomies do not exist or are not up-

to-date. Results of our experiments indicate that the proposed method can robustly capture semantic similarity between words. 

 

REFERENCES 
[1]. A.Kilgarriff, “Googleology is Bad Science, “Computational Linguistics, vol. 33,pp. 147-151,2007. 

[2]. M.sahami and T.Heilman, “a Web- Based Kernel Function for Measuring the Similarity of short Text Snippets, 

“proc.15 th Int’l World Wide Web Comf.,2006. 

[3]. D.Bollegala, Y.Matsuo, and M.Ishizuka, “Disambiguating Personal Names on the Web Using automatically 

Extracted Key Phrases,” Proc.17 th European Comf. Artificial Intelligence, PP.553-557,2006. 

[4]. H.Chern,M.Lin, and Y.Wei, “Novel Association Measures Using Web Search with Double Checking, 

“Proc.21 th Int’l Conf.Computational Linguistics and 44 th ann. Meeting of the Assoc, for Computational 

linguistics (COLING/ACI..’06),PP. 1009-1016,2006. 

[5]. M.hearst, “Automatic Acquisition of Hyponyms from Large Text Corpora, “Proc,14 th Conf. Computational 

Linguistics (COLING),pp.539-545,1992. 

[6]. M.Pasca, D.Lin,J.Bigham,  A.Lifchits, and A. Jain, “Organizing and Searching the World Wide Web of Facts-Step 

One: The OneMillion Fact Extraction Challenge ,”Proc. Nat” l Comf. Artificial Intelligence (AAAI ’06), 2006. 

[7]. R.Rada, H.Mili, E. Bichnel, and  M.Blettner,” Development and  application of a Metric on Semantic Nets, ”IEEE 

Trans Systems, Man and Cybernetics  vol.19,no.1,pp.17-30, Jan./Feb.1989. 

[8]. P.Resnik, “Using Information Content to Evaluate Semantic similarity in a Taxonomy,” Proc.14 th Int’l Joint 

Conf.Aritificial intelligence, 1995. 

[9]. D.Mclean, Y.Li, and Z.A Bandar, “An Approach for Measuring Semantic similarity between Words using 

Multiple Information Sources, “IEEE Trans.Knowledge and Date Eng,.vol.15 ,no 4,pp.871-882, July /Aug.2003. 

[10]. G.Miller and W.Charles, “Contextual Correlates of Semantic similarity,”Language and Cognitive Processes, 

vol.6,no,l,pp.1-28,1998. 

[11]. D.Li,”An Information. Theoretic Definition of Similarity,”Proc.15 th Int’l Conf.Machine Learning 

(ICML),PP.296-304,1998. 

[12]. R.Cilibrasi and P.Vitanyi,”The Google Similarity Distance, “IEEETrans.Knowledge and data Eng., vol.19, no.3, 

pp.370-383,Mar.2007. 

[13]. M.Li,X.Chen, X.Li, B.Ma, and P.Vitanyi, “The similarity Metri,”IEEE Trans.Information 

Theory,Vol.50,no.12,pp.3250-3264,Dec.2004. 

[14]. P.Resnik,”Semantic Similarity in a taxomomy: An Information Based Measure and Its Application to Problems of 

ambiguity in Natural Language,”I.Artificial Intelligence Research, vol.11.PP.95-130,1999. 

[15]. R.Rosentield, “A.Maximum Entropy approach to adaptive Statistical Modeling,”computer Speech and Language, 

vol.10,pp.187-228,1996. 

[16]. D.Lin,”Automatic Retrieval and Clustering of similar Words,” Proc.17 th Int’l Conf.Coputational Linguistics 

(COLIG),pp.768-774,1998. 

[17]. J.Curran,”Ensemble Methods for Automatic Thesaurus Exptration,”Proc.ACL-02 Conf.Empirical Methods in 

Natural Language Processing (EMNLP),2002. 

[18]. C.Buckley, G.salton, J.Allan,and A.Singhal,”Automatic Query Expansion Using smart:Trec.3,”Proc.Third Text 

Retrieval Conf., PP.69-80,1994. 

[19]. V.Vapnik, statistical Learning Theory, Wiley,1998. 

[20]. K.Church and P.Hanks,”Work association Norms, Mutual Information and Lexicography,”Computational 

Linguistics, vol.16,pp .22-29,1991. 

[21]. Z.Bar-Yossef and M.Gurevich, “Random sampling from a search Engine’s Index,” Proc. 15 th Int’l World Wide 

Web Conf.,2006. 

[22]. F.Keller and M.Lapata,”Using the Web to Obtain Frequencies for Uneen Bigrams, “Computational Linguistics, 

vol.29,no.3,pp.459-484.2003. 

[23]. M.Latata and f.keller, ”Web-Based Models for Natural Language Pdrocessing,” ACM Trans. Speech and 

Language Processing. Vol 2,no 1,pp.1-31,2005. 

[24]. R.Snow,D Jurafsky, and A.Ng,”Learning syntactic Patterns for Automatic Hypermym Discovery, “proc.Advances 

in Neural Information Processing systems (NIPS),pp.1297-1304,2005. 

[25]. M.Berland and E.Charniak. “Finding parts in Very Large Corpora,”Proc. Ann. Meeting of the Assoc. for 

Computational Linguitics on Computational Linguistics (ACL’99),pp.57-64,1999. 

[26]. D.Ravichandran and E.Hovy,”learning Surface Text Patterns for a Question answering system,” Proc. Ann. 

Meeting on Assoc.for Computational Linguistics (ACL’02),pp.4-47,2001. 

[27]. R.Bhagat and d.Ravichandran, “Large Scale Acquisition of Paraphrases for Learning Surface patterns,”Proc.Assoc 

.for Computational Linguistics .Human Language Technologies (ACL’08:HLT),pp.674-682,2008. 

[28]. J.Pei,J.Han, B.Mortazavi-Asi,J.Wang.H.Pinto,Q.Chen,U.dayal,and M.Hsu,”Mining Sequential Patterns by 

Pattern.growth:The perfixspan Approach,” IEEE Trans.Knowledge and data Eng.,vol .16,no.11,pp.1424-

1440,Nov.2004. 

[29]. Z.Harris,”Distributional structure,”Word,vol.10,pp.146-162,1954. 

[30]. J.Platt,”probabilistic Outputs for Support Vector Machines and Comparison to Regularized Likelihood Methods,” 

Advance in Large Margin Classifiers, pp.61-74.MIT Press,2000. 

[31]. P.Gill, W.Murray, and M.Wright, Practical Optimization. Academic Press, 1981. 

[32]. H.Rubenstein and J.Goodenough,”Contextual conrelates of synonymy,” Comm.ACM.vol.8,pp.627-633,1965. 



A Novel Approach To Measure Semantic Similarity Between Words Using Web Search Engine 

71 

[33]. L.Finkelstein, E.Gabrilovich,Y.Matias, E.Rivlin, Z.solan, G.Wolfman, and E.Ruppin, “ Placing Search in 

Context:The concept Revisited,”ACM Tran.Information Systems, vol.20.pp.116-131,2002. 

[34]. D.Bollegala, Y.Matsuo,and M.Ishizuka, “Measuring Semantic Similarity between Words Using Web Search 

Engines,”Proc. Inf’l Conf.World Wide Web (WWW’07), pp.757-766,2007. 

[35]. M.Strube and S.P.Ponzetto, “Wikirelate! Computing Semantic Relatedness Using Wikipedis,”Proc.Nat’l 

Conf.Aritificial intelligence (AAAI’06),pp.1419-1424.2006. 

[36]. A.Gledson and J.Keane,”Using web-Search Results to Measure Word-Group similarity,”Proc.Int’l 

Conf.Computational Linguistics (COLING ’08),pp.281.2008. 

[37]. Z. Wu and M. Palmer, “Verb Semantics and Lexical Selecton,” Proc. Ann. Meeting on Assoc. for Computational 

Linguistics (ACL ’94), PP. 133-138, 1994. 

[38]. C. Leacock and M. Chodorow, “Combining Local Context and Wordnet Similarity for Word Sense 

Disambiguation, “ WordNet: An Electronic Lexical Database, vol. 49, pp. 265-283, MIT Press, 1998. 

[39]. J. Jiang and D. Conrath, “ Semantic Similarity Based on Corpus Statistics and Lexical Taxonomy,” Proc. Int’l 

Conf. Research in Computational Linguistics (ROCLING X), 1997. 

[40]. M. Jarmasz, “Roget’s Thesaurus as a Lexical Resource for Natural Language Processing,” technical report, Univ. 

of Ottowa, 2003. 

[41]. V. Schickel-Zuber and B. Faltings, “OSS: A Semantic Similarity Function Based on Hierarchical Ontologies, “ 

proc. Int’l Joint Conf. Artificial Intelligence (I] CAI ’07), pp. 551-556, 2007. 

[42]. E. Agirre E. Alfonseca, K. Hall, J. Kravalova, M. Pasca, and A. Soroa, “ A Study on Similarity and Relatedness 

Using Distributionsl and Wordnet-Based Approaches,” proc. Human Language Technologies: The 2009 Ann. 

Conf. North Am. Chapter of the Assoc. for Computationsl Linguistics (NAACL-HLT ’09) 2009. 

[43]. G. Hirst and D. St-Onge, “Lexical Chains as Representations of Context for the Detection and Correction of 

Malapropisms,” WordNet: An Electronic Lexical Database, pp. 305-332, MIT Press, 1998. 

[44]. T. Hughes and D. Ramage, “ Lexical Semantic Relatedness with Random Graph Walks, “ proc. Joint Cond. 

Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-

Conll ’07) pp. 581-589, 2007. 

[45]. E. Gabrilovich and S. Markovitch, “Computing Semantic Relatedness Using Wikipedia-Based Explicit Semantic 

Analysis, “ Proc. Int’l Joint Conf. Artificial Intelligence (I]CAI’07), PP. 1606-1611, 2007. 

[46]. Y. Matsuo, J. Mori, M.Hamasaki, K. Ishida, T. Nishimura, H. Takeda, K. H asida, and M. Ishizuka, “Polyphonet: 

An Advanced Social Network Extraction System, “ Proc. 15th Int’l World Wide Web Conf., 2006. 

[47]. A. Bagga And B. Baldwin, “ Entity-Based Cross Document Coreferencing Using the Vector space Model, “ Proc. 

36th Ann. Meeting of the Assoc. for Computational Linguistics and 17th Int’l Conf. Computational Linguistics 

(COLING-ACL), pp. 79-85, 1998. 

 

Authors Profile 
ChandraKala K  received B.Tech degree from the College of Engineering, Anantapur, JNTU in 2007. She is currently 

doing M.Tech  [Computer Science Engineering] in UCEK, JNTUKAKINADA, KAKINADA.  

Dr.E.V.Prasad is currently working as a Profeesor in Computer Science Engineering, University College of Engineering 

Kakinada, J N T U KAKINADA, Kakinada. He is currently Registrar of JNTUKAKINADA. He has published so many 

papers in reputed National and International Journals.  His research interests are Web Mining, Network Security and 

Artificial Intelligence. 

 

 

 


