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Abstract––Expressions are obtained for the thermal conductivity of some ABO3 type displacive ferroelectrics in 

paraelectric phase, using Kubo formalism and double time thermal Green’s function technique. The total thermal 

conductivity obtained for these perovskites which is sum of two terms contributed by optical and acoustical phonons, is in 

agreement with the experimental results of Steigmeier. The variation of thermal conductivity with temperature and 

external electric field is discussed, for the case of SrTiO3, BaTiO3 and KTaO3 in presence of anharmonicity. Thermal 

conductivity decreases with increase of temperature in the cases of all these three perovskites. Also the total thermal 

conductivity which is the sum of two terms contributed by optical and acoustical phonons is seen to increase with the 

applied electric field, which is in agreement with the experimental results of Steigmeir. Around the Curie temperature, 

the thermal conductivity shows an anomalous behaviour and soft mode is held responsible for it.  
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I. INTRODUCTION 
Interest in ferroelectric properties, materials and devices has been considerable over the last 10 years. This interest 

has been driven by the exciting possibility of using ferroelectric thin films for nonvolatile memory applications and new 

micro electromechanical systems (MEMS).The main interest is in ceramic ferroelectrics and thin films, which are easier to 

make and which offer a larger variety of easily achievable compositional modifications. Ferroelectric substances are useful 

in many ways such as in Non-Volatile RAMs (memory), Dynamic RAMs (capacitors), Tunable Microwave Devices, 

Pyroelectric Detectors/Sensors, Optical Waveguides, and Piezoelectric Sensors/Actuators etc. 

Perovskite is a family name of a group of materials and the mineral name of calcium titanate (CaTiO3) having a 

structure of the type ABO3. Many piezoelectric (including ferroelectric) ceramics such as Barium Titanate (BaTiO3), 

Strontium Titanate (SrTiO3), Potassium Tantalate (KTaO3), Lead Titanate (PbTiO3), Lead Zirconate Titanate (PZT), Lead 

Lanthanum Zirconate Titanate (PLZT), Lead Magnesium Niobate (PMN), Potassium Niobate (KNbO3), Potassium Sodium 

Niobate (KxNa1-xNbO3), and Potassium Tantalate Niobate (K(TaxNb1-x)O3) have a perovskite type structure. These 

materials may be envisaged by consideration of a non-polar, cubic basic building block (Fig.1). 

Thermal conductivity for phonon scattering by anharmonicity in crystals has been a subject of considerable interest 

in the past. Considerable review of the work is available in the literature [1]-[5]. These studies mostly use the phonon 

Boltzmann equation, first derived by Peierls [6], in the relaxation time approximation and involved some assumptions which 

suffer from the usual shortcoming of the kinetic theories as enumerated by Hardy [7] and Allen and Ford [8]. The 

generalization of phonon Boltzmann equation using equation of motion method for non-equilibrium Green’s functions, is 

used by many workers to derive an expression for the transport coefficient [9]-[12]. 

The theory of heat conduction in solids acquires a more rigorous theoretical basis when recent theories on phonon transport 

express the thermal conductivity in terms of correlation functions of energy flux. Many workers have successfully employed 

this theory to calculate the lattice thermal conductivity of solid using various techniques. Semwal and Sharma [13] and 

Sharma and Bahadur [14] have theoretically investigated the thermal conductivity of a harmonic Bravais crystal. Although 

they have calculated both diagonal and non-diagonal contributions of K yet they have not shown the variation of K with 

temperature and frequency. 

Naithani & Semwal [15] and Naithani et. al. [16] have also obtained general expressions for thermal conductivity 

in an anharmonic crystal but did not choose any specific case. The present study differs from them in view that we have 

calculated the thermal conductivity here taking the cases of SrTiO3, BaTiO3 and KTaO3.  

The properties of ferroelectric crystals are investigated both theoretically and experimentally by many workers. 

These properties reveal many interesting applications in the ceramic industries, optoelectric device for use in optical 

communication, memory display, coherent optical processing, modulators, beam reflectors and holographic storage media. 

There is also some published work on the thermal conductivity of pure and mixed crystals [17]-[22].   

 The aim of the present work is to study theoretically the variation of thermal conductivity with temperature and 

external electric field by using the method of double time temperature dependent Green’s function in anharmonic 

ferroelectric crystals such as SrTiO3, BaTiO3 and KTaO3, using a transformed model Hamiltonian for ferroelectric crystal, 

augmented with anharmonicity up to fourth order and electric dipole moment terms. Present calculated results are compared 

with the results of other workers.  
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II. GENERAL FORMULATION 
Kubo formula expresses the thermal conductivity as  

𝐾 = limɛ→0(𝑘𝐵𝛽/3𝑉)  𝑑𝑡 𝑒−ɛ𝑡∞

0
  𝑑𝜆 < 𝑄(0)

𝛽

0
;𝑄(𝑡 + 𝑖ℏ𝜆) >     … (1) 

where kB, V, ℏ, T and Q(t)  are the Boltzmann Constant, volume of the crystal, Plank constant divided by 2, absolute 

temperature and the heat current operators of lattice, in the Heisenberg representation and the angular brackets <--> indicate 

the thermal average over the canonical ensemble described by the Hamiltonian 

 <O> = Tr. (e-H, O)/ Tr. (e-H)       … (2)   

where Tr. denotes the trace of the expression and H be Hamiltonian of the system. 

   We write the diagonal part of the flux operator Q as a sum of two operators contributed by optical and acoustical 

phonons separately, i.e., 

 Q (t) =   ħ𝑘  ωa
k v

a
k N

a
k(t) +  ħ′

𝑘  ωo
k v

o
k N

o
k(t)                                                                                                                                                                                                                                                                                                                                                                    

  =  ħ𝑘 ,𝜆  ω
k v


k N


k(t),       … (3)                                                                                                                                                                                                                                                                                                                                                                   

where o and a are used  for optical and acoustical modes respectively. Single index k represents Ks, denoting polarization 

and vk represents the velocity of sound for optic (k = o) and acoustical (k = a). The diagonal contribution to the thermal 

conductivity from equation (3), becomes 

K= Ka + Ko = K ; =o, a; 

where,  

                                           

K= lim0(ħ2kB
β2/3V) ∑ ω

k ω


k v


kv


k 𝑑𝑡


0
 e- t  d



0
 '<N

k(0); N
k(t +iħ)>,     … (4.1) 

 
 <N

k(0); N
k(t)> = <a†

k(0) ak(t)> <ak(0) a†
k(t)>.         … (4.2)  

 

Equation (4.2) is obtained after the use of a decoupling scheme discussed in a previous study [23]. 

 

III. GREEN’S FUNCTION AND HAMILTONIAN 
In order to calculate the correlation function (4.2), we define the Green’s functions for system as  

G
k,k (t- t') = <<A

k(t):A


k(t')>> 

  = i(t t') <[ A
k(t):A


k(t')]>,      … (5) 

where  (t) is the Heaviside step function and A
k =ak + a†

-k=A†
-k. 

The modified transformed Hamiltonian which induced the fourth order anharmonicity due to interaction of the soft mode 

coordinates, resonant interaction and the scattering terms in presence of external electric field is exactly the same as given by 

eq. (3.15) of our previous study [16].The notation used are the same and in the same sense. 

 Writing the equation of motion for the acoustical Green’s function Ga
k,k (t- t') with the help of modified 

Hamiltonian, Fourier transforming and writing it in the Dyson’s equation form, one obtain it value  

Ga
k,k( i) = 

a
kkk’/

 (
a

k)
()i

a
k

 a
k()],    … (6) 

   

In a similar manner we obtain following values for optical Green’s function, 

Go
k,k( i) = 

o
kkk’/

 (
o

k)
()+i

o
k

o
k()],    … (7) 

We can combine equation (6) and (7) as, 

G
k,k( i) = 

kk,k’/
 (

k)
()+i

k


k()],    … (8) 

and  

(
k)
() = (

k)
+2

k 


k(),       … (9) 

Eqn. (8) can be rewritten as, 

G
k,k(i) = {

kk,k’/}×(
k)
()-i

k


k()]/(
k)
()}

2
+4(

k)


k())],  
          … (10) 

The spectral density function Jk() is given by, 

Jk() =lim0{ i/( eħ G
k,k( i) G

k,k( i)].    … (11.1) 

 

We are also able to calculate the correlation function (4.2), using the following relations: 

<ak
† (t'): ak(t)> = (1/4) (



−
 1+ ω/

k)
2 Jk()e−𝑖𝜔 (𝑡−𝑡 ′ )d,        … (11.2) 

                                               
 

Substituting the value of G
k,k  into equation (11) and then in equation (11.2), we get  

   

   <ak
†(t'):ak(t)>=(k,k'/) 𝑑



−
(ω+

k)
2 

k()eit t')}/(eħ(ω2(
k)

 2)2
k)

2 (k())2}].      

            … 

(12) 
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IV. THERMAL CONDUCTIVITY 
Now substituting the value of the correlation function in equation (4.1) and then we get the diagonal contribution to the 

thermal conductivity is given by  

                                                     

K= 𝐾𝜆
𝜆  = (ħ2kB

β2/3V)  (𝑘 ,𝜆 ω
k)

2 (vk)
2 𝑑



−
 {eħ(eħ

(ω+
k)

4 (
k())2/ (ω2(

k)
 2)2

k)
2 (

k())2}2].       … (13) 

 For small values of 
k(), the integrand of the equation (13) is peaked around  ω

k and integration gives 

thermal conductivity as, 

K=(ħ2kB
β2/3V)  (𝑘 ,𝜆 ω

k)
2 (vk)

2 [exp(ħ
k)/{exp(ħ

k)
2[1/

k()][(ω
k +


k)/2ω

k]
4
  

            … 
(14)

In the pure crystal case the higher order anharmonic terms may be neglected, then equation (14) for thermal 

conductivity is reduced to give the familiar expression discussed by Carruthers [4] and Klemens [2] based on the Boltzmann 

transport equation, 

 

𝐾 =  
ℏ2𝑘𝐵𝛽

2

3𝑉
     (𝜔𝑘

𝜆)2 𝑣𝑘
𝜆 

2
   

exp ⁡(𝛽ℏ𝑘
𝜆)

{exp  𝛽ℏ𝑘
𝜆 −1}2

 .
1

𝛤𝑘  
𝜆(𝜔)𝑘 ,𝜆       … (15)  

 
               

4.1. TEMPERATURE AND ELECTRIC FIELD DEPENDENCE OF THERMAL CONDUCTIVITY 

It is now clear from equation (15) that the temperature dependence of thermal conductivity is a clear consequence of the 

temperature dependence of 
k(), so before discussing the former it is necessary to discuss latter. In high temperature limit, 

temperature dependence of 
k() can be expressed as, 


k() =A + BT +CT2 ,            … (16) 

where the coefficient A is independent of temperature and depends upon impurity only and is zero for a pure crystal and the 

coefficients B and C are the coefficients of T and T2 respectively. They depend upon third and fourth order anharmonic 

coefficients in the potential energy expression. Thus for pure crystal equation (16) can be reduce to  

 
k() =BT +CT2 +DE2T,        … (17) 

At very high temperature limit i.e. well above the Curie temperature the coefficient C becomes negligible small, so 

the temperature dependence of 
k()  can be expressed as:   


k() =BT +DE2T = (B+DE2)T       … (18) 

The temperature and electric field dependence of the soft mode frequency is given by: 

                          (𝜔𝑘
𝜆) = Ω ≈ Ω𝑘 ,𝐸,𝑇 ≈ Ω𝑘 ,𝑇(𝐸2 + 1)1/2(𝑇 − 𝑇 ′

𝑐)1/2/   (𝑇 − 𝑇𝑐)1/2                … (19) 

Where T'c is the changed Curie temperature in presence of electric field. 

It is clear from equations (15), (18) and (19) that at very high temperature thermal conductivity of a pure crystal 

varies inversely with temperature and electric field, and can be expressed as, 

𝐾 =  
G ′  E2+1  T−TC

′  

𝑇 1+𝐺′′ 𝐸2  𝑇−𝑇𝐶 
                    … (20)   

Where BDG /" , and G′ = D, also D is a constant. The values of D for SrTiO3 (3132 N/m), for BaTiO3 (1200 

N/m) and KTaO3 (6000 N/m) have been calculated by reference [25] by best fit of data. With the help of equation (20), we 

have calculated the thermal conductivity of pure anharmonic SrTiO3, BaTiO3 and KTaO3 crystals in their Paraelectric phase. 

These calculated values are plotted as given in figures 2, 3 and 4 respectively. Figures 2, 3 and 4 show the variation of 

thermal conductivity with temperature in presence of applied electric field strengths for SrTiO3, BaTiO3 and KTaO3 crystals 

in their paraelectric phase respectively.  

  

V. RESULT, DISCUSSION AND CONCLUSION 

In the present study we have discussed the temperature and electric field dependence of thermal conductivity of 

ABO3 type displacive ferroelectrics (such as SrTiO3, BaTiO3 and KTaO3 etc.) in the paraelectric phase using double time 

temperature dependent thermal Green’s function technique. 

 The technique and approach used to obtain the expressions for thermal conductivity in these perovskites is 

different from other workers. It has involved numerical estimation of the thermal conductivity in SrTiO3, BaTiO3 and KTaO3 

to show the variation in thermal conductivity with temperature and frequency. It is clear from equation (15) that temperature 

and electric field dependence of thermal conductivity is a clear consequence of temperature and electric field dependence of 


k() and 𝜔𝑘

𝜆 . Now in the higher temperature case 
k() and 𝜔𝑘

𝜆   varies as temperature and electric field. Figures 2, 3 

and 4 show the temperature and electric field dependence of thermal conductivity in paraelectric phase in SrTiO3, BaTiO3 

and KTaO3 respectively.  

 It is evident from these figures that thermal conductivity decreases with increase of temperature in SrTiO3, BaTiO3 

and KTaO3. This decrement is large in low temperature case but small in high temperature case. These results are in good 

agreement with the results of other workers [2], [4], [14]-[16], [26]-[27]. No
o become anomalously large. This anomalous 

increase in the value of No
o will decrease phonon half with vanishingly and hence thermal conductivity will be anomalously 

large near the Curie temperature. Soft mode is held responsible for this variation of thermal conductivity. 

The effect of an increasing electric field is to increase the total thermal conductivity. This agrees with the experimental 

results of Steigmeir. The increment in thermal conductivity is appreciable in the vicinity of Curie temperature for all three 

cases. This increment in thermal conductivity becomes very small in higher temperature range. In the vicinity of  Curie 
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temperature TC the thermal conductivity increases anomalously in agreement with the maximum in conductivity vs. 

temperature curve for SrTiO3 near 32 K (TC) observed by Sievers and Pohl. The soft mode is held responsible for this effect.

 Figures 2, 3 and 4 also show the electric field dependence of thermal conductivity in paraelectric phase in SrTiO3, 

BaTiO3 and KTaO3 respectively.  

This variation is similar to the result of others [1], [15]-[16], [25]-[26].  

Recently we have applied double time thermal Green’s function technique in obtaining expression for electric field 

dependent inelastic scattering cross section of neutrons [28] and specific heat [29] in BaTiO3, SrTiO3 and KTaO3 displacive 

ferroelectric perovskites. 
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Fig. 1 - ABO3 type Ferroelectric perovskites’ structure 

 

 
Fig. 2 Thermal Conductivity versus temperature (in K) for SrTiO3 at different Electric Fields 
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Fig. 3 Thermal Conductivity versus temperature (in K) for BaTiO3 at different Electric Fields 

 

 
Fig.4 Thermal Conductivity versus temperature (in K) for KTaO3 at different Electric Fields 
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