
International Journal of Engineering Research and Development

e-ISSN: 2278-067X, p-ISSN: 2278-800X, www.ijerd.com

Volume 6, Issue 11 (April 2013), PP. 47-54

47

A Novel Approach Inresource Management and Job

Scheduling For Computational Grids

V.DayaSagar Ketaraju
1
, Dr.M.V.L.N.Raja Rao

2
, Dr.G.V.S.N.R.V.Prasad3

1
Associate Professor Dept. of computer science and Engineering atNalanda Institute of Engineering &

Technology,Siddartha Nagar,Kantipudi, Sattenapalli, Guntur Dist,A.P.India.
2
Professor & Head Dept. of Information Technology at Gudlavalleru Engineering College,Gudlavalleru,

Krishna Dist., A.P. India.
3
Professor & Head Dept. of Computer Science & Engineering at Gudlavalleru Engineering

College,Gudlavalleru, Krishna Dist., A.P. India.

Abstract:- Grid and P2P computing environments, the resources are usually geographically distributed

in multiple administrative domains, managed and owned by different organizations with different

policies, and interconnected by wide-area networks or the Internet. This paper introduces a novel

approach in resource management and Job scheduling for computational grids we proposed a several

algorithms for scheduling jobs in effective time consuming manner. The resource management and

scheduling systems for Grid computing need to manage resources and job execution depending on

either resource consumers’ or resource provider’s requirements, and dynamically adapt to changes in

resource availability. The management of resources and scheduling of jobs in such large-scale

distributed systems is a complex undertaking. In order to prove the effectiveness of resource brokers

and associated scheduling algorithms, their performance needs to be evaluated under different

scenarios such as varying number of resources and users with differentrequirements. In a Grid

environment, it is hard and even impossibleto perform scheduler performance evaluation in a

repeatable and controllable manner as resources andusers are distributed across multiple organizations

with their own policies. To overcome this limitation, weareusing the Grid Simulator. This toolkit

supportsmodelling and simulation of large volume of Grid resources,andapplication models. It

provides primitives for creation of application tasks, mapping of tasks to resources,and their

management. We have used the Grid Simulator to create a resource broker that simulates Nimrod-G

for design and evaluation of deadline and budget constrained job scheduling algorithms with cost and

time optimizations.

Keywords-Grid Computing, Grid Simulator, Job Scheduling Algorithms

I. INTRODUCTION
Internet having a powerful computers and high-speed networks as low-cost commodity components are

changing the way we do large-scale parallel and distributed computing. The interest in coupling geographically

distributed (computational) resources is also growing for solving large-scale problems, leading to what is

popularly called the Grid [1] and peer-to-peer (P2P) computing [2] networks. These enable sharing, selection

and aggregation of suitable computational and data resources for solving large-scale data intensive problems in

science, engineering, and commerce. The working of the Grid computing environment is shown in Figure 1. The

Grid consists of four layers of components: fabric, core middleware, user-level middleware, and applications

[3].

A Novel Approach Inresource Management and Job Scheduling For Computational Grids

48

The services they provide include security and access management, remote job submission, storage,

and resource information. The user-level middleware provides higher-level tools such as resource providers,

application development and adaptive runtime environment. The user essentially interacts with a

resourceprovider that hides the complexities of Grid computing[4, 5]. The resource provider discovers resources

that the user can access using information services, negotiatesfor access costs using trading services, maps tasks

to resources (scheduling), starts job execution, and finally gathers the results. It is alsoresponsible for

monitoring and tracking application execution progress along with adapting to thechanges in Grid runtime

environment conditions and resource failures.

Apart from the centralized approach, two other approaches that are usedin distributed resource

management are: hierarchical and decentralized scheduling or a combinationof them [6]. A Grid resource

provider, called Nimrod-G [5], has been developed that performs schedulingof parameter sweep, task-farming

applications on geographically distributed resources. It supportsdeadline and budget-based scheduling driven by

market-based economic models.

The GridSimulator supports modelling and simulation of a wide range of heterogeneous resources,such

as single or multiprocessors, shared and distributed memory machines such as PCs, workstations,SMPs, and

clusters with different capabilities and configurations. It can be used for modelling andsimulation of application

scheduling on various classes of parallel and distributed computing systemssuch as clusters [11], Grids [1], and

P2P networks [2].

II. RELATED WORK.
Simulation include simulation languages (e.g. Simscript [12]), simulation environments (e.g. Parsec

[13]), simulation libraries (SimJava [14]), and application specific simulators (e.g. OMNet++ network simulator

[15]). While a large body of knowledge and tools exists, there are very few tools available for application

scheduling simulation in Grid computing environments. The notable ones are: Bricks [16], MicroGrid [17],

SimGrid [18], and our Grid Simulator.The Bricks simulation system [16], developed at the Tokyo Institute of

Technology in Japan, helps in simulating client-server like global computing systems that provide remote access

to scientific libraries and packages running on high-performance computers. It follows centralized global

scheduling methodology as opposed to our work in which each application scheduling is managed by the users’

own resource provider.

The MicroGrid emulator [17], undertaken at the University of California at San Diego (UCSD), is

modeled after Globus [19]. It allows execution of applications constructed using the Globus toolkit in a

controlled virtual Grid emulated environment.

The SimGrid toolkit [18], developed at UCSD, is a C language based toolkit for the simulation of

application scheduling. It supports modelling of resources that are time-shared and the load can be injected as

constants or from real traces. It is a powerful system that allows creation of tasks in terms of their execution

time and resources with respect to a standard machine capability. Using SimGrid APIs, tasks can be assigned to

resources depending on the scheduling policy being simulated. Hence, our GridSimulatorextends the ideas in

existing systems and overcomes their limitations accordingly.Finally, we have chosen to implement

GridSimulator in Java by leveraging SimJava’s [14] basic discrete event simulation infrastructure.

III. PROPOSED SYSTEM
GridSimulator provides a comprehensive facility for simulation of different classes ofheterogeneous

resources, users, applications, resource providers, and schedulers. It can be used to simulate application

schedulers for single or multiple administrative domains distributed computing systems such as clusters and

Grids. Application schedulers in the Grid environment, called resource providers, perform resource discovery,

selection, and aggregation of a diverse set of distributed resources for an individual user. In contrast, schedulers,

managing resources such as clusters in a single administrative domain, have complete control over the policy

used for allocation of resources. This means that all users need to submit their jobs to the centralscheduler,

which can be targeted to perform global optimization such as higher system utilization and overall user

satisfaction depending on resource allocation policy or optimize for high priority users.

A Novel Approach Inresource Management and Job Scheduling For Computational Grids

49

Fig2:Grid Simulator simulates different classes of heterogeneous resources

IV. IMPLEMENTATION
4.1Resource modelling and Scheduling

In the GridSimulator, we can create Processing Jobs (PJs) with different speeds (measuredin MIPS).

Then, one or more PJs can be put together to create amachine. Similarly, one or more machines can be put

together to create a Grid resource. Thus,the resulting Grid resource can be a single processor, shared memory

multiprocessors (SMP), or adistributed memory cluster of computers. These Grid resources can simulate time-

or space-sharedscheduling depending on the allocation policy. The space-shared systems use resource allocation

policies such asfirst-come-first-served (FCFS), back filling, shortest-job-first-served (SJFS), and so on. The

GridSimulator resources can send, receive, or scheduleevents to simulate the execution of jobs. A resource

consists of two shared or distributed memoryPJs each with a MIPS rating of 1, for simplicity. FourJobs that

represent jobs with processingrequirements equivalent to 10, 7.5, 8.5, and 9.5 MI (million of instructions) arrive

in ST(simulation times)0, 4, 7,and 10 respectively. The way GridSimulator schedules jobs to PJs is shown

schematically in Figure 3fortime-shared resources and Figure 4for space-shared resources.

4.1.1. Simulation of scheduling in time-shared resources

The Grid resource simulator uses internal events to simulate the execution and allocation of PJs’share

to Grid jobs. When jobs arrive, time-shared systems start their execution immediately andshare resources among

all jobs. Whenever a new Grid job arrives, we update the processing time ofexisting Gridlets and then add this

newly arrived job to the execution set.We schedule an internal eventto be delivered at the earliest completion

time of the smallest job in the execution set. It then waits forthe arrival of events.A complete algorithm for

simulation of time-share scheduling and execution is shown in Figure 5.

If a newly arrived event happens to be an internal event whose tag number is the same as the

mostrecently scheduled event, then it is recognized as a job completion event. Depending on the numberof

Gridlets in execution and the number of PEs in a resource, GridSimulator allocates the appropriate PEshare to

all Gridlets for the event duration using the algorithm shown in Figure 6. It should be notedthat Gridlet’s sharing

the same PE would get an equal amount of PE share. The completed Gridlet issent back to its originator (broker

or user) and removed from the execution set. GridSimulator schedulesa new internal event to be delivered at the

forecasted earliest completion time of the remainingGridlets.Figure 7illustrates the simulation of the time-share

scheduling algorithmand the Gridlets’ execution.

When Gridlet1 arrives at time 0, it is mapped to PE1 and an internal event to be delivered at time 10

isscheduled since the predicted completion time is still 10. At time 4, Gridlet2 arrives and it is mappedto PE2.

The completion time of Gridlet2 is predicted as 12.5 and the completion time of Gridlet1 isstill 10 since both of

them are executing on different PEs. A new internal event is scheduled, whichwill still be delivered at time 10.

At time 7, Gridlet3 arrives, which is mapped to PE2. It shares the PEtime with Gridlet2. At time 10, an internal

event is delivered to the resource to signify thecompletionof Gridlet1, which is then sent back to the broker. At

this moment, as the number of Gridlets is equalsthe number of PEs, they are mapped to different PEs.

Algorithm: Time-Shared Grid Resource Event Handler()

1. Wait for an event

2. If the external and Gridlet arrival event, then:

BEGIN /*a new job arrived*/

A Novel Approach Inresource Management and Job Scheduling For Computational Grids

50

a. Allocate PE Share for Gridlets Processed so far

b. Add arrived Gridlet to Execution Set

c. Forecast completion time of all Gridlets in

Execution Set

d. Schedule an event to be delivered at the smallest

completion time

END

3. If event is internal and its tag value is the same as the

recently scheduled internal event tag,

BEGIN /*a job finish event*/

a. Allocate PE Share for Gridlets Processed so far

b. Update finished Gridlet’s PE and Wall clock time

parameters and send it back to the

 Resource Provider

c. Remove finished Gridlet from the Execution Set

and add to Finished Set

d. Forecast completion time of all Gridlets in

Execution Set

e. Schedule an event to be delivered at the smallest

completion time

END

4. Repeat the above steps until the end of simulation

event is received

Figure 5. An event handler for simulating time-shared resource scheduling.

Algorithm: PE Share Allocation(Duration)

BEGIN

1.Identify total MI per PE for the duration and the

number of PEs that process one extra

GridletTotalMIperPE = MIPSRatingOfOnePE()*Duration

MinNoOfGridletsPerPE = NoOfGridletsInExec/ NoOfPEs

NoofPEsRunningOneExtraGridlet= NoOfGridletsInExec %

NoOfPEs

2. Identify maximum and minimum MI share that

Gridlet get in the Duration

If(NoOfGridletsInExec<= NoOfPEs), then:

MaxSharePerGridlet = MinSharePerGridlet = TotalMIperPE

MaxShareNoOfGridlets = NoOfGridletsInExec

else /* NoOfGridletsInExec>NoOfPEs */

MaxSharePerGridlet = TotalMIperPE/MinNoOfGridletsPerPE

MinSharePerGridlet =

TotalMIperPE/(MinNoOfGridletsPerPE+1)

MaxShareNoOfGridlets = (NoOfPEs–

NoOfPEsRunningOneExtraGridlet)* MinNoOfGridletsPerPE

END

Figure 6. PE share allocation to Gridlet in time-shared GridSimulator resource.

4.1.2. Simulation of scheduling in Space-shared resources

The Grid resource simulator uses internal events to simulate the execution and allocation of PEs to

Grid let jobs. When a job arrives, space-sharedsystems start its execution immediately if there is a free PE

available,otherwise, it is queued. During the Gridletassignment, job-processing time is determined and the event

is scheduled for delivery at the end of the execution time. Whenever a Gridlet job finishes, an internal event is

delivered to signify the completion of the scheduled Gridlet job. The resource simulator then frees the PE

allocated to it and checks if there are any other jobs waiting in the queue. If there are jobs waiting in the queue,

then it selects a suitable job depending on the policy and assigns it to the PE which is free. A complete

algorithm for simulation of space-share scheduling and execution is shown in Figure 7.

If a newly arrived event happens to be an internal event whose tag number is the same as the most

recently scheduled event, then it is recognized as a Gridlet completion event. If there are Gridlets in the

submission queue, then depending on the allocation policy (e.g. the first Gridlet in the queue if FCFS policy is

A Novel Approach Inresource Management and Job Scheduling For Computational Grids

51

used), Grid Simulator selects a suitable Gridlet from the queue and assigns it to the PE or a suitable PE if more

than one PE is free. See Figure 8 for an illustration of the allocation of PEs to Gridlets. The completed Gridlet is

sent back to its originator (broker or user) and removed from the execution set. GridSimulator schedules a new

internal event to be delivered at the completion time of the scheduled Gridlet job. Figure 9illustrates simulation

of the space-shared scheduling algorithm and Gridlet execution.

When Gridlet1 arrives at time 0, it is mapped to PE1 and an internal event to be delivered at time 10 is

scheduled since the predicted completion time is still 10. At time 4, Gridlet2 arrives and it is mapped to PE2.

The completion time of Gridlet2 is predicted as 12.5 and the completion time of Gridlet1 is still 10 since both of

them are executing on different PEs. A new internal event to be delivered at time 12.5 is scheduled to signify the

completion of Gridlet2. At time 7, Gridlet3 arrives. Since there is no free PE available on the resource, it is put

into the queue.

The simulation continues, i.e. the Grid Simulator resource waits for the arrival of a new event. At time

10 a new event is delivered which happens to signify thecompletion of Gridlet1, which is then sent back to the

broker. It then checks to see if there are any Grid lets waiting in the queue and chooses a suitable Grid let (in

this case Gridlet2, based on FCFS policy) and assigns the available PE to it. An internal event to be delivered at

time 19.5 is scheduled to indicate the completion time of Gridlet3 and then waits for the arrival of new events. A

new event is delivered at the simulation time 12.5, which signifies the completion of Gridlet2, which is then sent

back to the broker. There is no Grid let waiting in the queue, so it proceeds without scheduling any events and

waits for the arrival of the next event.

 A new internal event arrives at the simulation time 19.5, which signifies the completion of

Gridlet3.This process continues until resources receive an external event indicating the termination of

simulation. A schematic representation of the arrivalof the Grid lets, internal events delivery, and sending them

back to the broker is shown in Figure 6. A detailed statistical data on the arrival, execution start, finish, and

elapsed time of all Gridlets are shown in Table I. For every Grid resource, the non-Grid (local) workload is

estimated based on typically observed load conditions depending on the time zone of the resource

Algorithm: Space-Shared Grid Resource Event Handler()

Figure 7. An event handler for simulating space-shared resource scheduling

Algorithm: Allocate PE to the Gridlet(Gridletgl)

BEGIN

1. Identify a suitable Machine with Free PE

2. Identify a suitable PE in the machine and Assign to

the Gridlet

A Novel Approach Inresource Management and Job Scheduling For Computational Grids

52

3. Set Status of the Allocated PE to BUSY

4. Determine the Completion Time of Gridlet and Set

and internal event to be delivered at the completion

time

END

Figure 8.PE allocation to the Gridlets in the space-shared GridSim resource.

V. SCHEDULING SIMULATION EXPERIMENTS
To simulate application scheduling in GridSimulator environment using the economic Grid broker

requiresthe modeling and creation of GridSimulator resources and applications that model jobs as Gridlets. In

thissection, we present resource and application modeling along with the results of experiments withquality of

services driven application processing.

5.1. Resource Modelling

We modelled and simulated a number of time- and space-shared resources with different

characteristics,configurations, and capabilities from those in the WWG testbed. We have selected the latest

CPUmodels IntelXEIONServer, Sun Netra 20, Intel VC820 (800EB MHz, i5 third generation), and SGI

Origin3200 1X 500 MHz R14k released by their manufacturers Compaq, Sun, Intel, and SGI, respectively.To

enable the users to model their applicationprocessing requirements, we assumed the MIPS rating of the PEs to

be the same as the SPEC rating.

Table II shows characteristics of resources simulated and their PE cost per time unit in G$ (Griddollar).

These simulated resources resemble the WWG testbed resources used in processing parameter sweep

application using the Nimrod-G broker [24]. The PE cost in G$/unit time does not necessarily reflect the cost of

processing when PEs have different capabilities. The brokers need to translate the cost into G$ per MI (million

instructions) for each resource. Such translation helps in identifying the relative cost of resources for processing

Gridlets on them.

Table II. Simulate Grid Resources using Grid Simulator.

A Novel Approach Inresource Management and Job Scheduling For Computational Grids

53

5.2. Application modelling

We have modeled a task farming application that consists of 100 jobs. In Grid Simulator, these jobs are

packaged as Gridlets whose contents include the job length in MI, the size of the job input and output

data in bytes, along with various other execution related parameters when they move between the broker and

resources. The job length is expressed in terms of the time it takes to run on a standard resource PE with a

SPEC/MIPS rating of 100. Gridlets processing time is expressed in such a way that they are expected to take at

least 100 time units with a random variation of 0–10% on the positive sideof the standard resource. That means

the Gridlet job length (processing requirements) can be at least10 000 MI with a random variation of 0–10% on

the positive side. This 0–10% random variation in theGridlet job length is introduced to modelheterogeneous

tasks similar to those present in the real worldparameter sweep applications

5.3. DBC scheduling experiments with cost-optimization—for a single user

In this experiment, we performed scheduling experiments with different values of DBCs for a single

user. The deadline is varied in simulation time from 100 to 3600 in steps of 500. The budget is varied

from G$ 5000 to 22 000 in steps of 1000. For this scenario, we performed scheduling simulation

for the DBC cost-optimization algorithm. The number of Gridlets processed, the deadline utilized,

and the budget spent for different scheduling scenario is shown in Figures 21–24.

A Novel Approach Inresource Management and Job Scheduling For Computational Grids

54

VI. CONCLUSION AND FUTUREWORK

We discussed an object-oriented toolkit, called Grid Simulator, for resource modelling and scheduling

simulation. Grid Simulator simulates time- and space-shared resources with different capabilities, time zones,

and configurations. It supports different application models that can be mapped to resources for execution by

developing simulated application schedulers. Grid Simulator scales with them due to its concurrent

implementation. We have developed a Nimrod-G like economic Grid resource broker simulator using

GridSimulatorand evaluated a number of scheduling algorithms based on deadline and budget based

constraints. This helped us in evaluating performance and scalability of our scheduling policies with

differentGrid configurations such as varying the number of resources, capability, cost, users, and processing

REFERENCES

1. Foster I, Kesselman C (eds.). The Grid: Blueprint for a Future Computing Infrastructure. Morgan

Kaufmann: San Mateo, CA, 1999.

2. Oram A (ed.). Peer-to-Peer: Harnessing the Power of Disruptive Technologies. O’Reilly, 2001.

3. Baker M, Buyya R, Laforenza D. The Grid: International efforts in global computing. Proceedings of

the International Conference on Advances in Infrastructure for Electronic Business, Science, and

Education on the Internet, Rome, Italy,31 July–6 August 2000.

4. Abramson D, Giddy J, Kotler L. High performance parametric modeling with Nimrod/G: Killer

application for the global Grid? Proceedings International Parallel and Distributed Processing

Symposium (IPDPS 2000), Cancun, Mexico, 1–5 May 2000. IEEE Computer Society Press, 2000.

5. Buyya R, Abramson D, Giddy J. Nimrod/G: An architecture for a resource management and scheduling

system in a global computational Grid. Proceedings 4th International Conference and Exhibition on

High Performance Computing in Asia-Pacific Region (HPC ASIA 2000), Beijing, China, 14–17 May

2000. IEEE Computer Society Press, 2000.

6. Buyya R, Abramson D, Giddy J. An economy driven resource management architecture for global

computational power Grids. Proceedings of the 2000 International Conference on Parallel and

Distributed Processing Techniques and Applications (PDPTA 2000), Las Vegas, NV, 26–29 June

2000. CSREA Press, 2000.

7. Buyya R, Giddy J, Abramson D. An evaluation of economy-based resource trading and scheduling on

computational power Grids for parameter sweep applications. Proceedings of the 2nd International

Workshop on Active Middleware Services (AMS 2000), Pittsburgh, PA, 1 August 2000. Kluwer

Academic Press, 2000

Authors

V.DayaSagarKetaraju received , the M.Tech. in Computer Science and Engineering from Javaharlal Nehru

Technological University, Kakinada, AndhraPradesh, India in 2010. Presently working as associate professor in

Dept. of Computer Science and Engineering at Nalanda Institute of Engineering & Technology, Kantipudi,

sattenapalli, Guntur, Andhra Pradsesh, INDIA. His current research area is Database management systems, Grid

Computing, computer networks

Dr.M.V.L.N.RajaRao received the Ph.D in Computer SciencefromAndhraUniversity, Visakapatnam,

Andhrapradesh, India in2007. Presently working as Professor &Head in the Dept.of Information Technology,

Gudlavalleru Engg. College, Gudlavalleru, Krishna Dist ,Andhrapradesh,India. His current researcharea is

Dataware house and datamining, computer networks, Grid computing, software Engineering & testing.

Dr.G.V.S.N.R.V.Prasad receivedPh.D in Computer Science & Engineering from Javaharlal Nehru

Technological University, Kakinada,Andhra Pradesh, Indian in2013. Presently working as Professor & Head in

the Dept. of Computer Science & Engineering at Gudlavalleru Engineering College,Gudlavalleru, Krishna Dist.,

A.P. India.His current research area is Dataware house anddata mining, computer networks, Grid computing,

software Engineering & testing and Intrusion detection techniques

